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S.1. Supplementary Text 

S.1.1 Hertzian Model 
Throughout an acoustic field, a non-zero time-averaged stress is created by non-linear terms in the 

Navier-Stokes equations. This stress is discontinuous across the boundary of a cell and its effect 

can be approximated in the non-viscous regime as a stress difference1: 

Δ𝛱𝛱 = 𝛱𝛱i − 𝛱𝛱o          (S1) 

where Πi and Πo are the j on the inside and the outside of the membrane, respectively, given to 

second order as2 

𝛱𝛱jk = −〈𝑃𝑃 − 𝑃𝑃𝑜𝑜〉𝛿𝛿𝑗𝑗𝑗𝑗 − 𝜌𝜌0〈𝑣𝑣𝑗𝑗𝑣𝑣𝑗𝑗〉        (S2) 

where 𝛿𝛿𝑗𝑗𝑗𝑗 is the Kronecker delta, 〈… 〉 represents the time average. The second term on the right-

hand side is the Reynolds stress, representing the time-averaged transport of the momentum 

density 𝜌𝜌0𝑣𝑣𝑗𝑗 with velocity 𝑣𝑣𝑗𝑗 in the direction of the surface normal. The time averaged mean 

Eulerian excess pressure is given by3 

〈𝑃𝑃 − 𝑃𝑃𝑜𝑜〉 = 1
2𝜌𝜌0𝑐𝑐02

〈𝑝𝑝2〉 − 𝜌𝜌0
2
〈𝑣𝑣2〉       (S3) 

with 𝜌𝜌0, 𝑐𝑐0, 𝑝𝑝, and 𝑣𝑣 denoting the quiescent fluid density, ambient speed of sound, first order 

acoustic pressure, and first order acoustic velocity, respectively. Through this formulation, elastic 

modulus 𝐸𝐸 of the membrane is calculated through the linear relation 

𝐸𝐸𝑗𝑗𝑗𝑗 = 𝛱𝛱jk/𝜖𝜖𝑗𝑗𝑗𝑗          (S4) 

where 𝜖𝜖 is the strain. In our acousto-holographic system, the strain 𝜖𝜖 is calculated from the 

measured displacement 𝑑𝑑 using 

𝜖𝜖 = 𝑑𝑑/𝜙𝜙0          (S5) 

where 𝑑𝑑 = 𝜙𝜙 − 𝜙𝜙0 with 𝜙𝜙0 denoting the initial thickness of the sample and 𝜙𝜙 corresponding to 

the thickness at the instant of the acoustic pressure. These definitions will become clearer in the 

following sections. 



S.1.2 Processing of acquired interferograms  

As explained in the Methods section of the Main text, the acquired 50 interferograms at 20 different 

phase steps are first processed using a wavelet transform based phase matching algorithm and 

stored in 50 bins, each containing one of the 50 interferograms obtained at one phase step (50 bins 

each with 20 interferograms), then filtered for noise reduction, and finally processed using phase 

retrieval and phase unwrapping algorithms. The resulting interferograms are then processed to 

extract the displacement 𝑑𝑑 which is used in Eq. (S5) to calculate strain 𝜖𝜖, which is subsequently 

used to calculate the elastic modulus 𝛿𝛿 using Eq. (S4). Below is the outline of the mathematical 

basis of displacement 𝑑𝑑 measurement from the interferograms. 

The intensity measured at the 𝑗𝑗-th pixel (𝑗𝑗 = 1,2, … ,𝑁𝑁) in each image of the 𝑖𝑖-th phase-shifted 

interferogram (𝑖𝑖 = 1,2, … ,𝑀𝑀) can be expressed as4 

𝐼𝐼𝑖𝑖𝑗𝑗 =  𝐴𝐴𝑖𝑖𝑗𝑗 + 𝐵𝐵𝑖𝑖𝑗𝑗 cos�𝜃𝜃𝑗𝑗 + 𝛿𝛿𝑖𝑖�        (S6) 

where 𝐴𝐴𝑖𝑖𝑗𝑗 and 𝐵𝐵𝑖𝑖𝑗𝑗 are respectively the background intensity and the modulation amplitude, θ𝑗𝑗 are 

the angular phase, and 𝛿𝛿𝑖𝑖 are the phase-shift amount at each frame. We assume that 𝐴𝐴𝑖𝑖𝑗𝑗 and 𝐵𝐵𝑖𝑖𝑗𝑗 do 

not have intra-frame variation. This is a reasonable assumption under stable imaging conditions. 

Then, the expression given in Eq. (S6) can be written as 

𝐼𝐼𝑖𝑖𝑗𝑗𝑡𝑡 = 𝑎𝑎𝑗𝑗 + 𝑏𝑏𝑗𝑗 cos(𝛿𝛿𝑖𝑖) + 𝑐𝑐𝑗𝑗sin (𝛿𝛿𝑖𝑖)       (S7) 

where 𝑎𝑎𝑗𝑗 = 𝐴𝐴𝑖𝑖𝑗𝑗, 𝑏𝑏𝑗𝑗 = 𝐵𝐵𝑖𝑖𝑗𝑗cos (𝜃𝜃𝑗𝑗), and 𝑐𝑐𝑗𝑗 = −𝐵𝐵𝑖𝑖𝑗𝑗sin (𝜃𝜃𝑗𝑗). Using 𝑀𝑀 images and 𝑁𝑁 pixels we use an 

over-determined least-squares method to solve for the unknown variables. The least-squares error 

𝑆𝑆𝑗𝑗 is given by 

𝑆𝑆𝑗𝑗 =  ∑ �𝐼𝐼𝑖𝑖𝑗𝑗𝑡𝑡 − 𝐼𝐼𝑖𝑖𝑗𝑗�
2𝑀𝑀

𝑖𝑖=1 =  ∑ �𝑎𝑎𝑗𝑗 + 𝑏𝑏𝑗𝑗 cos(𝛿𝛿𝑖𝑖) + 𝑐𝑐𝑗𝑗 sin(𝛿𝛿𝑖𝑖) − 𝐼𝐼𝑖𝑖𝑗𝑗�
2𝑀𝑀

𝑖𝑖=1    (S8) 

where 𝐼𝐼𝑖𝑖𝑗𝑗 is the experimentally measured intensity of the interferogram. Least-squares criteria are 

expressed by 𝜕𝜕𝑆𝑆𝑗𝑗/𝜕𝜕𝑎𝑎𝑗𝑗 =  0, 𝜕𝜕𝑆𝑆𝑗𝑗/𝜕𝜕𝑏𝑏𝑗𝑗 =  0, and 𝜕𝜕𝑆𝑆𝑗𝑗/𝜕𝜕𝑐𝑐𝑗𝑗 =  0 which yield 𝑋𝑋𝑗𝑗 =  𝐴𝐴−1/𝐵𝐵𝑗𝑗 with 



𝐴𝐴 = �
𝑀𝑀 ∑ cos(𝛿𝛿𝑖𝑖)𝑀𝑀

𝑖𝑖=1 ∑ sin(𝛿𝛿𝑖𝑖)𝑀𝑀
𝑖𝑖=1

∑ cos(𝛿𝛿𝑖𝑖)𝑀𝑀
𝑖𝑖=1 ∑ cos2(𝛿𝛿𝑖𝑖)𝑀𝑀

𝑖𝑖=1 ∑ cos(𝛿𝛿𝑖𝑖)sin(𝛿𝛿𝑖𝑖)𝑀𝑀
𝑖𝑖=1

∑ sin(𝛿𝛿𝑖𝑖)𝑀𝑀
𝑖𝑖=1 ∑ cos(𝛿𝛿𝑖𝑖)𝑀𝑀

𝑖𝑖=1 sin(𝛿𝛿𝑖𝑖) ∑ sin2(𝛿𝛿𝑖𝑖)𝑀𝑀
𝑖𝑖=1

�    (S9) 

�𝑋𝑋𝑗𝑗� = {𝑎𝑎𝑗𝑗 𝑏𝑏𝑗𝑗 𝑐𝑐𝑗𝑗}𝑇𝑇         (S10) 

�𝐵𝐵𝑗𝑗� = �∑ 𝐼𝐼𝑖𝑖𝑗𝑗𝑀𝑀
𝑖𝑖=1 ∑ 𝐼𝐼𝑖𝑖𝑗𝑗cos (𝛿𝛿𝑖𝑖)𝑀𝑀

𝑖𝑖=1 ∑ 𝐼𝐼𝑖𝑖𝑗𝑗𝑀𝑀
𝑖𝑖=1 �     (S11) 

Using Eqs. (S9) - (S11), we estimate the unknowns 𝑎𝑎𝑗𝑗, 𝑏𝑏𝑗𝑗, and 𝑐𝑐𝑗𝑗 and then use the estimated values 

to calculate the thickness 𝜙𝜙𝑗𝑗 as: 

𝜙𝜙𝑗𝑗 = tan−1�−𝑐𝑐𝑗𝑗/𝑏𝑏𝑗𝑗�         (S12) 

We then find the displacement (i.e., the change in membrane thickness in response to acoustic 

pressure) using 𝑑𝑑 = Δ𝜙𝜙 = 𝜙𝜙 − 𝜙𝜙0 in response to applied acoustic pressure. Here, 𝜙𝜙0 is the initial 

thickness of the sample and 𝜙𝜙 is the thickness at a specific instant of the acoustic pressure. 

Plugging the calculated 𝑑𝑑 in Eq. (S5) gives the strain 𝜖𝜖 which is then used in Eq. (S4) to calculate 

the elastic modulus 𝐸𝐸.  

S.1.3 Finite element studies 
To further validate the stiffness results obtained from microbead experiments and to compare the 

distribution of stiffness over the microbead, we have conducted finite element analysis (FEA) 

studies using COMSOL Multiphysics®. A schematic description of the analysis and comparison 

process is shown Figure S12. Within the context of this analysis, we consider the materials as a 

homogeneous viscoelastic material. Under this assumption, a continuum model description of 

microbead deformation can be applied and implemented in COMSOL. 

Three different physics interfaces are used to simulate the model. The continuum mechanics of the 

microbeads and the acoustic pressure are modeled using the “Solid Mechanics” and the “Pressure 

Acoustics” module, respectively. These modules are coupled using the “Acoustic-Structure 

Interaction” coupling module. For resolving the optical interference patterns, the “Wave Optics” 

module was used. The PDMS microwell chip is defined as a rectangular PDMS block with 24 mm 

width, 60 mm length and 3 mm depth. The well itself is defined as a rectangular block of 20 mm 

width, 20 mm length and 3 mm thickness placed within the PDMS with a custom material named 



“Medium”. Simulations were performed for PS, PAA, and agarose microbeads (i.e., material 

properties are given in Supplementary Table 2). The microbeads are defined as spherical particles 

at the middle of the well attached to the bottom.  The PZT transducer was defined as a circular 

block of PZT material with a 15 mm diameter and a 2 mm thickness. The horizontal and vertical 

pathways through which laser beams travel were modeled as a rectangular block running parallel 

and orthogonal to the length of the PDMS chip, respectively. A quartz beam splitter was defined 

as the isosceles right triangular block with 10 mm side length and 10 mm thickness. A transition 

boundary condition between these triangular blocks was defined to simulate the splitting of 

incident laser beams. An acoustic-structure boundary was defined between the sphere and the 

medium. The acoustic signal input to the system is defined with a spherical wave radiation source 

defined at bottom-centers of one of the side walls. A gaussian beam with a 1 mm radius was 

defined to travel across the horizontal and vertical optical pathways. The interference pattern was 

measured by plotting the electric field intensity at the bottom surface of the vertical optical 

pathway. A two-step study was conducted with the first step being a “Transient Analysis” 

involving the “Solid Mechanics” physics and the “Pressure Acoustics” physics. The interval of 

solution was defined between 0 s and 1e-3 s with a 1e-5 s step size. For each transient solution, a 

secondary “Frequency Analysis” study involving the “Wave Optics” module was conducted. The 

solution was defined at the wavelength of 521 nm. Furthermore, for each “Frequency Analysis” a 

parametric sweep was defined for the phase delay of the horizontal optical beam (reference beam) 

starting from 0 up to 2𝜋𝜋 with 2𝜋𝜋/5 intervals. Through solving this sweep for each time interval, 

the phase patterns shown in Figure S12 (b) were obtained. These patterns were then reconstructed 

using MATLAB to obtain the thickness maps shown in Figure S12 (c). We then applied the 

methodology described in Section S.1.1 to obtain the stiffness maps shown in Figure S12 (d).  

  



S.1.4 Method validation using coefficient of determination  

Examples of stiffness maps obtained from our acousto-holographic measurements and the 

COMSOL simulations for PS, PAA, and agarose microbeads are shown in Figure S13. Examples 

of histograms of the stiffness values extracted from the 2D stiffness maps, which are reconstructed 

through AFM and acousto-holographic measurements, and COMSOL simulations are given in 

Figures S14, S15, and S16, respectively for PAA, agarose, and PS microbeads. AFM and acousto-

holographic measurements were performed on different microbeads drawn from the same batch. 

Figure S17 shows exemplary stiffness histograms obtained from 2D stiffness maps measured for 

epithelial HCT116 cells using the acousto-holographic system and AFM, and stiffness histograms 

obtained for CTC-mimicking HCT116 cells using the 2D stiffness maps reconstructed using the 

acousto-holographic system. In COMSOL simulations we assumed the size of the microbeads as 

the average size of the microbead batches used in the experiments.  

We compared these histograms using the coefficient of determination formula (explained in the 

Statistical Analysis) 

𝑅𝑅2 = 1 − ∑�𝑦𝑦𝑖𝑖,observed−𝑦𝑦𝑖𝑖,calculated�
2

∑�𝑦𝑦𝑖𝑖,observed−𝑦𝑦��
2        (S13) 

with 𝑦𝑦� = 𝑁𝑁−1 ∑𝑦𝑦𝑖𝑖,observed where 𝑦𝑦𝑖𝑖,observed is the value at the 𝑖𝑖 − 𝑡𝑡ℎ bin in the histogram of 

experimentally obtained 2D map, and 𝑦𝑦𝑖𝑖,calculated is the value at the 𝑖𝑖 − 𝑡𝑡ℎ bin in the histogram of 

2D map obtained using FEA in COMSOL. This method is commonly used for analysing the 

similarity between two distributions5. The summations in (S13) run through all bins in the 

histograms. Using (S13), we obtained the coefficient of determination values as 𝑅𝑅2=0.89, 𝑅𝑅2=0.90, 

and 𝑅𝑅2=0.94 for PAA, agarose, and PS microbeads, respectively, whose stiffness maps obtained 

from simulations are given in Figure S13. 

Supplementary Table 2 presents the 𝑅𝑅2 values obtained by comparing the stiffness histograms 

obtained from acousto-holographic measurements with those obtained from COMSOL 

simulations using a sample size of 50 PS, 50 PAA, and 50 agarose microbeads. 𝑅𝑅2 values 

calculated are: 0.90 ≤ 𝑅𝑅2 ≤ 0.92, 0.87 ≤ 𝑅𝑅2 ≤ 0.91, and 0.86 ≤ 𝑅𝑅2 ≤ 0.90, respectively for PS, 

PAA, and agarose microbeads, with the overall statistics given as: 𝑅𝑅2 = 0.91 ∓ 0.02, 𝑅𝑅2 =



0.89 ∓ 0.04, and 𝑅𝑅2 = 0.88 ∓ 0.05, implying a good correlation between our measurements and 

simulations. The slightly lower correlation for PAA and agarose microbeads may be due to the 

difference in the actual shape of the microbeads used in the experiments and the perfectly spherical 

shape of the microbeads used in the simulations as well as small variations in the refractive indices. 

Furthermore, we have also compared the stiffness map resulting from COMSOL simulation and 

from AFM measurements for both PAA and agarose microbeads. This comparison yielded an 𝑅𝑅2 

value of 0.83 and 0.81 for PAA and agarose microbeads, respectively. 

Supplementary Table 3 presents the 𝑅𝑅2 values obtained by comparing the stiffness histograms 

obtained from acousto-holographic measurements with those obtained from AFM measurements 

on 50 PAA and 50 agarose microbeads. 𝑅𝑅2 values calculated are: 0.85 ≤ 𝑅𝑅2 ≤ 0.96 and 0.85 ≤

𝑅𝑅2 ≤ 0.98, respectively for PAA, and agarose microbeads, with the overall statistics given as: 

𝑅𝑅2 = 0.90 ∓ 0.03 and 𝑅𝑅2 = 0.93 ∓ 0.03, implying a very good correlation between our AFM and 

acousto-holographic measurements. A summary of these results is depicted in the Supplementary 

Figure S18.  

The boxplots in the Supplementary Figure S18 summarizes the 𝑅𝑅2 values obtained by comparing 

the stiffness distributions (i.e., stiffness histograms) obtained from the 2D stiffness maps of PAA 

microbeads, agarose microbeads, and epithelial HCT116 cells which are experimentally 

reconstructed using acousto-holographic and AFM measurements. Figure S18 also includes the 

𝑅𝑅2 value that compares the results of acousto-holographic measurements for epithelial HCT116 

and CTC-mimicking cells. We compared the stiffness histograms obtained from a total of 1225 

two-dimensional stiffness maps (35 from AFM and 35 from acousto-holographic system) 

reconstructed using acousto-holographic and AFM measurements which yield 𝑅𝑅2 = 0.82 ∓ 0.12, 

implying that AFM and acousto-holographic measurements present a good correlation and 

agreement. Deviation from the ideality may be attributed to the cell-to-cell stiffness differences 

(i.e., a total of 70 cells were measured, 35 with AFM and 35 with acousto-holographic 

measurement system) as well as measurement and signal processing noises. Finally, we compared 

the stiffness histograms obtained for epithelial HCT116 cells and CTC-mimicking cells from 2D 

stiffness maps constructed from acousto-holographic measurements. In this comparison, we used 

35 stiffness maps and associated histograms obtained for epithelial cells and 25 stiffness maps and 

associated histograms obtained for CTC-mimicking cells (i.e., a total of 875 two-dimensional maps 



and associated histograms were compared). This comparison yielded 𝑅𝑅2 = 0.42 ∓ 0.24, implying 

a clear discrepancy between the histograms of stiffness maps of these cells as expected.  

 

S.1.5. Determination of the spatial resolution 
In this section we summarize the studies that we have conducted in order to determine the spatial 

resolution and stiffness resolution of our system. Spatial resolution is further classified into lateral 

and axial resolutions. Lateral resolution is defined as the minimum distance between two point-

objects of equal irradiance that produce two distinct reconstructed images. Axial resolution is 

defined as the minimum change in thickness that is required to obtain two distinct reconstructed 

images. Similarly, stiffness resolution is defined as the minimum change in stiffness that is 

required to obtain two distinct stiffness maps. 

In digital holography, the discrete pixels on a CMOS or CCD array sample the continuous spatial 

distribution of an optically created hologram. The outputs of these pixels are then transformed to 

digitized signals and stored in an image processing system for numerical analysis. This matrix-

based numerical processing that follows the digital sampling principle creates novel discretization 

effects that are not encountered in traditional holographic techniques. Digital holographic imaging 

systems are affected by at least the following three parameters that determine the lateral 

resolution6: 

(1) the spacing between adjacent pixels of the CMOS, 

(2) an averaging effect introduced by the finite size of these pixels, 

(3) the finite extent of the camera face itself. 

The main parameters that determine spatial resolution are pixel size and pixel number. Normally, 

the interferogram is captured through a rectangular array of pixels organized in 𝑁𝑁 rows and 𝑀𝑀 

columns. In the case of a square image sensor 𝑁𝑁 = 𝑀𝑀 holds. The distance between the centers of 

two consecutive pixels are called pixel pitch and denoted as Δ𝜉𝜉 and Δ𝜂𝜂 in the two orthogonal 

directions. For a square sensor with identical spacing in vertical and horizontal directions Δ𝜉𝜉 =

Δ𝜂𝜂. According to the Nyquist sampling theorem, a signal can be captured faithfully up to the 

following spatial frequencies7 



𝑓𝑓𝑁𝑁𝑁𝑁 = 1
2Δ𝑁𝑁

   and     𝑓𝑓𝑁𝑁𝑁𝑁 = 1
2Δ𝑁𝑁

        (S14) 

However, typically the signal captured from the object is magnified through an objective lens. As 

such, the diffraction limits introduced by the lens must also be taken into account. In diffraction-

limited systems, lateral resolution is typically defined by the Abbe’s criterion8. This resolution is 

also called the two-point resolution as it gives the minimum distance between two point-like light 

sources that is required to resolve them. Previous studies9,10 have shown that the minimum 

resolvable distance 𝛿𝛿 between two point sources is given by 

𝛿𝛿 = 0.61 𝜆𝜆𝜆𝜆
𝐻𝐻

          (S15) 

where 𝑑𝑑 is the distance between the image plane and the object plane and 𝐻𝐻 is the size of the image 

sensor. For our configuration with 𝜆𝜆 = 527 nm,𝐻𝐻 = 7.1 mm,  and 𝑑𝑑 = 14.45 mm, this 

formulation yields a spatial resolution of 654nm. In order to test and validate this theoretical 

calculation, we used 15𝜇𝜇m PS microbeads (Sigma Aldrich, 74964) to determine the spatial 

dimension that can be measured with a single pixel. The reconstructed stiffness map of an 

exemplary microbead is shown in Supplementary Figure S19-a. The diameter of the microbead is 

measured to be equal to 46 pixels. Considering a standard deviation value of 0.2𝜇𝜇m, it can be 

determined that a single pixel corresponds to a spatial dimension between 322nm and 330nm. 

Empirically, the two-point resolution can be approximated to be between 644nm and 660nm. A 

similar calculation is then conducted on an exemplary PS microbead with a 100𝜇𝜇m diameter and 

the results are shown in Supplementary Figure S19-b. The thickness, diameter and average 

stiffness values of an ensemble of 50 PS microbeads is shown in Supplementary Figure S20. The 

diameter values measured as such are also in support of the spatial resolution calculated above. 

Furthermore, the cross-sectional stiffness measurements taken from the exemplary microbead is 

shown in Supplementary Figure S21. 

The axial resolution on the other hand is limited by the smallest change in the thickness information 

which can be measured by our holographic imaging system. The thickness information is related 

to the phase measurement through Eq. (S12). Thus, it can be concluded that the accuracy with 

which we can measure the stiffness change at a given point is related to the accuracy with which 

we can measure change in phase. In order to determine the phase measurement accuracy, we 

analyzed the data obtained from PS microbeads. These microbeads have spherical shape, which 

allowed us to determine the expected change in thickness at different points on the imaging plane. 



Thus, we were able to graph the change in phase as a function of change in thickness by measuring 

the phase information at the center of the microbead and comparing this value to the phase 

information measured at different points on the microbead. The real distance was calculated as a 

function of discrete pixel distances Δ𝑥𝑥 and Δ𝑦𝑦, respectively in the two orthogonal directions, as 

follows: 

𝑑𝑑 = 𝑓𝑓(Δ𝑥𝑥,Δ𝑦𝑦) = �(𝑝𝑝Δ𝑥𝑥)2 + (𝑝𝑝Δ𝑦𝑦)2      (S16) 

𝑝𝑝 = 𝐷𝐷bead,real
𝐷𝐷bead,pixel

          (S17) 

where 𝐷𝐷𝑏𝑏𝑏𝑏𝑏𝑏𝜆𝜆,𝑟𝑟𝑏𝑏𝑏𝑏𝑟𝑟 is the real diameter of a PS microbead and 𝐷𝐷𝑏𝑏𝑏𝑏𝑏𝑏𝜆𝜆,𝑝𝑝𝑖𝑖𝑝𝑝𝑏𝑏𝑟𝑟 is the pixel count alongside 

the diameter of a given PS microbead. Furthermore, we calculate the expected change in thickness 

as a function of distance from the center as follows: 

Δ𝜙𝜙ex = 𝜙𝜙𝑐𝑐 − �𝜙𝜙𝑐𝑐2 − 𝑑𝑑2        (S18) 

where 𝜙𝜙𝑐𝑐 denotes the thickness value measured at the center of the microbead. By measuring the 

phase change relative to the center of the microbead as a function of expected change in thickness 

we determined the following linear relation between them: 

Δ𝜙𝜙 = 0.0447Δθe         (S19) 

where 𝜃𝜃𝑏𝑏 is the 16-bit encoded phase information. From this, we infer the accuracy of our thickness 

measurement as ~0.045𝜇𝜇𝜇𝜇. 

In order to translate the thickness measurement accuracy into stiffness measurement accuracy, we 

need to determine the minimum stiffness difference that would result in such thickness change 

under a given acoustic pressure and frequency. 

The acoustic pressure value that is generated by our system can be determined using Eq. (S2). 

Assuming a linear elastic membrane model, the elasticity formula can be written as 

𝐸𝐸𝑗𝑗𝑗𝑗 = 𝛱𝛱jk
𝜖𝜖𝑗𝑗𝑗𝑗

= 𝛱𝛱jk
(𝜙𝜙0+Δ𝜙𝜙)/𝜙𝜙0

        (S20) 

where 𝛱𝛱jk is the acoustic stress incident on the sample as described in Section S.1.1. Eq. (S20) 

relates the stiffness resolution of the system to the acoustic pressure and the initial thickness of the 



measured point on the sample. A graph of stiffness resolution versus initial thickness for different 

acoustic pressure values is given is Supplementary Figure S22. It is seen that the accuracy increases 

as we increase the applied acoustic pressure. In practice, however, the maximum pressure value 

that can be applied is limited with the transducer and cell’s viability as we discussed in the main 

text.   



S.2. Supplementary Figures 
 

Supplementary Figure S1. Flowchart of the stiffness map reconstruction 

 

 

 

 

 



Supplementary Figure S2. Interferograms obtained at 0, π/2, π, 3π/2, 2π phase shifts for a, a 

polyacrylamide (PAA) microbead, b, an agarose microbead, c, an epithelial HCT-116 cell, and d, 

a TGF-β treated HCT-116 cell.  

 

 

 



Supplementary Figure S3. Stiffness measurement of a polystyrene (PS) microbead obtained 

using the acousto-holographic method. a Amplitude image of the microbead. b Thickness map of 

the microbead obtained through the reconstruction of the captured interferograms. c Reconstructed 

displacement of a microbead obtained by measuring the change in thickness of a certain point on 

its surface relative to the initial thickness. d Stiffness distribution of the microbead obtained from 

displacement measurements of various points on the microbead using the Hertzian model. 

 

 

 



Supplementary Figure S4. Stiffness distributions of three different HCT116 cells measured using 

AFM indentation. Calculated average stiffness of a 1.10 kPa, b 1.26 kPa, and c 1.18 kPa are in 

good agreement with the values obtained using the acousto-holographic method.  

 

 

Supplementary Figure S5. Inverted microscope images of a a polyacrylamide (PAA) and b an 

agarose microbead.  

  



Supplementary Figure S6. Stiffness maps obtained from three different a PAA, b agarose, and c 

PS microbeads within deionized water (left), DMEM-F12 (middle), and glycerol (right). Shape 

distortion is clearly seen for the PS microbead measured in deionized water due to the microbead’s 

high refractive index. Such distortions are suppressed in the glycerol which has a high refractive 

index medium. 

 



Supplementary Figure S7. Thickness maps for a PAA microbeads, b agarose microbeads, and c 

polystyrene microbeads within deionized water (left), DMEM-F12 (middle), and glycerol (right). 

A similar pattern where high refractive index disparity causes measurement distortions can be 

observed here for polystyrene microbeads. 

 

  



Supplementary Figure S8. 2D stiffness map obtained for a PAA microbead using AFM 

measurements and vertical and horizontal cross-sections (solid lines) of the stiffness through the 

centre of the image. 

 

  



Supplementary Figure S9. 2D stiffness map obtained for a PAA microbead using the acousto-

holographic measurement system and vertical and horizontal cross-sections (solid lines) of the 

stiffness through the centre of the image. 

 

  



Supplementary Figure S10. 2D stiffness map obtained for an agarose microbead using AFM 

measurements and vertical and horizontal cross-sections (solid lines) of the stiffness through the 

centre of the image. 

 

  



Supplementary Figure S11. 2D stiffness map obtained for an agarose microbead using the 

acousto-holographic measurement system and vertical and horizontal cross-sections (solid lines) 

of the stiffness through the centre of the image. 

 

 

  



Supplementary Figure S12. A schematic describing the finite element analysis (FEA) conducted 

using COMSOL Multiphysics. a The geometric structure, b the phase shifted interferograms 

obtained in COMSOL, c thickness maps calculated in MATLAB, d stiffness map calculated in 

MATLAB. 

 



Supplementary Figure S13. Comparison of stiffness maps obtained from FEA in COMSOL 

(right) and from acousto-holographic measurement system (left) for a PAA, b agarose, and c PS 

microbeads. 

 



Supplementary Figure S14. Histograms showing the stiffness distributions obtained from the 

reconstructed 2D stiffness maps obtained for PAA microbeads taken from the same batch and 

measured using a acousto-holographic system and b AFM.  c presents the result obtained from 

COMSOL simulations for a PAA microbead whose size is the average size of the microbeads in 

the batch used in the experiments.  

 

 

Supplementary Figure S15. Histograms showing the stiffness distributions obtained from the 

reconstructed 2D stiffness maps obtained for agarose microbeads taken from the same batch and 

measured using a acousto-holographic system and b AFM.  c presents the result obtained from 

COMSOL simulations for an agarose microbead whose size is the average size of the microbeads 

in the batch used in the experiments. 

 

  



Supplementary Figure S16. Histograms showing the stiffness distributions from the 

reconstructed 2D stiffness maps obtained for PS microbeads measured using a acousto-

holographic system and b COMSOL simulations with a PS microbead whose size is the average 

size of the microbeads in the batch used in the experiments. 

 

 

Supplementary Figure S17. Histograms showing the stiffness distributions from the 

reconstructed 2D stiffness maps obtained for a epithelial HCT116 cells using acousto-holographic 

system, b epithelial HCT116 cells using AFM measurements, and c CTC-mimicking HCT116 

cells using acousto-holographic system. 

 

  



Supplementary Figure S18. Boxplots showing the distribution of 𝑅𝑅2 values calculated by 

comparing stiffness histograms obtained from 2D stiffness maps. a-c Comparison of the results 

obtained from the acousto-holographic and AFM measurements of a PAA microbeads (Fig. S14), 

b agarose microbeads (Fig. S15), and c epithelial HCT116 cells (Fig. S17c). d Comparison of the 

results obtained from the acousto-holographic measurements of epithelial HCT116 cells (Fig. 

S17a) and CTC-mimicking cells (Figure S17c).  Measurements with AFM and acousto-

holographic system shows a very good similarity. Low similarity (i.e., high dissimilarity) between 

the results for epithelial HCT116 and CTC-mimicking cells obtained with acousto-holographic 

system implies the large stiffness difference between these two cells, as expected. The red line 

denotes the median value, the rectangular box denotes the range between 25th percentile and 75th 

percentile, and the whiskers denote the range between 0th and 100th percentile. For a and b, 50 

comparisons were made (1 obtained from AFM against 50 obtained from acousto-holographic 

system over three independent experiments). For c, 1225 comparisons were made (35 from AFM 

and 35 from acousto-holographic system both over three independent experiments). For d, 875 

comparisons were made (35 epithelial and 25 CTC-mimicking HCT116 cells, both measured using 

acousto-holographic system over three independent experiments). 

 



  



Supplementary Figure S19. Reconstructed stiffness maps of PS microbeads a 15𝜇𝜇m diameter 

and b 100𝜇𝜇m diameter and the calculation of the two-point resolution from their spatial 

dimensions. Both microbeads yield similar resolution values that are reasonably close to the 

theoretical resolution. 

 

  



Supplementary Figure S20. Distribution of thickness, diameter and stiffness values calculated 

from an ensemble of n=50 PS microbeads of 15 𝜇𝜇m diameter over three independent experiments. 

The red line denotes the median value, the rectangular box denotes the range between 25th 

percentile and 75th percentile, and the whiskers denote the range between 0th and 100th percentile. 

 

  



Supplementary Figure S21. 2D stiffness map obtained for a PS microbead of 15 𝜇𝜇m diameter 

using the acousto-holographic measurement system and vertical and horizontal cross-sections 

(solid lines) of the stiffness through the centre of the image. 

 

  



Supplementary Figure S22. Change in resolution against change in initial thickness for different 

acoustic pressure levels. 

 

 

  



Supplementary Table 1. Average stiffness over the whole microbead and its variation obtained 

from 10 consecutive measurements performed on the same PAA, agarose, and PS microbeads in 

deionized (DI) water, DMEM-F12, and glycerol. Note that for each medium we used a different 

microbead from the batch. 

 PAA 

bead 

in DI 

water 

 

PAA 

bead in 

DMEM-

F12 

PAA 

bead in 

glycerol 

Agarose 

bead in 

DI 

water 

Agarose 

bead in 

DMEM-

F12 

Agarose 

bead in 

glycerol 

PS 

bead 

in DI 

water 

PS bead 

in 

DMEM-

F12 

PS 

bead in 

glycerol 

Exp 1 1.85 
kPa 1.94 kPa 

2.13 
kPa 2.18 kPa 2.46 kPa 2.30 kPa 

0.94 
GPa 

0.91 
GPa 

1.14 
GPa 

Exp 2 1.73 
kPa 2.04 kPa 

2.06 
kPa 2.53 kPa 2.41 kPa 2.67 kPa 

1.10 
GPa 

1.09 
GPa 

1.08 
GPa 

Exp 3 1.95 
kPa 2.05 kPa 

1.89 
kPa 2.25 kPa 2.44 kPa 2.45 kPa 

1.01 
GPa 

1.12 
GPa 

1.08 
GPa 

Exp 4 1.89 
kPa 2.04 kPa 

2.08 
kPa 2.45 kPa 2.55 kPa 2.34 kPa 

1.10 
GPa 

0.91 
GPa 

1.12 
GPa 

Exp 5 1.89 
kPa 1.89 kPa 

2.04 
kPa 2.50 kPa 2.45 kPa 2.39 kPa 

0.90 
GPa 

0.94 
GPa 

1.07 
GPa 

Exp 6 1.67 
kPa 2.09 kPa 

2.18 
kPa 2.54 kPa 2.34 kPa 2.34 kPa 

0.92 
GPa 

0.96 
GPa 

1.13 
GPa 

Exp 7 2.07 
kPa 1.91 kPa 

1.94 
kPa 2.38 kPa 2.39 kPa 2.30 kPa 

1.14 
GPa 

0.95 
GPa 

1.11 
GPa 

Exp 8 2.15 
kPa 2.18 kPa 

1.69 
kPa 2.61 kPa 2.50 kPa 2.27 kPa 

0.94 
GPa 

0.95 
GPa 

1.08 
GPa 

Exp 9 2.13 
kPa 1.79 kPa 

2.01 
kPa 2.44 kPa 2.23 kPa 2.22 kPa 

1.03 
GPa 

0.91 
GPa 

1.09 
GPa 

Exp 
10 

2.16 
kPa 2.12 kPa 

1.78 
kPa 2.49 kPa 2.46 kPa 2.52 kPa 

0.99 
GPa 

0.94 
GPa 

1.12 
GPa 

Avg. 1.95 
kPa 2.01 kPa 

1.98 
kPa 2.44 kPa 2.42 kPa 2.38 kPa 

1.01 
GPa 

0.97 
GPa 

1.10 
GPa 

Std. 
Dev. 

0.17 
kPa 0.12 kPa 

0.16 
kPa 0.13 kPa 0.09 kPa 0.13 kPa 

0.08 
GPa 

0.07 
GPa 

0.02 
GPa 

  



Supplementary Table 2. Coefficient of determination 𝑅𝑅2 values calculated by comparing the 

histograms of stiffness distributions from simulations and acousto-holographic measurements.  

 PS Beads PAA 
Beads 

Agarose 
Beads 

 PS Beads PAA 
Beads 

Agarose 
Beads 

Sample 1 0.90 0.91 0.90 Sample 26 0.91 0.90 0.89 

Sample 2 0.91 0.89 0.87 Sample 27 0.91 0.89 0.87 

Sample 3 0.90 0.87 0.88 Sample 28 0.92 0.88 0.88 

Sample 4 0.90 0.87 0.89 Sample 29 0.90 0.89 0.88 

Sample 5 0.91 0.90 0.89 Sample 30 0.91 0.90 0.90 

Sample 6 0.91 0.89 0.86 Sample 31 0.91 0.89 0.88 

Sample 7 0.90 0.90 0.86 Sample 32 0.91 0.88 0.88 

Sample 8 0.90 0.88 0.86 Sample 33 0.91 0.91 0.89 

Sample 9 0.92 0.88 0.88 Sample 34 0.92 0.88 0.89 

Sample 10 0.91 0.90 0.89 Sample 35 0.90 0.91 0.88 

Sample 11 0.92 0.90 0.90 Sample 36 0.91 0.89 0.89 

Sample 12 0.91 0.89 0.90 Sample 37 0.91 0.88 0.88 

Sample 13 0.91 0.87 0.88 Sample 38 0.91 0.87 0.87 

Sample 14 0.91 0.90 0.90 Sample 39 0.91 0.90 0.89 

Sample 15 0.91 0.88 0.87 Sample 40 0.91 0.88 0.87 

Sample 16 0.92 0.88 0.86 Sample 41 0.92 0.90 0.89 

Sample 17 0.90 0.87 0.90 Sample 42 0.90 0.89 0.89 

Sample 18 0.92 0.88 0.90 Sample 43 0.92 0.91 0.87 

Sample 19 0.91 0.87 0.88 Sample 44 0.90 0.88 0.90 

Sample 20 0.91 0.90 0.86 Sample 45 0.91 0.88 0.87 

Sample 21 0.91 0.88 0.90 Sample 46 0.90 0.90 0.88 

Sample 22 0.92 0.91 0.90 Sample 47 0.91 0.89 0.88 

Sample 23 0.91 0.89 0.86 Sample 48 0.92 0.88 0.88 

Sample 24 0.92 0.89 0.89 Sample 49 0.91 0.88 0.89 

Sample 25 0.92 0.88 0.88 Sample 50 0.90 0.89 0.90 

    Average 0.91 0.89 0.88 

    Std. Dev. 0.02 004 0.05 

  



Supplementary Table 3. Coefficient of determination 𝑅𝑅2 values calculated by comparing the 

histograms of stiffness distributions obtained from acousto-holographic and AFM. 

 PAA 
Beads 

Agarose 
Beads 

 PAA 
Beads 

Agarose 
Beads 

Sample 1 0.92 0.96 Sample 26 0.92 0.90 

Sample 2 0.89 0.96 Sample 27 0.96 0.90 

Sample 3 0.90 0.94 Sample 28 0.88 0.90 

Sample 4 0.89 0.96 Sample 29 0.91 0.94 

Sample 5 0.92 0.95 Sample 30 0.88 0.97 

Sample 6 0.89 0.91 Sample 31 0.93 0.94 

Sample 7 0.88 0.94 Sample 32 0.93 0.95 

Sample 8 0.92 0.92 Sample 33 0.87 0.97 

Sample 9 0.90 0.90 Sample 34 0.94 0.85 

Sample 10 0.91 0.94 Sample 35 0.88 0.92 

Sample 11 0.90 0.93 Sample 36 0.91 0.94 

Sample 12 0.91 0.92 Sample 37 0.93 0.95 

Sample 13 0.85 0.93 Sample 38 0.91 0.89 

Sample 14 0.91 0.95 Sample 39 0.95 0.89 

Sample 15 0.94 0.94 Sample 40 0.96 0.95 

Sample 16 0.93 0.93 Sample 41 0.91 0.92 

Sample 17 0.92 0.93 Sample 42 0.87 0.94 

Sample 18 0.90 0.93 Sample 43 0.90 0.90 

Sample 19 0.91 0.90 Sample 44 0.89 0.88 

Sample 20 0.91 0.95 Sample 45 0.89 0.95 

Sample 21 0.91 0.97 Sample 46 0.88 0.96 

Sample 22 0.89 0.91 Sample 47 0.91 0.97 

Sample 23 0.90 0.98 Sample 48 0.95 0.88 

Sample 24 0.90 0.92 Sample 49 0.89 0.88 

Sample 25 0.90 0.92 Sample 50 0.90 0.88 

   Average 0.90 0.93 

   Std. Dev. 0.03 0.03 

  



Supplementary References 
1. Marston, P. L. & Apfel, R. E. Quadrupole resonance of drops driven by modulated acoustic 

radiation pressure—Experimental properties. J. Acoust. Soc. Am. 67, 27–37 (1980). 

2. Brillouin, L. Les Tenseurs en Mécanique et en Élasticité. (Dover Publications, New York, 1946). 

3. Lee, C. P. & Wang, T. G. Acoustic radiation pressure. J. Acoust. Soc. Am. 94, 1099–1109 (1993). 

4. Wang, Z. & Han, B. Advanced iterative algorithm for phase extraction of randomly phase-

shifted interferograms. Opt. Lett. 29, 1671-1673 (2004). 

5. Bazan, E., Dokládal, P. & Dokladalova, E. Quantitative Analysis of Similarity Measures of 

Distributions. in British Machine Vision Conference 2019, BMVC 2019 (2019). 

6. Kelly, D. P., Hennelly, B. M., Pandey, N., Naughton, T. J., & Rhodes, W. T. Resolution limits 

in practical digital holographic systems. Opt. Eng. 48, 1–13 (2009) 

7. Thomas, K. Handbook of holographic interferometry: optical and digital methods. (John Wiley 

& Sons, New York, 2006). 

8. Abbe, E. Beiträge zur theorie des mikroskops und der mikroskopischen wahrnehmung. Archiv 

für Mikroskopische Anatomie, 9, 413–418 (1873). 

9. Goodman, J. W. Introduction to Fourier Optics (The McGraw-Hill Companies, New York, 

1996). 

10. Yamaguchi, I., Kato, J., Ohta, S., & Mizuno, J. Image formation in phase-shifting digital 

holography and applications to microscopy. Appl. Opt. 40, 6177-6186 (2001). 

 

 


	S.1. Supplementary Text
	S.1.1 Hertzian Model
	S.1.2 Processing of acquired interferograms
	S.1.3 Finite element studies
	S.1.4 Method validation using coefficient of determination
	S.1.5. Determination of the spatial resolution
	S.2. Supplementary Figures
	Supplementary References

