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 2 
Integration of OPCs and OL from all ages and regions 3 

 The subclustered OPCs and OLs were also integrated across all ages and regions (Supplementary Fig 4 

3c-f). These data show similar clusters exist in each age and region with NT cells found mainly in clusters 0, 2, 5 

and 4 representing MOL & MFOL, OPCs, and NFOL, respectively; and R6/2 cells found in clusters 1 and 3 6 

representing a unique MOL group and COPs, respectively (Supplementary Fig 3c & d). Expression of OPC 7 

and OL maturation markers can be seen in Supplementary Fig. 3e, which suggests increased OPC commitment 8 

in R6/2 cells (COP cells with no Pdgfra and low OL marker expression (cluster 3 and 1)) and decreased OL 9 

maturation (MOL cells with downregulated OL marker expression (cluster 1)).  Pseudotime analysis of the 10 

integrated data set also showed similar results with all ages and regions showing cells along a single trajectory 11 

with 1 branch point mainly consisting of R6/2 cells (Fig 2d and Supplementary Fig 3f). We next analyzed R6/2 12 

versus NT differentially expressed genes in the OPC and OL clusters which revealed similar results to our non-13 

integrated data per age and region (Supplementary Data 2). Showing down regulation of OL maturation genes 14 

such as Mobp, Mal, Neat1, Plp1, and Cldn11 and upregulation of genes like Smarca2. While OPCs showed 15 

upregulation of Mbp, Plp1, and Smarca2.  These data suggest commitment of development in R6/2 OPCs in all 16 

ages and regions, and impaired maturation in OLs in all regions and ages. The pseudotime analysis reveals this 17 

is most significant in the striatum as more R6/2 OLs reach similar pseudotime values in the R6/2 cortex, relative 18 

to the NT (Fig. 2d and Supplementary Fig. 3f).  19 

  20 

WGCNA and Bnets 21 

To determine how mHTT disrupts the network structure of these modules elucidated in the NT state, we 22 

conducted module preservation analysis with R6/2 data (Supplementary Fig. 4a & b). Changes to the overall 23 

connectivity of the module members and in the structure of the subnetworks (node-to-node connectivity (kME), 24 

(edge weight)) would represent disruption of co-expression through mHTT pathogenic mechanisms. While all 25 

modules showed high levels of preservation in the R6/2 samples (Supplementary Fig. 4a-d).  26 

Other bnets: Further exploration of other cell type-specific bnets revealed similar data and also a few 27 

similar hub genes including Hs6st3, Erbb4, and Meg3 in the Ex neuron bnet (Supplementary Fig. 4c). Recurring 28 

themes were present in each of the cell type-specific bnets including GAG/proteoglycan related genes such as 29 



Tspan7 and Gpc5 in the astrocyte bnet (Supplementary Fig. 4b). When searching our Ex neuron bnet we found 30 

that GPR1, RORx, and snrnp70 seemed to have an important causal role in that specific network. We next 31 

looked at our yellow neuronal module which correlated with both MSN and Ex neurons but was anti correlated 32 

with glial cells. This network seemed to show 2 large subnetworks that separate hub genes mainly identified in 33 

the MSN versus Ex bnets, one containing Frmd4b and snrnp70 and the other containing Hs6st3, Dgkb, and 34 

Cacna2d3. Generally, the prior subnetwork contained genes related to Grp1 signaling and splicing (Tra2a and 35 

Ddx5) while the latter network contained genes related to protein glycosylation and glucose metabolism (Dgkx, 36 

Hsxstx, Galntx, Gpcx). A common link between these two pathways which seem to be playing an important role 37 

by their location in the hierarchical structure of the bnet are Neuregulin/Erbb signaling and Lingo2, both showing 38 

novel causal relationships amongst themselves and child nodes in both subnetworks. Lingo2 has been shown 39 

to regulate EGF signaling and has a role in Parkinson disease 1,2. These data show an important role for these 40 

pathways specifically in the pathogenesis of neuronal populations in HD.  41 

Interestingly, our MSN and OPC/OL bnets are enriched for genes associated with schizophrenia 3,4. 42 

Hypergeometric tests were used to assess statistical significance for overrepresentation of the schizophrenia 43 

genes in the causal networks. Including Reln and Pcdh15 other genes were Nrg1/3 and Erbb4, Smarca2, PLCB1 44 

a gene involved in diacylglycerol formation, Htr4 a glycosylated transmembrane protein involved in G protein 45 

coupled receptor serotonin signaling, as well as other genes involved in synaptic function and GPCR and calcium 46 

signaling. These data connect both metabolism to these signaling pathways and suggest coordination of these 47 

genes towards pathogenesis in HD and schizophrenia. There is an emerging role of OLs in schizophrenia 48 

pathogenesis, and the genes identified in these 2 causal networks may be relevant to both diseases.  49 

Hub genes in the Ex bnet included Fam19A1 and 2 and Frmd4b which all play a role in GRP1 signaling 50 

that regulates insulin signaling and neuronal receptor trafficking 5,6, Rora and Rorb which are nuclear receptors 51 

that regulate many biological processes including development, circadian rhythm, and glucose metabolism, as 52 

well as snrnp70 an essential component of the spliceosome. These data indicate an important role for these 53 

pathways in cortical cells relative to striatal. Each of these hub genes showed a larger number of NT specific 54 

outward edges indicating a loss of relationship in HD, but surprisingly most of these genes were upregulated in 55 

R6/2 mice in their corresponding cell types.  56 

 57 



Human snRNAseq data 58 

 The HD-caudate predominant myelinating OL Cluster 7 showed relatively high expression of several 59 

immune related genes such FYB1, SYK (Fig. 5i), APOE (identified in causal network), CD74, and C3 60 

(Supplementary Fig. 7d, Supplementary Data 7), reminiscent of the immune oligodendroglia described in 61 

multiple sclerosis7. To further characterize the major gene programs that drive OL and OPC clusters7, we 62 

discovered correlated gene modules using the Louvain community analysis algorithm in monocle3. The gene 63 

module expression scores are plotted in heatmap by lineage, cluster, and grade (Condition) in Supplementary 64 

Fig. 7e, showing that gene modules were largely specific for either OPCs or OLs, and that there are cluster and 65 

grade specific modules. Module 2 was most highly expressed in cluster 7, and the GO enrichment analysis of its 66 

genes reveal they are related to immune system and cytokine signaling. Module 10 showed highest scores 67 

across HD grades, and its genes were enriched in GO terms related to response to stress, splicing, lipid and 68 

atherosclerosis, and antigen processing and presentation. Moreover, module 19 was most highly expressed in 69 

HD grades including HDJ, and its genes were related to GTPase function. Finally, module 8 was highest in 70 

cluster 2, 3, and 6 and HD grade 3, and its genes were related to ribosomal function and translation 71 

(Supplementary Fig. 7e & f). The module genes and scores by cluster, condition, and lineage are provided in 72 

Supplementary Data 9. 73 

 74 

Validation of OL pathology in human HD and mouse data 75 

To confirm OL gene expression abnormalities in HD, we performed WB analysis for myelin related genes 76 

MBP and MAG, which were downregulated at the RNA level in both mouse and human data, hub gene SGK1, 77 

and metabolism related genes DGKB and GPI, which are dysregulated in both the mouse and human OL and 78 

OPC data. Protein levels of MBP and MOG were not significantly altered in the HD cingulate cortex 79 

(Supplementary Fig. 8b and c). Conversely, protein levels of MBP (but not MAG) were increased in the caudate 80 

nucleus (Supplementary Fig. 8b and c). Protein levels of SGK1 were significantly decreased in the cingulate 81 

and caudate of HD brains (Supplementary Fig. 8b and c).  82 

Given that MBP levels were reduced at RNA levels, we were surprised to see increased MBP protein 83 

levels in the caudate. This could be explained by an increase in OL numbers. We therefore performed 84 

immunofluorescence labeling for Carbonic Anhydrase II (CA2), expressed in OL but not OPCs8, on caudate and 85 



cingulate of control and HD cases, and MBP in the caudate (Supplementary Fig.  8d). An unaltered or reduced 86 

ratio of MBP to CA2 signal in HD compared to controls would indicate a relative decrease of MBP per OL. The 87 

results show a reduced MBP:CA2 labeling ratio, suggesting that despite the overall increase in MBP protein 88 

levels, there was a general decrease in MBP when normalized to oligodendrocyte numbers (Supplementary 89 

Fig.  8e). We confirmed the increased CA2 result using chromogenic IHC on a larger cohort, which revealed a 90 

significant increase in the proportion of CA2+ cells in the caudate and cingulate (Supplementary Fig. 9a-d). 91 

Moreover, as previously reported, the overall cell density in the HD caudate was increased, consistent with gliosis 92 

(Supplementary Fig. 9c). 93 

For additional mouse validation, we examined the protein levels of the hub genes and glucose and lipid 94 

metabolism related genes that are potentially relevant to OL pathology, including Sgk1, Gpi1 and Dgkb, using 95 

quantitative western analysis (Licor) (Supplementary Fig. 9e&f) on striatal and cortical tissue collected from 96 

additional R6/2 and NT mice (n=6/group). A significant difference was observed for the following proteins: Sgk1 97 

levels were lower in the cortex, Dgkb levels were lower in the striatum (Supplementary Fig. 9a-d).  98 

Finally, we carried out in situ hybridization to examine dysregulation of HD OLs in human brain. The 99 

snRNAseq results showed that OLs from the three anatomic regions upregulated transcription of SPP1, 100 

increased in oligodendrocytes in the cuprizone model of demyelination40, and NEAT1, increased in HD and 101 

implicated in promoting neuronal survival 41.  We performed in situ hybridization for SPP1, NEAT1, and MBP in 102 

the cingulate, caudate, nucleus accumbens (Supplementary Fig. 9g). Of these regions, caudate and 103 

accumbens parenchymal OLs showed increased SPP1 expression (Supplementary Fig. 9h&i), and caudate 104 

parenchymal OLs showed increased NEAT1 expression (Supplementary Fig. 9h). OLs in the white matter of 105 

the nucleus accumbens and caudate did not show significant changes in NEAT1 and SPP1 expression 106 

(Supplementary Fig. 9h&i). These results are consistent with a compensatory signature of OL in HD, whereby 107 

HD OL upregulate signals to promote survival and myelination. Furthermore, the data localizes the signature to 108 

parenchymal rather than white matter OLs. 109 

 110 

 111 

 112 

 113 



Supplementary Figure Legends 114 

 115 

Supplementary Figure 1. Annotation of human and mouse snRNAseq data and integrated data from both 116 

age and regions in R6/2. a) Mouse umaps colored by expression of Pdgfrb and Tek showing the clustering of 117 

vascular cells with astrocytes. b) tSNE plots of the human snRNAseq results showing color-coded by anatomic 118 

region (Left), and grade (Right). c) Dotplot of human snRNAseq showing expression of cell type markers per 119 

cluster. d) Dotplot showing the expression of select cell type markers across all clustered identified in the mouse 120 

data. Venn diagrams showing overlap of all DEGs between 8 and 12w, for both striatum (str) and cortex (ctx). e) 121 

UMAPs of integrated mouse data colored by region (top left), Cell type (top right), and age (bottom).  122 

 123 

Supplementary Figure 2. Top 5 GO terms and KEGG pathways for DEGs per a cell type and age/region. 124 

a) Top 5 GO terms per cluster in 8 and 12w striatum and cortex. b) Top 5 KEGG pathways in 8 and 12w striatum 125 

and cortex. Functional impairment such as focal adhesion, cytoskeleton, ErbB and axon guidance in OLs that 126 

suggest a loss of cell-to-cell communication between OLs and neurons. KEGG pathway analysis also highlighted 127 

metabolic pathways including TCA cycle, O-glycan biosynthesis, amino and nucleotide sugar, sucrose, and 128 

pentose phosphate pathways.  129 

 130 

Supplementary Figure 3. Cell type agnostic DEGs and KEGG metabolic gene networks, and integrated 131 

OPC and OL data. a) Heatmaps and hierarchical clustering of normalized mean expression values in all glial or 132 

neuronal cells of the top cell type agnostic DEGs. Cell color represents row min (seafoam green) and max 133 

(orange). b) Network showing all KEGG metabolic genes significantly dysregulated across the 8w Str DEGs and 134 

both cortical dataset from every cell type. Node size is equal to the number of cell types in which the gene is 135 

found to be significantly dysregulated and node are colored by up and down regulation (orange = up and blue = 136 

down) c) UMAPs of integrated OPC and OL data from both ages and regions, colored by (top) genotype and 137 

(bottom) age/region. d) Cell number proportions by genotype in clusters 0, 1, 2, 3, and 4; corresponding to MOL, 138 

MOL, OPC, COP, NFOLs, respectively. e) Violin plot showing expression of OPC and OL marker and maturation 139 

genes in OPC and OL cells from all ages and regions, by cluster. f) Pseudotime plot of integrated OPC and OL 140 

data from both ages and regions, colored by genotype, age, and region.  141 



 142 

Supplementary Figure 4. Module preservation statistics between R6/2 and NT. Z summary preservation 143 

values > 20 for all modules and correlation > 0.78 with p values < 1.2e-53. a) Z-summary/density/connectivity 144 

values for module preservation. b) scatter plots showing kME between NT and R6/2 per module.  145 

 146 

Supplementary Figure 5. Merged causal networks for microglia, astrocyte and excitatory neurons. a) 147 

Barplot of -log10(pvalues) from hypergeometric test of overlap between cell type DEGs and WGCNA cell type 148 

modules. b) Causal network for microglia. c) Causal network for astrocytes. d) Causal network for excitatory 149 

neurons. b-d) See Fig. 4 legend for description of network. e) Causal network for oligodendrocytes merged with 150 

gene regulatory networks from IRIS3 regulon prediction.  151 

 152 

Supplementary Figure 6. ATACSeq supplementary data. a) Visualization of read density across Camk2a and 153 

Olig2 in neun+/- ATACseq data, and predicted SMARCA4 from BIRD analysis on human snRNAseq data. b) 154 

Volcano plots showing differential binding scores, and -log(pvalue) differences of TF binding in open chromatin 155 

in 8 and 12w, striatum and cortex NeuN +/- cells. blue = top20 by differential binding score, orange = pvalue 156 

<0.05. c) Venn diagrams of overlapping TFs from ATACseq footprinting analysis per region and age. NeuN+ 157 

cells have some similarities with the NeuN- showing differential binding of Zbtb14 and Hes1, although in opposite 158 

direction, in several ages and regions, but also showed an enrichment for immediate early genes Jun, Fos, and 159 

Mef2c/b/d.  160 

 161 

Supplementary Figure 7. Human samples snRNAseq supplementary data. a-b) tSNE plot showing the 162 

human snRNAseq data color-coded by donor (a) and sequencing batch (b). c) The relative contribution of HD 163 

grade to OL and OPC clusters is shown in bar plots. d) Gene expression violin plots showing the expression of 164 

select genes in OL and OPC clusters. OPC genes VCAN, BCAN, SOX6, PDGFRA, CSPG4 are most highly 165 

expressed in clusters 5 more than 4, while TCF7L2 is more expressed in cluster 4 – suggesting it is more 166 

committed. Immune OL’’s genes CD74 and APOE are expressed in cluster 7. Myelin-related genes are 167 

expressed in the remaining clusters – see text for details. e) Gene correlation network analysis as performed in 168 

monocle3, showing the module scores against lineage, condition, and cluster. f) KEGG and Reactome pathway 169 



enrichment analysis in select module genes. The negative log 10 of the adjusted p value is indicated on the x-170 

axis, and the term name on the y-axis. Hypergeometric test used for analysis. 171 

 172 

Supplementary Figure 8. KEGG metabolic genes in human data and validation OL maturation deficits 173 

and increased OL lineage cells in the cingulate and caudate. a) Network showing all KEGG metabolic 174 

genes significantly dysregulated across the human OPC and OL DEGs overlapping with the mouse 12w striatal 175 

DEGs. The color of the node indicates direction of DEG: orange = up and blue = down in HD. b) Western blot 176 

of OL maturation genes and key drivers in HD and control patient cingulate cortex and caudate. Source data 177 

are provided as a Source Data file. c) Quantification of western blow results. Two-tailed Mann Whitney test 178 

used for each statistical analysis. Exact p-values: Cingulate: MAG-0.2251, MBP-0.5743, SGK-0.0897; 179 

Caudate: MAG-0.2912, MBP-0.0055, SGK-0.0055. n= 3 control and 11-12 HD caudate samples, and 5 control 180 

and 11-12 HD cingulate samples. Data shown as mean +/- SEM as error bars. d) Representative images of 181 

MBP and CA2+ OLs in HD and control postmortem brain showing an increase in CA2+ OLs in the HD brain. 182 

e) Ratio of MBP intensity relative to CA2 positive OLs, showing a decrease in MBP per an OL. Exact p-value: 183 

0.032. n = 3 HD and 4 control caudate stained sections, biologically independent samples. Two-way Mann 184 

Whitney test used for statistical analysis. Data shown as median (center line), inner quartile range (box), and 185 

min and max values as whiskers.  186 

 187 

Supplementary Figure 9. Validation of increased OL and OL stress in the caudate and accumbens, and 188 

protein validation of mouse data. a) Immunohistochemical stains for Carbonic Anhydrase II (CA2), a general 189 

marker for OLs that is also expressed in early lineage OLs but not OPCs. Control and HD panels are shown in 190 

the left and right, respectively. Images of the representative regions in the cingulate cortex (Upper row) and 191 

caudate nucleus (lower row) are shown. Scale bar = 50 microns. Quantification of percentage of cells that are 192 

positive for CA2 in the caudate (b), and cingulate (d), and density of cells per unit area (c). The results are shown 193 

as boxplots with median (center line), inner quartile range (box), and the bars representing the minimum and 194 

maximum values as whiskers.  One-tailed t-test was used to determine statistical significance. The p-values are 195 

noted on the graphs. n= 6 control and 8 for HD – for b-c, and n = 6 control and 4 HD for d. (e and f). Protein 196 

quantification and Licor images of select DEGs and mHTT (5492) in R6/2 and NT striatum and cortex. e) Licor 197 



images of mHTT (5492), Prkce in the insoluble fraction, Sgk1, Dgkb, Gpi1 and respective revert in R6/2 and NT 198 

striatum and cortex. Source data are provided as a Source Data file. f) Quantification of licor results. One-way 199 

ANOVA used for statistical analysis. Data shown as mean +/- SEM as error bars. n = 6 NT and 6 R6/2 biologically 200 

independent samples.  g-i) Representative images showing in situ hybridization for SPP1 (red), MBP (green), 201 

NEAT1 (white), and nuclei (DAPI - blue) in the control and HD caudate nucleus (g). The areas marked P 202 

represent pencil fibers of Wilson. The dashed boxes are enlarged in the lower panels. Scale bars are indicated 203 

on the graphs. Quantification of percentage of MBP- positive cells that are positive for SPP1 (right panels) and 204 

NEAT1 (left panels) in the parenchyma (upper panels) and white matter (lower panels) in the caudate (h), and 205 

accumbens (i). One-way ANOVA used for statistical analysis. The results are shown as boxplots with median 206 

(center line), inner quartile range (box), and min and max values as whiskers. One tailed t-test was used to 207 

determine statistical significance. The p-values are noted on the graphs. n= 4 control and 5 HD for b, and n = 3 208 

control and 4 HD for c, biologically independent samples.   209 
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