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Biophysical Impacts of Earth Greening Can Substantially Mitigate Regional 

Land Surface Temperature Warming   



Supplementary Discussion 
 

1. Decomposition of LST sensitivity 

The LST sensitivity could be considered as the result of the competition between non-

radiative and radiative processes. Based on the energy balance equation, we decompose the 

LST sensitivity into the contribution from each part of the energy terms for the quantitative 

attribution analysis (see Methods). Notably, decomposition results have lower spatial coverage 

(Supplementary Fig. 3 vs. Fig. 1a), mainly due to the missing data issue of satellite 

observations in high-latitude winters and the coarser input data resolution. Annually, we 

confirm the negative but slight temperature effect from the indirect climate feedback (
↓

, 

-0.09 K m2 m-2; 
↓

 , 0.05 K m2 m-2) (Supplementary Fig. 3d, e), mainly due to the 

reduction in incoming shortwave radiation for the greener regions induced by the mesoscale 

cloud enhancement effect for the greener surface1. In line with previous studies, our results 

show that enhanced evapotranspiration dominates the cooling of most global areas2, whose 

magnitude is far larger than the final LST sensitivity ( , -2.14 K m2 m-2) (Supplementary 

Fig. 3b). Moreover, as the increasing energy diffused through water evaporation is 

accompanied by less heat convection3, approximately half of evaporative cooling is offset by 

warming from the reduction in sensible heat ( , 1.10 K m2 m-2) (Fig. 3c). Finally, the 

increasing LAI leads to a decrease in albedo, thus intensifying solar radiation absorption and 

generating a warming effect ( , 0.37 K m2 m-2) (Supplementary Fig. 3a). This albedo 

warming is relatively weak at the global scale, but it is dominant in boreal regions. 

  



2. Sensitivity from different regression methods 

The correct biophysical LST sensitivity is the precondition of quantifying the climate effect 

of earth greening. In this paper, the sensitivity is derived from the spatial comparison of LST 

with different LAI. Here, we further perform a temporal statistical method to solve the LST 

sensitivity for comparison, which uses multi-linear regression (MLR) of time series LST, LAI, 

and climatic data to disentangle the temperature effects of vegetation greening4. The intrinsic 

difference between our method and MLR method is the source of regression samples. 

Specifically, the samples in our studies are from the spatial nearby pixels (sharing a similar 

background climate), while samples in MLR method are from the time series observations for 

a given location. The feasibility of temporal regression is debatable mainly because of the 

changing background climate5. The long-term trends and fluctuations of the climate system 

drive both LAI and LST variation, and thus vegetation and temperature show complex two-

way effects (Supplementary Fig. 16a). However, samples from our spatial regression method 

sharing the same background climate, which means the signal of climate natural variability or 

the long-term warming trend affecting vegetation growth is excluded. The spatial variability 

of LST samples is mainly driven by vegetation growth (LAI affecting biophysical properties) 

after filtering out the impact of land cover and altitude (Supplementary Fig. 16b). Hence, our 

method is essentially a spatial controlled experiment, but the MLR method is an observation-

based statistical method. 

Further comparison of annual sensitivity from our method (  ) and MLR method 

( ) can be found in Supplementary Fig. 10. Notably, same LAI and LST datasets were 

used here. Compared with our result, the annual sensitivity derived from MLR shows a 

stronger negative signal in the southern mid-latitude, which is mainly caused by the sensitivity 

difference in Australia. Meanwhile, the positive sensitivity is significantly strengthened in 



boreal regions in MLR result. These differences are possible because the reversed 

“temperature-vegetation” effect is superimposed with the “vegetation-temperature” signal of 

our concern. For instance, global warming could be the major cause of greening and the 

stronger boreal signal in MLR is more likely the reflection of temperature influencing the 

vegetation growth. Conversely, the larger negative sensitivity in Australia is due to the reversed 

“temperature limits vegetation growth” effect overlapping with the “vegetation greening 

induces cooling effect”. However, our spatial regression method can exclude the reversed 

signal of large-scale warming affecting vegetation physiology and phenology, as the sensitivity 

is regressed from simultaneous LST and LAI observations from spatial samples sharing the 

same background climate (see methods). 

  



3. Sensitivity Tests  

We performed sensitivity tests for the choice of LAI datasets and the size of moving 

window. Specifically, we calculated the monthly sensitivity using additional GIMMS and 

GLOBMAP (resampled into 0.05°) LAI datasets. Here, we did not test the MODIS C6 product, 

due to the missing data issue in high-latitude winter for the main look-up-table method. We 

compared the final temperature effect but not LST sensitivity, because differences can be found 

among the long-term trends from different LAI products6. We find almost the same spatial 

pattern and good latitudinal consistency of greening induced temperature effect (𝛿𝐿𝑆𝑇  ) 

from the three products (Supplementary Fig.13, 14) at seasonal or annual scale. Similarly, we 

repeated experiments for different window sizes of 40 km, 50 km and 60 km (about 7×7, 9×9 

and 11×11 pixels near the equator, respectively) using only GLASS LAI. Reduced window 

size means fewer samples for regression and thus may generate higher uncertainty. However, 

the LST sensitivity was not significantly affected by the changing window size. We find almost  

the same latitudinal pattern, with all the scatters near the 1:1 line. (Supplementary Fig.15). 

These results show our results are robust against different LAI products and window sizes. 

 

 

 

 

 

 

   



Supplementary figures 
 

 

Supplementary Figure 1. Global map of broad vegetation landcover types derived from 

MCD12C1 products. Unstable pixel indicates the main landcover type has changed at least once 

during the study period.  

 

 

Supplementary Figure 2. Mean sensitivity of land surface temperature to leaf area index (
𝒅𝑳𝑺𝑻𝒃𝒊𝒐

𝒅𝑳𝑨𝑰
) 

for different vegetation types and climate zones. The error bar indicates the standard deviation. 

Source data are provided as a Source Data file. 

  



 

Supplementary Figure 3. The global maps of decomposition results of annual land surface 

temperature (LST) sensitivity. The global map of equivalent LST sensitivity to leaf area index (LAI) 

from a LAI-albedo (  ), b LAI-latent heat ( ) , c LAI-sensible heat (  ), d LAI-

downward shortwave radiation (
↓

), e LAI-downward longwave radiation (
↓

) pathways, 

correspondingly. f The sum of mentioned five parts of contributions. Source data are provided as a 

Source Data file. 

 

  



 

Supplementary Figure 4. Scatter plot between the sum of decomposition sensitivities and the 

direct calculated land surface temperature sensitivity (Supplementary Fig. 3f vs Fig. 1a). Source 

data are provided as a Source Data file. 

 

 

Supplementary Figure 5. The relationship between leaf area index and annual land surface 

temperature sensitivity (
𝒅𝑳𝑺𝑻𝒃𝒊𝒐

𝒅𝑳𝑨𝑰
) at biome level. The gray dotted line represents the exponential 

function in Fig.4c. Abbreviation: OWV, other vegetation. Source data are provided as a Source Data 

file. 



 

Supplementary Figure 6. Different impacts of leaf area index variation on land surface 

temperature sensitivity in snow-free regions within different latitudinal zones. Error bars show 

the standard error of the sensitivity within the leaf area index (LAI) bin (±0.15 m2 m−2). Source data 

are provided as a Source Data file. 

 

Supplementary Figure 7. Simultaneous control of leaf area index (LAI) and downward shortwave 

radiation on local biophysical feedbacks in snow-free regions. a The binned means of land surface 

temperature (LST) sensitivity ( ) vs downward shortwave radiation and LAI. b, c Same as a, 

but for the equivalent LST sensitivities for the radiative process ( ) and non-radiative (  + 

) processes. Bins with black dots indicate the mean value is statistically significantly different 

from zero (Student’s t-test; P-value < 0.05). Source data are provided as a Source Data file. 



 

 

Supplementary Figure 8. Global map of the annual leaf area index trend (𝜹𝑳𝑨𝑰) over 2001–2018. 

Areas with statistically significant trends are masked by the black dots (Mann-Kendall test, P < 0.05). 

Source data are provided as a Source Data file. 

 

 

Supplementary Figure 9. Global map of annual air temperature trend (𝜹𝑻𝒐𝒃𝒔) over 1991–2018. 

Source data are provided as a Source Data file. 

 



 

Supplementary Figure 10. Comparison of annual biophysical sensitivity of land surface 

temperature to leaf area index derived from multi-linear regression method (
𝝏𝑳𝑺𝑻𝒃𝒊𝒐

𝝏𝑳𝑨𝑰
) and our 

method (
𝒅𝑳𝑺𝑻𝒃𝒊𝒐

𝒅𝑳𝑨𝑰
). a Spatial map of . b Comparison of latitudinal patterns between  and 

 (Fig. 1a). Source data are provided as a Source Data file. 

 

 

 

 

 

 

 



 

Supplementary Figure 11. Flow chart for the monthly land surface temperature data production. 

 

 

Supplementary Figure 12. The comparison of the spatial coverage of monthly land surface 

temperature (LST) data generated from different strategies. Spatial coverage of monthly LST by 

averaging MYD11C3 day and night observations in a January, 2010 and b July, 2010. Spatial 

coverage of monthly LST by our two-step method in c January, 2010 and d July, 2010. 

  



 

Supplementary Figure 13. Spatial maps of greening induced land surface temperature trend 

(𝜹𝑳𝑺𝑻𝒃𝒊𝒐) estimated by GLASS, GIMMS and GLOBMAP leaf area index datasets. a Annual 

mean, b JJA (June to August) mean and c DJF (December to February) mean of 𝛿𝐿𝑆𝑇  from GLASS. 

d to f, same as a to c, but for GIMSS 𝛿𝐿𝑆𝑇 . g to i, same as a to c, but for GLOBMAP 𝛿𝐿𝑆𝑇 . 

Source data are provided as a Source Data file. 

 

 

Supplementary Figure 14. Latitudinal patterns of greening induced land surface temperature 

trend (𝜹𝑳𝑺𝑻𝒃𝒊𝒐) estimated by GLASS, GIMMS and GLOBMAP leaf area index (LAI) datasets. 

Latitudinal patterns of a annual mean, b JJA (June to August) mean, and c DJF (December to February) 

mean of 𝛿𝐿𝑆𝑇  estimated by three LAI products. Source data are provided as a Source Data file. 

 



 

Supplementary Figure 15. Comparison of land surface temperature (LST) sensitivity with 

different window sizes (40 km, 50 km, 60 km). a to c Latitudinal patterns of LST sensitivity for 

annual mean, JJA (June to August) mean, and DJF (December to February) mean, respectively. d to f 

Density scatter plots between LST sensitivities derived from 50 km and 40 km for annual mean, JJA 

mean and DJF mean, respectively, respectively. g to i Same as d to f, but for the comparison between 

window sizes of 50 km and 60 km. Source data are provided as a Source Data file. 

 



 

Supplementary Figure 16. Schematic representation of the relationship between leaf area index 

(LAI) and land surface temperature (LST) from the temporal and spatial regression methods. 

a Temporal regression. b Spatial regression. 

 

 

Supplementary Figure 17. Seven major climate zones aggregated from the Köppen-Geiger 

climate classification map.   



Supplementary table 

 

Supplementary Table 1: Broad vegetation type classification based on the International 

Geosphere-Biosphere Programme (IGBP) classification scheme7 

 

Broad Vegetation Type IGBP Type IGBP Code 

Forest 

evergreen needleleaf forests (ENF) 1 
evergreen broadleaf forests (EBF) 2 
deciduous needleleaf forests (DNF) 3 
deciduous broadleaf forests (DBF) 4 
mixed forests (MF), 5 

Other Woody Vegetation 
(OWV) 

closed shrublands (CSH) 6 
open shrublands (OSH) 7 
woody savannas (WSA) 8 

Grassland 
savannas (SAV) 9 
grasslands (GRA) 10 

Cropland 
croplands (CRO) 12 
cropland-natural vegetation mosaic (CVM) 14 
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