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REVIEWER COMMENTS</B> 

Reviewer #1 (Remarks to the Author): 

This manuscript presents a comprehensive assessment regarding the climate mitigation 

of the persistent earth greening in the recent 20 years. The authors first estimate the 

biophysical sensitivity of temperature to vegetation greenness (dLSTbio/dLAI) in the 

stable vegetated area. The key datasets include a statistical-based monthly land surface 

temperature (LST) and GLASS leaf area index (LAI). The dLSTbio/dLAI is then 

decomposed into the contribution from “radiative” and “non-radiative” processes. This 

process is based on the energy balance equation and multi-source energy budgets 

products. Authors then apply the LST sensitivity and the long-term LAI trend to quantify 

the temperature trend induced by the earth greening (δLSTbio). The spatial and 

seasonal variability of dLSTbio/dLAI and δLSTbio are exhaustively analyzed and the 

authors suggest a considerable climate mitigation potential of greening in China and 

India due to the strong cooling effect. 

Overall, this study has a good quality with substantial work behind. The manuscript is 

well organized and the writing is compelling. I believe it is within the scope of Nature 

Communications and on the general interest of the readers working in areas of remote 

sensing modeling and global change. Despite these, I have several comments and 

suggestions on this article: 

(1) LST is an important variable for the analysis of this paper, however, few details are 

provided for the LST dataset used in this study. It seems the LST products from MODIS 

Aqua and MODIS Terra satellites are both used for generating the daily LST first. But 

what is the principle for the daily LST aggregated to the monthly scale? Indeed, the 

spatial coverage of LST data is significantly improved (Figure S11), but how is the 

accuracy or consistency with the original MODIS LST product? In addition, it should be 

mentioned what collection of MODIS LST is used as the input of your “two-step method”. 

As the collection C6 MODIS LST makes several refinements to deal with the sensor 

degradation issues, the C6 products are expected to be the better choice. 

(2) LAI is the other important variable for estimating sensitivity. My major concern of 

the robustness of the results to the choice of LAI products. The results from different 

LAI products (such as GLOBMAP, and GIMMS) should be compared to show the findings 

are robust across multiple LAI products, or at least the authors should illustrate the 

reason for choosing only GLASS LAI as the model input. 

(3) In section 5.2, the window size for estimating the dLSTbio/dLAI is set to 50×50 km. 

The choice of window size seems to be subjective. It should be declared to what extent 

this model parameter affects your results. 

(4) The attribution model in section 5.3 is based on the simple first-order expansion of 

Stefan Boltzmann equation. However, the major issue of this model is the neglect of the 

relationship between LST and turbulent fluxes. For instance, the sensible heat (Ts-

Ta)/ρCp is expressed as the function of Ts (LST). Thus, how does this issue of the 

decomposing model affect the final attributing results? 

(5) In this paper, the authors only calculate the sensitivity for the “stable” vegetated 

area. In other words, the LAI variation induced by land cover changes is ignored in this 

study. However, in section 3.4, the authors state that the increased harvested area and 

afforestation project lead to the cooling effect in India and China. Should not the 

increased harvested area and afforestation project be treated as two examples of land 

cover change? 

(6) The authors compared the δLSTbio and the observed LST trend over the same period 

to quantify the climate mitigation effect of greening. However, the LST trend in figure s9 

seems contradictory to the common knowledge of global warming. For instance, a large 



area with cooling signal is found in North America, leading to the negative LST trend in 

Canada in figure 6. The author should consider a longer time interval for calculating the 

LST trend to further reduce the uncertainty of the ratio in figure 6. 

(7) In section 3.2, the dLSTbio/dLAI is decomposed into non-radiative, radiative, and 

indirect climatic feedbacks. However, only the non-radiative and radiative feedbacks are 

discussed in the following parts. What about the indirect climatic feedback? From figure 

3, I can see that this part has a very low impact, but additional descriptive sentences are 

needed in the article. 

(8) As shown in figure 1b, the dLSTbio/dLAI has a good relation with background 

climate (temperature and precipitation). Why did the authors choose snow cover, LAI, 

and radiation as the indicators in the attribution analysis (section 3.2), but not discuss 

the impact of temperature and precipitation on dLSTbio/dLAI? In addition, in figure 4a-

c, why the mean sensitivity from January to April is used to plot the scatters, but not the 

annual value in figure 4d-f? 

(9) In line 273, the warming trend induced by forest greening is 0.001 K/decade. The 

number seems wrong compared with the plot in figure 5. 

Reviewer #2 (Remarks to the Author): 

I'm sorry to say that I find little new in this manuscript. We already know these results 

(Refs. 4, 9, 10, 11, 14, 17, etc.). This manuscript is just repeating. 

Their results (L68-87) were very similar compared to Ref. 9 (Fig. 1a vs. Fig. 3D of Ref. 

9). A similar regression analysis was used, which I doubt unveils complex two-way 

effects between vegetation growth and climate change. I did not see many mechanisms 

in the methodology and discussion. For example, how do the authors resolve the 

following causal ambiguity (as noted in Ref. 20): an increase in Tair can increase LST. An 

increase in Tair can increase LAI in colder regions but may lead to a decrease in LAI in 

hotter regions. The analysis in this paper can only be attributed to a change in LAI, but 

this is indeed due to a change in Tair. These issues are arguably critical in Figure 2b. 

The content of L98-118 is also similar to ref. 10. For example, Figure 1c with Table 1 of 

ref. 10. 

In addition, talking about these sensitivities requires a stable background climate and 

vegetation growth (or very small changes). If there are significant changes in the 

background climate and vegetation growth, these sensitivities should also change. 

Therefore, the analysis in Section 3.3 is not convincing. A simple example is given to 

illustrate my concern. 

Let y = x^4 + z, and assume z is independent of x. 

Then, dy/dx = 3*x^3; 

When x = 1, dy/dx = 3; 

When x = 2, dy/dx = 24; 

The sensitivity of LST to LAI is similar to dy/dx, which changes if x is changing. You can 

only assume the sensitivity is a constant if x does not change much. Here y is analog to 

LST, and x is analog to LAI (x could also be the background climate). 

Comments on the methodology: 

There may be several problems with the methods section. 

First, I doubt that the statistical approach is able to decompose the multiple treatments 

involved in the surface energy balance, as I elaborated above. 



I did not see a detailed description of the linear regression model. 

L55: How exactly does the spatially moving widow strategy work? It's too vague, more 

description is needed. 

I can't understand equations 2 and 3. They are not the standard equations for LE and H. 

How do you ensure that the turbulent flux changes in your analysis are caused by LAI 

changes and not by the energy closure preprocessing of these two equations? 

Equations 6-10, why are total derivatives with respect to LAI? For example, there may 

be a variety of factors that affect changes in LE and H, such as wind speed, potential air 

temperature, changes in incident shortwave radiation, precipitation, soil moisture, VPD, 

etc. Assuming that LAI is the only driver of these surface changes is clearly invalid. 

L589-590: Why is it not induced by large-scale atmospheric circulation and biochemical 

processes? I cannot understand. 

Investigating seasonal energy balance should not ignore surface heat fluxes. They may 

have a significant contribution, especially in colder regions. 

Comments specific to the line. 

L155: Which two processes? 

L170: Why are all changes in snow attributed to changes in LAI? 

Reviewer #3 (Remarks to the Author): 

Review of “Biophysical impacts of Earth greening can mitigate up to 50% of the land 

surface temperature warming” 

This study applies an observationally based framework to quantify the temperature 

effects, globally and regionally, of the observed global greening trend over the past 20 

years driven by biophysical mechanisms. Furthermore, the sensitivity of the 

temperature response is decomposed into contributions from radiative, non-radiative, 

and indirect climate feedbacks to delineate the underlying driving factors, as well as 

differences between vegetation types. The study generally confirms the main features of 

biophysical effects of vegetation changes found in previous work but adds value by 

using a purely observation-based approach and applying it to a less well studied case of 

greening rather than large-scale land use conversions. Overall, the paper is well 

structured with good figures. I find the study interesting, providing details on biome and 

process level that gives it the potential to be of importance for understanding the 

responses in further modeling-based work. Below are a few comments and questions for 

the authors’ consideration before I can recommend publication, in particular related to 

treatment of uncertainties in the numbers and how the results are formulated in the 

context of mitigation. 

General comments: 

- There is no uncertainty/error estimate in any of the numbers provided, whereas Fig. 1 

show substantial standard errors, in some cases even in terms of sign sensitivity with 

vegetation type. This should preferably be quantified and at the very least better 

discussed, including in the abstract. 

- It is not immediately clear to me if the percentage numbers given are the fraction of 

the total temperature impact due to greening only that is “mitigated” or the fraction of 

the total observed warming (i.e. total human-induced). Should be clearly written in the 

text throughout. 



- The title gives impression of a very large mitigation potential of the greening. Upon 

seeing the findings, I feel it should be explicit about this being local/regional effects 

(and depending on the answer to the comment above, maybe further revised). Later 

parts of the paper states that the global magnitude of biophysically based mitigation is 

limited. 

- The results are generally discussed in terms of mitigation and the authors for instance 

say that the cooling effect derived over India and China can mitigate up to 50% of global 

warming. But how confident are the authors in the potential for extrapolating these 

results based on historically observed changes? I.e. does dynamic vegetation changes or 

saturation effects come into play? Strictly, one would only be able to state that these 

changes have offset some of the total warming, which maybe should be reflected in the 

wording. 

- Related: from previous studies, it is my impression that the observed global greening is 

primarily driven by fertilization effects due to increased CO2, which makes it more a 

consequence of our emissions. How actively can we continue to enhance the greening 

without exacerbating the CO2 or other pollution? Should perhaps a mention of the 

driving factors of greening be included? Some discussion of irrigation and forestation is 

there, but these are the types of conversions that the authors explicitly say they do not 

address here… 

- Is LAI a sufficient variable? How about SAI – would that factor into the, in particular, 

albedo changes? Moreover, there are a number of satellite-derived products out there, 

with large discrepancies suggested by some. A word on the GLASS LAI compared to 

other products would be useful. 

Specific: 

Line 36: LUCC – should it rather be the more commonly used LULCC? 

Line 64: this could be a good place to clarify what temperature signals are compared, i.e. 

is this the total observed temperature change relative to some baseline climatology or 

the total temperature signal due to greening alone? 

Line 87: seems like a significant difference - can the authors offer some suggestions for 

why? 

Line 243: Could be useful with a figure that show the regional ratio of biophysically-

driven to total (as in the current Fig. S9) temperature 

Line 245: does this also affect the total temperature impact of the greening and hence 

the ratio/fraction of warming that is offset? 

Throughout: some typos that need fixing…



 Response to Reviewers’ Comments

We greatly appreciate the constructive comments from the anonymous reviewers. They have made valuable 

comments and suggestions, according to which the manuscript has been revised and improved. Below are 

the point-by-point responses to the comments, along with the revision of the manuscript (typed in italics) and 

the location of the revision (typed in bold). Hope the revision will make it more acceptable for publication. 

Reviewer #1 (Remarks to the Author):

This manuscript presents a comprehensive assessment regarding the climate mitigation of the persistent 

earth greening in the recent 20 years. The authors first estimate the biophysical sensitivity of temperature 

to vegetation greenness (dLSTbio/dLAI) in the stable vegetated area. The key datasets include a statistical-

based monthly land surface temperature (LST) and GLASS leaf area index (LAI). The dLSTbio/dLAI is then 

decomposed into the contribution from “radiative” and “non-radiative” processes. This process is based 

on the energy balance equation and multi-source energy budgets products. Authors then apply the LST 

sensitivity and the long-term LAI trend to quantify the temperature trend induced by the earth greening 

(δLSTbio). The spatial and seasonal variability of dLSTbio/dLAI and δLSTbio are exhaustively analyzed and 

the authors suggest a considerable climate mitigation potential of greening in China and India due to the 

strong cooling effect. Overall, this study has a good quality with substantial work behind. The manuscript 

is well organized and the writing is compelling. I believe it is within the scope of Nature Communications 

and on the general interest of the readers working in areas of remote sensing modeling and global change.  

Response: We appreciate all the positive comments by reviewer #1. We have carefully considered all the 

comments and suggestions and made corresponding point-by-point responses.

Despite these, I have several comments and suggestions on this article: 

(1) LST is an important variable for the analysis of this paper, however, few details are provided for the LST 

dataset used in this study. It seems the LST products from MODIS Aqua and MODIS Terra satellites are 

both used for generating the daily LST first. But what is the principle for the daily LST aggregated to the 

monthly scale? Indeed, the spatial coverage of LST data is significantly improved (Figure S11), but how is 

the accuracy or consistency with the original MODIS LST product? In addition, it should be mentioned what 

collection of MODIS LST is used as the input of your “two-step method”. As the collection C6 MODIS LST 

makes several refinements to deal with the sensor degradation issues, the C6 products are expected to be 

the better choice. 

Response: Thank you for raising these questions. The principle for “daily LST aggregated to the monthly 

scale” can be found in Ding et al (2020), which has been added to the reference in the revised manuscript. 

For the data collection, we would like to clarify that the products are from collection 6. To clearly show how 

the monthly LST is generated, we have made a new figure show the overall production flow of the monthly 

LST (Supplementary Fig. 11), and the revised description of monthly LST data production is as follows 

(Lines 451–462):

The monthly mean land surface temperature (LST) over the study period (2001–2018) is generated 

through a two-step strategy. The original LST data are from the collection 6 MOD11A1 and MYD11A1 

products with a 1-km spatial resolution downloaded from the National Aeronautics and Space Administration 

(NASA) website. Based on the quality control flag, only data with LST errors less than 2 K are used. First, 

the instantaneous temperature observations are converted to the daily mean temperature using a statistical-

based method (Xing et al., 2021). This method generates the daily mean LST for each pixel using the weighted 

mean value of different MODIS observation combinations (at least one daytime and one nighttime 



observation for both Aqua and Terra observations). Second, the daily average temperature is temporally 

aggregated to the monthly value using averaged by day (ABD) approach (Ding et al., 2020) and spatially 

aggregated to 0.05° resolution. The flow chart for the monthly LST production can be found in Supplementary 

Fig. 11.

Supplementary Figure 11. Flow chart for the monthly LST production.

We also compared our monthly LST data with the mean of daytime and nighttime LST values from 

MYD11C3 (MODIS/Aqua Land-Surface Temperature/Emissivity Monthly Global 0.05Deg CMG). This 

averaging method for MYD11C3 products has been used for related studies (Alkama and Cescatti, 2016; 

Duveiller et al., 2018). Take the data of 2010 as an example, we find good consistency between the two 

monthly datasets with the R2 value larger than 0.99 for all months (see Table. R1), although the original 

MODIS LSTs are derived from different algorithms (split-window method for MOD11A1 and MYD11A1, 

and physics-based day/night method for MYD11C3). However, our monthly LSTs are systematically lower 

than averaged MYD11C3 LSTs (negative bias could be found in Table. R1). The main reason is the parameter 

in Xing et al. (2021) is optimized using in-situ daily mean temperature samples, which are calculated from 

all weather conditions. However, the mean value of MODIS Aqua daytime LST and nighttime LST represent 

the daily mean LST for the theoretical clear sky. This difference is systematical and should not have an impact 

on our results, as we use the spatial relative difference to estimate the sensitivity. 

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

R2 0.997 0.997 0.997 0.998 0.998 0.998 0.999 0.998 0.998 0.998 0.995 0.997

Bias (K) -2.22 -2.22 -2.09 -1.76 -1.63 -1.73 -1.70 -1.84 -1.80 -1.84 -1.94 -2.10 

Table. R1. Comparison of our monthly LST and averaged LST from MYD11C2

Reference: 

Alkama, R., Cescatti, A., 2016. Biophysical climate impacts of recent changes in global forest cover. Science (80-. ). 351, 600–604. 

https://doi.org/10.1126/science.aac8083

Ding, F., Savtchenko, A., Hearty, T., Wei, J., Theobald, M., Vollmer, B., Tian, B., Fetzer, E., 2020. Assessing the impacts of two averaging methods on 

airs level 3 monthly products and multiyear monthly means. J. Atmos. Ocean. Technol. 37, 1027–1050. https://doi.org/10.1175/JTECH-D-19-0129.1



Duveiller, G., Hooker, J., Cescatti, A., 2018. The mark of vegetation change on Earth’s surface energy balance. Nat. Commun. 9, 64–75. 

https://doi.org/10.1038/s41467-017-02810-8

Xing, Z., Li, Z.L., Duan, S.B., Liu, X., Zheng, X., Leng, P., Gao, M., Zhang, X., Shang, G., 2021. Estimation of daily mean land surface temperature at 

global scale using pairs of daytime and nighttime MODIS instantaneous observations. ISPRS J. Photogramm. Remote Sens. 178, 51–67. 

https://doi.org/10.1016/j.isprsjprs.2021.05.017

(2) LAI is the other important variable for estimating sensitivity. My major concern of the robustness of the 

results to the choice of LAI products. The results from different LAI products (such as GLOBMAP, and 

GIMMS) should be compared to show the findings are robust across multiple LAI products, or at least the 

authors should illustrate the reason for choosing only GLASS LAI as the model input. 

Response: Thank you for the constructive comment. Here, we use GLASS LAI as the main LAI product for 

analysis for the following reasons: 

(I) GLASS LAI is based on consistent MODIS reflectance observations and has been proved to have 

high accuracy (Xiao et al., 2017).

(II) GLASS LAI is a spatiotemporally continuous product, which is important for the calculation of 

temperature sensitivity. 

(III) The spatial resolution of GLASS LAI can match our monthly temperature product. 

We also performed additional sensitivity tests for different LAI inputs (GLASS, GLOBMAP, GIMMS), 

which shows the robustness of our results. The description of sensitivity tests is as follows (Supplementary 

Discussion 3): 

We performed sensitivity tests for the choice of LAI datasets and the size of moving window. 

Specifically, we calculated the monthly sensitivity using additional GIMMS and GLOBMAP (resampled 

into 0.05°) LAI datasets. Here, we did not test the MODIS C6 product, due to the missing data issue in 

high-latitude winter for the main look-up-table method. We compared the final temperature effect but not 

LST sensitivity, because differences can be found among the long-term trends from different LAI products 

(Jiang et al., 2017). We find almost the same spatial pattern and good latitudinal consistency of greening 

induced temperature effect (𝛿𝐿𝑆𝑇𝑏𝑖𝑜) from the three products (Supplementary Fig.13, 14) at seasonal or 

annual scale.

Supplementary Figure 13. Spatial maps of greening induced LST trend (𝜹𝑳𝑺𝑻𝒃𝒊𝒐) estimated by GLASS, GIMMS and GLOBMAP LAI datasets. 

a Annual mean, b JJA (June to August) mean and c DJF (December to February) mean of 𝛿𝐿𝑆𝑇𝑏𝑖𝑜 from GLASS. d to f, same as a to c, but for GIMSS 

𝛿𝐿𝑆𝑇𝑏𝑖𝑜. g to i, same as a to c, but for GLOBMAP 𝛿𝐿𝑆𝑇𝑏𝑖𝑜.



Supplementary Figure 14. Latitudinal patterns of greening induced LST trend (𝜹𝑳𝑺𝑻𝒃𝒊𝒐) estimated by GLASS, GIMMS and GLOBMAP LAI 

datasets. Latitudinal patterns of a annual mean, b JJA (June to August) mean, and c DJF (December to February) mean of greening-induced LST trend 

(𝛿𝐿𝑆𝑇𝑏𝑖𝑜) estimated by three LAI products. 

Reference: 

Xiao, Z., Liang, S., Jiang, B., 2017. Evaluation of four long time-series global leaf area index products. Agric. For. Meteorol. 246, 218–230. 

https://doi.org/10.1016/j.agrformet.2017.06.016

(3) In section 5.2, the window size for estimating the dLSTbio/dLAI is set to 50×50 km. The choice of 

window size seems to be subjective. It should be declared to what extent this model parameter affects 

your results. 

Response: Thanks for your valuable comment. The selection of window size does not significantly affect our 

results. We performed sensitivity tests for different sizes, the description is as follows (Supplementary 

Discussion 3):

Similarly, we repeated experiments for different window sizes of 40 km, 50 km and 60 km (about 7×7, 

9×9 and 11×11 pixels near the equator, respectively) using only GLASS LAI. Reduced window size means 

fewer samples for regression and thus may generate higher uncertainty. However, the LST sensitivity was 

not significantly affected by the changing window size. We find almost the same latitudinal pattern, with all 

the scatters near the 1:1 line. (Supplementary Fig.15). These results show our results are robust against 

different LAI products and window sizes.
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Supplementary Figure 15. Comparison of LST sensitivity with different window sizes (40 km, 50 km, 60 km). a to c Latitudinal patterns of LST 

sensitivity for annual mean, JJA (June to August) mean, and DJF (December to February) mean, respectively. d to f Density scatter plots between LST 

sensitivities derived from 50 km and 40 km for annual mean, JJA mean and DJF mean, respectively, respectively. g to i Same as d to f, but for the 

comparison between window sizes of 50 km and 60 km. 

(4) The attribution model in section 5.3 is based on the simple first-order expansion of Stefan Boltzmann 

equation. However, the major issue of this model is the neglect of the relationship between LST and 

turbulent fluxes. For instance, the sensible heat (Ts-Ta)/ρCp is expressed as the function of Ts (LST). Thus, 

how does this issue of the decomposing model affect the final attributing results? 

Response: Thank you for pointing this out. Neglecting the relationship between LST and turbulent fluxes 

does not affect the attribution result. We have added an explanation of this issue in this section as follows 

(Lines 610–617):

Meanwhile, we neglect the complex effect of LST on other energy balance terms in the attribution model 

for the following two reasons: (1) attribution models considering the impact of LST on turbulence fluxes 

should use more auxiliary meteorological data to calculate the aerodynamic or surface resistance. These 

meteorological variables such as air temperature and atmosphere specific humidity lack products with high 

spatial resolution (Lee et al., 2001; Rigden et al., 2017); (2) previous studies show no significant difference 

among results of these attribution methods, that is, the relative dominance of radiative and non-radiative 

processes (Wang et al., 2018; Wang et al., 2020).

Reference: 

Lee, X., Goulden, M.L., Hollinger, D.Y., Barr, A., Black, T.A., Bohrer, G., Bracho, R., Drake, B., Goldstein, A., Gu, L., Katul, G., Kolb, T., Law, B.E., 

Margolis, H., Meyers, T., Monson, R., Munger, W., Oren, R., Paw U, K.T., Richardson, A.D., Schmid, H.P., Staebler, R., Wofsy, S., Zhao, L., 2011. 



Observed increase in local cooling effect of deforestation at higher latitudes. Nature 479, 384–387. https://doi.org/10.1038/nature10588

Rigden, A.J., Li, D., 2017. Attribution of surface temperature anomalies induced by land use and land cover changes. Geophys. Res. Lett. 44, 6814–

6822. https://doi.org/10.1002/2017GL073811

Wang, L., Lee, X., Schultz, N., Chen, S., Wei, Z., Fu, C., Gao, Y., Yang, Y., Lin, G., 2018. Response of Surface Temperature to Afforestation in the 

Kubuqi Desert, Inner Mongolia. J. Geophys. Res. Atmos. 123, 948–964. https://doi.org/10.1002/2017JD027522

Wang, L., Tian, F., Wang, X., Yang, Y., Wei, Z., 2020. Attribution of the land surface temperature response to land-use conversions from bare land. Glob. 

Planet. Change 193, 103268. https://doi.org/10.1016/j.gloplacha.2020.103268

 (5) In this paper, the authors only calculate the sensitivity for the “stable” vegetated area. In other words, 

the LAI variation induced by land cover changes is ignored in this study. However, in section 3.4, the authors 

state that the increased harvested area and afforestation project lead to the cooling effect in India and 

China. Should not the increased harvested area and afforestation project be treated as two examples of 

land cover change? 

Response: Thank you for raising this question. We quite agree that land use and land cover change (LULCC) 

is an important driver of global vegetation greening. In the revised manuscript, the temperature trend results 

related to vegetation greening (δLSTbio) are from all vegetated pixels, rather than “stable” pixels. Specifically, 

additional spatial aggregation is adopted to deal with the potential abrupt changes of sensitivity due to land 

cover change. The description is as follows (Line 658–665): 

Since the interannual variation of vegetation and climatic conditions can significantly affect the 

biophysical sensitivity, we used the original monthly sensitivity rather than the climatological value to 

estimate the temperature effect of greening. Specifically, all the sensitivity maps are firstly aggregated into 

0.5° resolution to eliminate the impact of land cover or land management changes on LAI or sensitivity at 

the fine scale. Here, only grids with more than 50% valid values are retained. The Harmonic Analysis of Time 

Series (HANTS) was conducted to fill the invalid values of the sensitivity series for each 0.5° grid (Jiang et 

al., 2017).

Reference: 

Jiang, C., Ryu, Y., Fang, H., Myneni, R., Claverie, M., Zhu, Z., 2017. Inconsistencies of interannual variability and trends in long-term satellite leaf area 

index products. Glob. Chang. Biol. 23, 4133–4146. https://doi.org/10.1111/gcb.13787

(6) The authors compared the δLSTbio and the observed LST trend over the same period to quantify the 

climate mitigation effect of greening. However, the LST trend in figure s9 seems contradictory to the 

common knowledge of global warming. For instance, a large area with cooling signal is found in North 

America, leading to the negative LST trend in Canada in figure 6. The author should consider a longer time 

interval for calculating the LST trend to further reduce the uncertainty of the ratio in figure 6. 

Response: Thank you for raising these important points. Unfortunately, our assessment cannot be extended 

to a longer period, mainly due to the lack of consistent and continuous satellite observation LST products 

before 2001. Meanwhile, we would like to politely argue that the time period of our study is sufficient to 

obtain a reliable estimate of the temperature effect of vegetation greening. To address the large uncertainty 

in the mitigation ratio caused by the uncertainty of temperature trends, we made the comparison using 

Climate Research Unit (CRU) temperature trend from 1991 to 2018 to ensure the global warming trend is 

robust. We have also provided an assessment of the uncertainty of the ratio. Specific modifications to the 

method are as follows (Lines 682–696):

In addition, the temperature trend (𝛿𝑇𝑜𝑏𝑠) is also calculated by linear regression to evaluate the climate 

https://doi.org/10.1111/gcb.13787


mitigation effect of biophysical feedback of greening. Notably, to robustly reflect the global warming signal, 

the time interval for solving 𝛿𝑇𝑜𝑏𝑠 is extended by ten years compared to the interval of the assessment of 

the biophysical effects. Specifically, we use Climate Research Unit (CRU) surface air temperature product 

from 1991 to 2018 to calculate 𝛿𝑇𝑜𝑏𝑠 (Supplementary Fig. 9), because there is no available satellite monthly 

LST product before 2001 and trends of surface air temperature and LST are very similar on global and 

regional scales (Wang et al., 2022). Here, 𝛿𝑇𝑜𝑏𝑠 represent the temperature response to all forcings, which 

is dominated by the increasing CO2 concentration induced warming, and we use 𝛿𝑇𝑜𝑏𝑠 − 𝛿𝐿𝑆𝑇𝑏𝑖𝑜  to 

represent the temperature trend without biophysical feedback of greening. Then, the mitigation percentage 

can be represented by the ratio of greening induced temperature trend to the warming rate without the 

mitigation of greening (−
𝛿𝐿𝑆𝑇𝑏𝑖𝑜

𝛿𝑇𝑜𝑏𝑠−𝛿𝐿𝑆𝑇𝑏𝑖𝑜
× 100%) . Meanwhile, the uncertainty of this ratio is further 

calculated based on the error propagation of 𝛿𝑇𝑜𝑏𝑠 and 𝛿𝐿𝑆𝑇𝑏𝑖𝑜.

(7) In section 3.2, the dLSTbio/dLAI is decomposed into non-radiative, radiative, and indirect climatic 

feedbacks. However, only the non-radiative and radiative feedbacks are discussed in the following parts. 

What about the indirect climatic feedback? From figure 3, I can see that this part has a very low impact, 

but additional descriptive sentences are needed in the article. 

Response: Thank you for your suggestion. We have added a descriptive sentence for the indirect climatic 

feedback as follows (Lines 162–164):

As shown in Fig. 3a, we find a minor impact from indirect climatic feedback (green line) for all latitudes, 

suggesting the local temperature effect of vegetation greening is mainly induced by the direct modification 

of surface biophysical parameters.

(8) As shown in figure 1b, the dLSTbio/dLAI has a good relation with background climate (temperature and 

precipitation). Why did the authors choose snow cover, LAI, and radiation as the indicators in the 

attribution analysis (section 3.2), but not discuss the impact of temperature and precipitation on 

dLSTbio/dLAI? In addition, in figure 4a-c, why the mean sensitivity from January to April is used to plot the 

scatters, but not the annual value in figure 4d-f? 

Response: Thank you for your comment. Temperature and precipitation show good relationships with LST 

sensitivity do not mean their changes are the direct causes of biophysical sensitivity. This is the reason why 

we need a decomposition analysis of the temperature sensitivity, as we write in the revised manuscript as 

follows (Lines 153–154):

The LST sensitivity varies significantly with vegetation type and climatic conditions, but the biophysical 

mechanism behind is still unclear.

For figure 4a-c, mean sensitivity from January to April is used because this snow-related albedo warming 

only occurs in such months, as we mentioned in line 165. 

In addition, we give more explanation of how LAI change directly affects biophysical parameters and how it 

further affects temperature. Theoretically, vegetation greening directly affects surface albedo, aerodynamic 

resistance, and surface resistance (𝜕𝑥 𝜕𝐿𝐴𝐼⁄ ) to modify the energy absorption, distribution, and diffusion 

processes, then cause the local temperature variation (𝜕𝐿𝑆𝑇 𝜕𝑥⁄ ). 

For the albedo pathway, the partial derivatives of LST to albedo (𝜕𝐿𝑆𝑇 𝜕𝛼⁄ ) is obviously linearly related to 



the downward shortwave radiation, as the albedo is the percentage of reflected energy. Greening affects 

albedo (𝜕𝛼 𝜕𝐿𝐴𝐼⁄ ) through covering more background surface area (usually higher albedo soil) with the 

vegetation canopy (lower albedo). According to the Beer-Lambert Law, the canopy transmittance (thereby 

canopy albedo) is driven by LAI (Ni-Meister et al., 2010):

𝜕𝛼 𝜕𝐿𝐴𝐼⁄ ~ − exp (−𝑘𝐿𝐴𝐼)

where k is a parameter related to canopy structure such as leaf orientation distribution. In addition, surface 

albedo under the canopy is also important (Li et al., 2017). Specifically, 𝜕𝛼 𝜕𝐿𝐴𝐼⁄   become extremely 

sensitive if the background is snow. Hence, we argue that greening-induced albedo change in snow regions 

can dominate the positive temperature sensitivity. 

For the resistances, greening affect aerodynamic resistance (Ra) mainly by altering the roughness lengths and 

displacement height, and this sensitivity (𝜕𝑅𝑎 𝜕𝐿𝐴𝐼⁄ ) is nonlinearly correlated to the wind speed and LAI: 

𝜕𝑅𝑎 𝜕𝐿𝐴𝐼⁄ ~ 𝑓(𝐿𝐴𝐼) 𝑢⁄

LAI also modifies the canopy conductance of vegetation and then the surface resistance (Rs) of the hybrid 

pixel. In fact, the early model and FAO-56 characterize Rs in Penman-Monteith equation by a simple linear 

function of LAI (Cleugh et al., 2007), which assumes a constant 𝜕𝑅𝑠 𝜕𝐿𝐴𝐼⁄  value. The Rs model is further 

refined through a two-source framework and a better representation of canopy conductance for vegetation 

components (Leuning et al., 2008), leading to the dependence of 𝜕𝑅𝑠 𝜕𝐿𝐴𝐼⁄  on both LAI and vapor pressure 

deficit (VPD):

𝜕𝑅𝑠 𝜕𝐿𝐴𝐼⁄ ~𝑓(𝐿𝐴𝐼)𝑓(𝑉𝑃𝐷)

As for the partial derivatives of LST to resistances (𝜕𝐿𝑆𝑇 𝜕𝑅𝑎⁄  and 𝜕𝐿𝑆𝑇 𝜕𝑅𝑠⁄ ), its complex expressions 

can refer to the supplementary information of A. J. Rigden and Li (2017). Here, we use fluxnet data to show 

the potential relationship between the sensitivity and drivers (Fig. R2). We find a linear relationship between 

𝜕𝐿𝑆𝑇 𝜕𝑅𝑎⁄   and shortwave radiation (SW) and an inverse proportional relationship between Rs and 

𝜕𝐿𝑆𝑇 𝜕𝑅𝑠⁄ . However, no significant relationship is found between other climatic drivers and LST sensitivity 

to 𝑅𝑎 or 𝑅𝑠. 

Figure. R2. Scatter plots between LST sensitivities (to Ra and Rs) and potential drivers

Based on the facts above, we argue that LAI (affecting 𝜕𝛼 𝜕𝐿𝐴𝐼⁄  , 𝜕𝑅𝑎 𝜕𝐿𝐴𝐼⁄  , 𝜕𝑅𝑠 𝜕𝐿𝐴𝐼⁄   and  

𝜕𝐿𝑆𝑇 𝜕𝑅𝑠⁄  ), shortwave radiation (affecting 𝜕𝐿𝑆𝑇 𝜕𝛼⁄   and 𝜕𝐿𝑆𝑇 𝜕𝑅𝑎⁄  ), and snow cover (affecting 

𝜕𝛼 𝜕𝐿𝐴𝐼⁄  ) are the drivers of LST sensitivity. We admit that air temperature and precipitation are the 

fundamental reason for LAI and snow cover changes, but they only show the indirect impact on the sensitivity.
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(9) In line 273, the warming trend induced by forest greening is 0.001 K/decade. The number seems wrong 

compared with the plot in figure 5. 

Response: Thank you for pointing out this mistake and we feel so sorry for our carelessness. In the revised 

manuscript, we have used a new method to estimate the greening-induced temperature trend according to the 

major comments (3) of reviewer #2. We have updated this numbers as follows (Lines 300–301):

Conversely, the greening of forests could accelerate global warming by 0.009 ± 0.004 K/decade.



Reviewer #2 (Remarks to the Author):

I'm sorry to say that I find little new in this manuscript. We already know these results (Refs. 4, 9, 10, 11, 

14, 17, etc.). This manuscript is just repeating.

Response: We have carefully read the mentioned references, as well as other related research articles. Ref. 4, 

8, 14, 23, 24, 31, 47 assessed the biophysical temperature effect of forests, regionally or globally. Ref. 6 and 

17 are about the local temperature effect of land use/land cover changes (LULCC). These studies are closely 

related to earth greening, but greening is a more widespread process involving all vegetation types and areas 

without LULCC. In comparison, the goal of our study is closer to ref. 9, 10, 11, as you mentioned. However, 

there are still shortcomings in these studies:

I) The model-based (ref. 10, 11) results should be carefully treated and verified by observation-based 

evidence, as model uncertainty may lead to a biased assessment of the net temperature effect of 

greening. For instance, both these two studies failed to produce the warming effect of greening in 

boreal regions, possibly because the process of snow masking of vegetation canopies is not well 

represented in LSMs (Piao et al., 2020).

II) The methodology of the mentioned observation-based study (ref. 9) has been argued whether it can 

solve the causality issue between vegetation and temperature. 

In general, the existing studies have no consistent conclusions on the temperature of greening at regional or 

global scale, particularly between the remote sensing-based and model-based studies. Considering these 

shortcomings, we conducted this study initially to reconcile the disagreement between observation-based and 

model-based results. To this end, we present a new method to quantify the temperature sensitivity to LAI, 

which could resolve the causality issue of ref. 9 (please see the response to your next comment). Meanwhile, 

thanks to the high resolution of remote sensing observations, this is the first time that the temperature 

sensitivity to greening has been quantified globally at 0.05° resolution. In addition, we provide the first data-

driven assessment of the seasonal patterns of the temperature sensitivity globally. By introducing the energy 

balance equation, we attributed this greening-related temperature effect and revealed the potential driving 

factors through a physical-based approach. Furthermore, we find a considerable magnitude of greening-

induced cooling in China and India, which suggests that human-induced vegetation changes can have strong 

climate benefits. All these make our study unique and we believe our work is of sufficient novelty, but not 

simply repeating. 

(1) Their results (L68-87) were very similar compared to Ref. 9 (Fig. 1a vs. Fig. 3D of Ref. 9). A similar 

regression analysis was used, which I doubt unveils complex two-way effects between vegetation growth 

and climate change. I did not see many mechanisms in the methodology and discussion. For example, how 

do the authors resolve the following causal ambiguity (as noted in Ref. 20): an increase in Tair can increase 

LST. An increase in Tair can increase LAI in colder regions but may lead to a decrease in LAI in hotter regions. 

The analysis in this paper can only be attributed to a change in LAI, but this is indeed due to a change in 

Tair. These issues are arguably critical in Figure 2b. 

Response: Thank you for raising this question. The role of climate change affecting vegetation growth in 

two-way effects is excluded, mainly because the regression samples of our method are from spatial nearby 

pixel, and thus share the same background climate. We have emphasized in the revised manuscript 

(methodology section) that the impact of background climate variation is excluded in our method (Lines 

529–535):

Similarly, we assume vegetation greenness can be the only driving factor of LST spatial variation under 

certain restrictions, the biophysical sensitivity of LST to LAI could be regressed from spatial nearby LAI and 



LST observations. The advantage of this method over the temporal regression strategy (Forzieri et al., 2017) 

is the exclusion of the impact of climate natural variability or the long-term warming trend on vegetation 

growth, because pixels with different LAI values within the moving windows share the same background 

climate (Supplementary Fig. 16).  

Moreover, we made an additional explanation of the mechanisms and a method comparison in 

Supplementary Discussion 2 (Sensitivity from different regression methods). Here, multi-linear 

regression (MLR) indicates the method used in ref. 9. 

The intrinsic difference between our method and MLR method is the source of regression samples. 

Specifically, the samples in our studies are from the spatial nearby pixels (sharing a similar background 

climate), while samples in MLR method are from the time series observations for a given location. The 

feasibility of temporal regression is debatable mainly because of the changing background climate (Li et al., 

2018). The long-term trends and fluctuations of the climate system drive both LAI and LST variation, and 

thus vegetation and temperature show complex two-way effects (Supplementary Fig. 16a). However, samples 

from our spatial regression method sharing the same background climate, which means the signal of climate 

natural variability or the long-term warming trend affecting vegetation growth is excluded. The spatial 

variability of LST samples is mainly driven by vegetation growth (LAI affecting biophysical properties) after 

filtering out the impact of land cover and altitude (Supplementary Fig. 16b). Hence, our method is essentially 

a spatial controlled experiment, but the MLR method is an observation-based statistical method.

Supplementary Figure 16. Schematic representation of the relationship between LAI and LST from the temporal and spatial regression 

methods. a Temporal regression. b Spatial regression.

Further comparison of annual sensitivity from our method (
𝑑𝐿𝑆𝑇𝑏𝑖𝑜

𝑑𝐿𝐴𝐼
) and MLR method (

𝜕𝐿𝑆𝑇𝑏𝑖𝑜

𝜕𝐿𝐴𝐼
) can be 

found in Supplementary Fig. 10. Notably, same LAI and LST datasets were used here. Compared with our 

result, the annual sensitivity derived from MLR shows a stronger negative signal in the southern mid-latitude, 

which is mainly caused by the sensitivity difference in Australia. Meanwhile, the positive sensitivity is 

significantly strengthened in boreal regions in MLR result. These differences are possible because the 

reversed “temperature-vegetation” effect is superimposed with the “vegetation-temperature” signal of our 



concern. For instance, global warming could be the major cause of greening and the stronger boreal signal 

in MLR is more likely the reflection of temperature influencing the vegetation growth. Conversely, the larger 

negative sensitivity in Australia is due to the reversed “temperature limits vegetation growth” effect 

overlapping with the “vegetation greening induces cooling effect”. However, our spatial regression method 

can exclude the reversed signal of large-scale warming affecting vegetation physiology and phenology, as 

the sensitivity is regressed from simultaneous LST and LAI observations from spatial samples sharing the 

same background climate (see Methods).

Supplementary Figure 10. Comparison of annual biophysical sensitivity of LST to LAI derived from multi-linear regression method 

(
𝝏𝑳𝑺𝑻𝒃𝒊𝒐

𝝏𝑳𝑨𝑰
) and our method (

𝒅𝑳𝑺𝑻𝒃𝒊𝒐

𝒅𝑳𝑨𝑰
). a Spatial map of 

𝜕𝐿𝑆𝑇𝑏𝑖𝑜

𝜕𝐿𝐴𝐼
. b Comparison of latitudinal patterns between

𝜕𝐿𝑆𝑇𝑏𝑖𝑜

𝜕𝐿𝐴𝐼
 and 

𝑑𝐿𝑆𝑇𝑏𝑖𝑜

𝑑𝐿𝐴𝐼
 (Fig. 1a).

Nevertheless, we fully understand your doubt whether the reversed “temperaturevegetation” effect could 

still play a major role in terms of space. For instance, in boreal winter, the nearby pixel has higher air 

temperature, and thus shows a higher LAI value than the center pixel of the moving window (Fig. 2b). We 

admit that this reverse signal may, to some extent, lead to the overestimation of LST sensitivity in the boreal 

dormant season. However, considering the weak greening trend in boreal winter, this effect has a very limited 

role in the final temperature trend (δLSTbio) results. 

In addition, we present additional evidence to show the positive temperature response to vegetation greening 

in boreal regions can be induced by the reduction of albedo. Here, we first confirm the annual boreal warming 

signal is induced by the positive sensitivity from November to May of (Fig. R3). 

Figure. R3. Seasonal pattern of greening induced LST trend and LST sensitivity in boreal regions (>50°N)

For such seven months, we compare the total mean LST sensitivity (
𝑑𝐿𝑆𝑇𝑏𝑖𝑜

𝑑𝐿𝐴𝐼
 ) with the part of sensitivity 

contributed by the vegetation-albedo-temperature pathway (
𝑑𝐿𝑆𝑇𝑏𝑖𝑜

𝛼

𝑑𝐿𝐴𝐼
 ). We find a significant positive 



relationship between 
𝑑𝐿𝑆𝑇𝑏𝑖𝑜

𝑑𝐿𝐴𝐼
 and 

𝑑𝐿𝑆𝑇𝑏𝑖𝑜
𝛼

𝑑𝐿𝐴𝐼
. Meanwhile, the slope between 

𝑑𝐿𝑆𝑇𝑏𝑖𝑜

𝑑𝐿𝐴𝐼
 and 

𝑑𝐿𝑆𝑇𝑏𝑖𝑜
𝛼

𝑑𝐿𝐴𝐼
 is lower than 

1 (0.62), which suggests the potential warming induced by albedo feedback is higher than the final warming 

signal of greening (fig. R4).

Figure. R4. Scatter plots between mean monthly 
𝑑𝐿𝑆𝑇𝑏𝑖𝑜

𝑑𝐿𝐴𝐼
 and mean monthly 

𝑑𝐿𝑆𝑇𝑏𝑖𝑜
𝛼

𝑑𝐿𝐴𝐼
 of from November to May

Considering albedo is not a climatic parameter, the bidirectional effect will not exist in the vegetation-albedo 

pathway. Meanwhile, the potential warming sensitivity induced by increased shortwave absorption is greater 

than the actual observed positive temperature sensitivity. These results suggest vegetation greening could 

significantly increase the shortwave radiation absorption and result in the warming effect of vegetation 

greening in boreal regions. In other words, the positive LST sensitivity in cold regions is not likely the result 

of two-way effects, or to say the least, the reversed temperature-vegetation effect does not play the dominant 

role.

In addition, we confirm the potential mechanism “increase in Tair can lead to a decrease in LAI in hotter 

regions” does not affect our result. We investigated the seasonal pattern of LST sensitivity in tropical regions 

(20°N to 20°S). If the mentioned mechanism is dominant, we expect a stronger negative sensitivity value in 

hotter months, as the higher temperature could threaten vegetation growth. As shown in Fig. R5, none of the 

above pattern is found in either the northern hemisphere tropics or southern hemisphere tropics. Thus, we 

argue that our sensitives should not be affected by the bidirectional effects in hot regions. 

Figure. R5. Seasonal pattern of LST sensitivity in tropical regions (20°S ~ 20°N)

Reference:
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(2) The content of L98-118 is also similar to ref. 10. For example, Figure 1c with Table 1 of ref. 10. 

Response: Thank you for pointing this out. The main reason that our result is similar to ref. 10 is that we use 

the same broad vegetation type classification scheme. The same scheme was used because the starting point 

of our research is to reconcile the disagreement between results from observation-based evidence and model-

based simulation. 

As expected, we find a comparable global mean sensitivity value (-0.46 K ·m2·m-2 vs -0.36 K·m2·m-2). 

However, our results show much higher spatial standard variability (spatial standard deviation: 1.68 K·m2·m-

2 vs 0.22 K·m2·m-2), and the mean sensitivity of the four vegetation types showed great differences. For 

instance, we find slight warming of forest greening globally, but ref. 10 indicates a cooling effect (0.12 

K·m2·m-2 vs -0.23 K·m2·m-2); the sensitivities of the grasslands and croplands are 2 to 3 times higher than the 

results of ref. 10. Meanwhile, ref. 10 shows a cooling effect of greening in regions >50°S/N, but our result 

shows a warming effect in high latitudes. Overall, our sensitivity results are more globally variable, while 

the LSM results (ref. 10) suggest a uniform global cooling effect with similar intensity. 

To highlight the difference with the previous study, Fig.1c will be no longer the major result but moved to 

the supplementary (Supplementary Fig. 2), and we reduced the description (two paragraphs to one paragraph) 

of the variability of annual sensitivity with climate conditions and vegetation types in this section as follows 

(Lines 71–102): 

Fig. 1 shows the annual biophysical sensitivity of LST to LAI (
𝑑𝐿𝑆𝑇𝑏𝑖𝑜

𝑑𝐿𝐴𝐼
) over the study period (2001–

2018), which represents the potential annual mean temperature response to one LAI unit increase. Consistent 

with previous reports of the climate mitigation effect of earth greening (Forzieri et al., 2017; Zeng et al., 

2018), we find that approximately 71% of the vegetated area shows negative sensitivity, and the global mean 

value is -0.46 ± 1.68 K·m2·m-2 (mean ± spatial standard deviation) (Fig. 1a). Vegetation greening in dry and 

warm regions significantly cool the land surface, and this cooling diminishes and reverses to the warming 

effect with gradually decreased temperature or increased precipitation (Fig. 1b). Similar to the previous 

study of the biophysical impact of forestation on LST (Lawrence et al., 2022), this climatic variation could 

be further translated into the latitudinal dependence of a warming effect in northern high latitudes and 

cooling effects in other latitudes, with the transitional latitude near 50°N (Fig. 1c). However, the difference 

is found near the equator, where greening only induces a weak cooling effect, but previous studies suggest 

the strongest cooling of forestation here (Prevedello et al., 2019; Windisch et al., 2021). This difference is 

mainly due to the inherent difference between the abrupt change from openland to forest and the vegetation 

persistent greening. Apart from the impact of background climate, we further investigate the 
𝑑𝐿𝑆𝑇𝑏𝑖𝑜

𝑑𝐿𝐴𝐼
  by 

aggregating all 12 IGBP vegetation types into four broad types (Supplementary Table 1), including forest, 

other wooden vegetation (OWV), grassland, and cropland (Supplementary Fig. 1). We find strong negative 

sensitivity in grasslands (-0.94 K·m2·m-2) and croplands (-0.83 K·m2·m-2), then followed by OWV (-0.13 

K·m2·m-2), and finally small positive sensitivity of forests (0.16 K·m2·m-2) (Fig. 1c and Supplementary Fig. 2). 

Overall, comparing with the results from the controlled experiments of land surface model, the sensitivities 

estimated from our observational-based method show similar global magnitude, but with much larger spatial 

variability (Chen et al., 2020).



Figure 1. Mean annual biophysical sensitivity of LST to LAI (
𝒅𝑳𝑺𝑻𝒃𝒊𝒐

𝒅𝑳𝑨𝑰
) over the study period (2001–2018). a Spatial map of 

𝑑𝐿𝑆𝑇𝑏𝑖𝑜

𝑑𝐿𝐴𝐼
. b Variation in 

sensitivity means across the climatic bins, in which 
𝑑𝐿𝑆𝑇𝑏𝑖𝑜

𝑑𝐿𝐴𝐼
 is binned as a function of annual precipitation (P, x-axis) and air temperature (Ta, y-axis) 

from ERA land datasets. c Zonal means of 
𝑑𝐿𝑆𝑇𝑏𝑖𝑜

𝑑𝐿𝐴𝐼
 across different broad vegetation types. The shaded area indicates the latitudinal standard deviation.
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(3) In addition, talking about these sensitivities requires a stable background climate and vegetation 

growth (or very small changes). If there are significant changes in the background climate and vegetation 

growth, these sensitivities should also change. Therefore, the analysis in Section 3.3 is not convincing. A 

simple example is given to illustrate my concern. 

Let y = x^4 + z, and assume z is independent of x. 

Then, dy/dx = 3*x^3; 

When x = 1, dy/dx = 3; 

When x = 2, dy/dx = 24; 

The sensitivity of LST to LAI is similar to dy/dx, which changes if x is changing. You can only assume the 

sensitivity is a constant if x does not change much. Here y is analog to LST, and x is analog to LAI (x could 

also be the background climate).

a b

c



Response: Thank you for your constructive comments. In the original manuscript, we simply assumed the 

mean value of multi-year sensitivities could be used to calculate the final LST signal. We fully agree with 

you that the sensitivity could change significantly due to the fluctuations of background climate and LAI. In 

the revised manuscript, we no longer use the multi-year mean sensitivity but the original monthly sensitivity 

to calculate the temperature effect. The specific modifications to the method are as follows (Lines 657–674): 

The LST trend induced by greening (𝛿𝐿𝑆𝑇𝑏𝑖𝑜) over the study period (2001–2018) is the result of both 

biophysical sensitivity and LAI variation. Since the interannual variation of vegetation and climatic 

conditions can significantly affect the biophysical sensitivity, we used the original monthly sensitivity rather 

than the climatological value to estimate the temperature effect of greening. Specifically, all the sensitivity 

maps are firstly aggregated into 0.5° resolution to eliminate the impact of land cover or land management 

changes on LAI or sensitivity at the fine scale. Here, only grids with more than 50% valid values are retained. 

The Harmonic Analysis of Time Series (HANTS) was conducted to fill the invalid values of the sensitivity 

series for each 0.5° grid (Jiang et al., 2017). Then, the greening-induced LST variation (𝛥𝐿𝑆𝑇𝑏𝑖𝑜) can be 

calculated based on year-to-year LAI variation (𝛥𝐿𝐴𝐼) and the LST sensitivity (
𝑑𝐿𝑆𝑇𝑏𝑖𝑜

𝑑𝐿𝐴𝐼
) at monthly scale:  

𝛥𝐿𝑆𝑇𝑏𝑖𝑜(𝑦, 𝑚) = 𝛥𝐿𝑆𝑇𝑏𝑖𝑜(𝑦 − 1, 𝑚) +
𝑑𝐿𝑆𝑇𝑏𝑖𝑜

𝑑𝐿𝐴𝐼
(𝑦,𝑚)+

𝑑𝐿𝑆𝑇𝑏𝑖𝑜
𝑑𝐿𝐴𝐼

(𝑦−1,𝑚)

2
× 𝛥𝐿𝐴𝐼(𝑦, 𝑚)    (12)

𝛥𝐿𝐴𝐼(𝑦, 𝑚) = 𝐿𝐴𝐼(𝑦, 𝑚) − 𝐿𝐴𝐼(𝑦 − 1, 𝑚)                   (13)

where y and m denote the year and month. Monthly 𝛿𝐿𝑆𝑇𝑏𝑖𝑜 could be computed by the linear trend of 17 

years 𝛥𝐿𝑆𝑇𝑏𝑖𝑜 , and the annual or seasonal 𝛿𝐿𝑆𝑇𝑏𝑖𝑜  are similarly regressed from 17 years annual or 

seasonal 𝛥𝐿𝑆𝑇𝑏𝑖𝑜 (temporally aggregated from the monthly 𝛥𝐿𝑆𝑇𝑏𝑖𝑜). The uncertainty of 𝛿𝐿𝑆𝑇𝑏𝑖𝑜 could 

be further estimated using the 95% confidence interval of the regression slope of year-to-year greening-

induced temperature variation. 

We find differences in the intensity of cooling globally and regionally after considering the interannual 

variation of LST sensitivity. For instance, 𝛿𝐿𝑆𝑇𝑏𝑖𝑜  decreased from 0.018 K/decade to 0.013 K/decade. 

Please refer to section “Climate benefit of greening over the last 20 years” for the changes in numerical 

results. 

Meanwhile, we also made additional clarifications in section “Generation of climatological sensitivities” that 

the multi-year mean sensitivity is only used for analyzing the spatial and seasonal pattern (Line 651–653): 

Notably, these climatology sensitivities are calculated for the spatial and seasonal patterns and the 

decomposition analysis, as they only represent the temperature response to greening under the multi-year 

average background climate. 

Comments on the methodology: 

There may be several problems with the methods section. 

(1) First, I doubt that the statistical approach is able to decompose the multiple treatments involved in the 

surface energy balance, as I elaborated above. 

Response: Thank you for raising this concern. Please refer to the explanation of the same background climate 

in our response to your major comments (2). Specifically, we assume all the pixels within the moving window 

share the same climate baseline. After the filter out the impact of vegetation type and topography, the 

differences in surface albedo and turbulence fluxes are driven by the LAI variation. Therefore, we argue that 

our spatial regression approach can extract the effect of LAI on the energy budget terms. 



(2) I did not see a detailed description of the linear regression model. 

Response: The equation of Theil-Sen’s slope (Sen, 1968) was added in the revised manuscript (Line 549):

𝑠𝑙𝑜𝑝𝑒 = 𝑚𝑒𝑑𝑖𝑎𝑛 (
𝑦𝑖−𝑦𝑗

𝑥𝑖−𝑥𝑗
)                           (1)

Reference:

Sen, P.K., 1968. Estimates of the Regression Coefficient Based on Kendall’s Tau. J. Am. Stat. Assoc. 63, 1379–1389. 

https://doi.org/10.1080/01621459.1968.10480934

(3) L55: How exactly does the spatially moving widow strategy work? It's too vague, more description is 

needed. 

Response: Thank you for pointing this out. As formatting of Nature Communications requires a brief 

summary of our work in the instruction section, we cannot give more details about the method here. Therefore, 

we briefly state that our method is improved by the “space-for-time” approach here to acquire the LST 

sensitivity (Lines 55–59):

Due to the complicated bidirectional effect between vegetation growth and temperature variation, a 

spatial moving window strategy inspired by the ‘space-for-time approach is performed to exclude the impact 

of long-term climate signals on vegetation growth and acquire the LST sensitivity to LAI (Lee et al., 2011; Li 

et al., 2015).

In addition, we have rewritten the description of the spatial moving windows strategy in method section and 

it now reads (Lines 536–556):

This spatially moving window strategy is used to produce monthly 
𝑑𝐿𝑆𝑇𝑏𝑖𝑜

𝑑𝐿𝐴𝐼
 over the study period. The 

specific way of the strategy works is as follows. For a given target pixel, all the potential samples for 

comparison are from the spatial nearby pixels within the moving window, which is set to 50×50 km (9×9 

pixels at the equator) according to the previous studies (Ge et al., 2019; Zhao and Jackson, 2014). We further 

set two screening criteria for all candidates to exclude the influence of land cover and elevation difference: 

(1) the selected pixel should have the same main land cover type as the target pixel, and the coverage 

percentage difference should be less than 10% according to MODIS landcover data; (2) the elevation 

difference between the selected and target pixels should be less than 100 m. Then, we can obtain the 

biophysical sensitivity for the target pixel through the regression of LAI and LST differences between all 

selected comparison pixels and the target pixel. Here, the nonparametric Theil-Sen’s slope is used to solve 

the potential skewed distribution problem of the samples (Sen, 1968):

𝑠𝑙𝑜𝑝𝑒 = 𝑚𝑒𝑑𝑖𝑎𝑛 (
𝑦𝑖−𝑦𝑗

𝑥𝑖−𝑥𝑗
)                            (1)

Where x and y indicate the LAI and LST differences; I and j are the geolocations of samples within the 

moving window. Theil-Sen slope estimator adopts the median value of a range of possible slopes and is thus 

insensitive to the statistical outliers of the samples. In addition, we only calculate the sensitivity if there are 

at least four valid samples, and with a minimum LAI difference larger than 0.1 m2 m-2 to further ensure the 

robustness of our result. Here, a positive sensitivity value means that vegetation greening has a warming 

effect on the local climate and vice versa.

Reference:

Ge, J., Guo, W., Pitman, A.J., de Kauwe, M.G., Chen, X., Fu, C., 2019. The nonradiative effect dominates local surface temperature change caused by 

afforestation in China. J. Clim. 32, 4445–4471. https://doi.org/10.1175/JCLI-D-18-0772.1
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Lee, X., Goulden, M.L., Hollinger, D.Y., Barr, A., Black, T.A., Bohrer, G., Bracho, R., Drake, B., Goldstein, A., Gu, L., Katul, G., Kolb, T., Law, B.E., 

Margolis, H., Meyers, T., Monson, R., Munger, W., Oren, R., Paw U, K.T., Richardson, A.D., Schmid, H.P., Staebler, R., Wofsy, S., Zhao, L., 2011. 

Observed increase in local cooling effect of deforestation at higher latitudes. Nature 479, 384–387. https://doi.org/10.1038/nature10588

Li, Y., Zhao, M., Motesharrei, S., Mu, Q., Kalnay, E., Li, S., 2015. Local cooling and warming effects of forests based on satellite observations. Nat. 

Commun. 6, 1–10. https://doi.org/10.1038/ncomms7603

Sen, P.K., 1968. Estimates of the Regression Coefficient Based on Kendall’s Tau. J. Am. Stat. Assoc. 63, 1379–1389. 

https://doi.org/10.1080/01621459.1968.10480934

Zhao, K., Jackson, R.B., 2014. Biophysical forcings of land-use changes from potential forestry activities in North America. Ecol. Monogr. 84, 329–

353. https://doi.org/10.1890/12-1705.1

(4) I can't understand equations 2 and 3. They are not the standard equations for LE and H. How do you 

ensure that the turbulent flux changes in your analysis are caused by LAI changes and not by the energy 

closure preprocessing of these two equations? 

Response: Thank you for raising these concerns. Equations 2 and 3 are the expressions of Bowen ratio 

correction method to distribute the energy closure residual. We perform this procedure because the 

decomposition model requires closure of surface energy balance. Here, we have rewritten the description of 

energy balance residual correction (Line 572–585): 

To analyze the contribution of different biophysical feedbacks to the final LST sensitivity, we perform a 

decomposing procedure based on the energy balance equation Juang et al., 2007; Luyssaert et al., 2014):

 𝑆𝑊 ↓ (1 − 𝛼) + 𝜀𝐿𝑊 ↓ −𝜀𝜎(𝐿𝑆𝑇)4 = 𝐻 + 𝐿𝐸 + 𝐺                 (2)

where SW↓ and LW↓ are shortwave and longwave downward radiation, α indicates albedo; σ denotes the 

Stephan-Boltzmann constant (5.67 × 10−8 W m−2 K−4); 𝜀 indicates surface emissivity, which is estimated 

from the empirical relationship with albedo for vegetated surfaces (𝜀 = 0.99 − 0.16𝛼) (Juang et al., 2007); 

H, LE and G are respectively sensible heat, latent heat and ground heat flux. Notably, energy balance is 

required for the decomposition model (Liao et al., 2018), but the energy balance terms used in this study are 

from different datasets and thus are not closed. To account for this, we first perform the energy residual 

distribution using the Bowen ratio method, which assumes the ratio of H to LE is invariant (Jung et al., 2010). 

𝐿𝐸𝑐𝑜𝑟𝑟𝑒𝑐𝑡 = (𝑅𝑛 − 𝐺) ×
𝐿𝐸

𝐿𝐸+𝐻
                            (3)

𝐻𝑐𝑜𝑟𝑟𝑒𝑐𝑡 = (𝑅𝑛 − 𝐺) ×
𝐻

𝐿𝐸+𝐻
                           (4)

𝑅𝑛 =  𝑆𝑊 ↓ (1 − 𝛼) + 𝜀𝐿𝑊 ↓ −𝜀𝜎(𝐿𝑆𝑇)4                        (5)

Moreover, we confirm that the energy closure process does not affect our conclusions. As shown in Fig. R6, 

the summed sensitivities from original turbulent fluxes data without energy closure shows larger absolute 

value and a similar latitudinal pattern compared with directly obtained LST sensitivity (dashed black line vs 

solid black line). They both demonstrate the larger negative sensitivity in mid-latitudes, and conversion of 

the relative dominance of radiative and non-radiative effects near 50°N, which corroborates the warming 

effect of boreal greening (left panel of Fig. R6). Second, our conclusions of the driving factors from 

sensitivities with or without correction are the same. Specifically, snow cover is found to drive the intensity 

of positive sensitivity in cold regions, as snow can intensify the radiative feedback rather than the non-

radiative process (upper panel of Fig. R7); LAI affects non-radiative process through an exponential 

relationship and then drives the negative sensitivity in snow-free regions (lower panel of Fig. R7). In general, 

our closure treatment of the turbulent fluxes makes the sensitivity results from multi-source datasets 

https://doi.org/10.1890/12-1705.1


comparable in terms of the absolute value, but not produce misleading conclusions.

Figure. R6. Same with Fig. 3 in the main text, but the sensitivities of latent and sensible heat are not corrected by the energy closure.

Figure. R7. Same with Fig. 4 in the main text, but the sensitivities of latent and sensible heat are not corrected by the energy closure. 

Notably, seasonal patterns of sensitives from fluxes data with and without closure treatment in mid-latitudes 

are found different (right panel of Fig. R6 vs Fig. 3). The results from turbulent fluxes after the closure 

treatment are (Fig. 3) closer to the results of previous studies, which documents stronger turbulent flux 

sensitivity to LAI during the growing season (Forzieri et al., 2020). This suggests that our closure treatment 

can produce more reasonable results, and the reason behind might be the large uncertainty in the original 

turbulent flux products.
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Forzieri, G., Miralles, D.G., Ciais, P., Alkama, R., Ryu, Y., Duveiller, G., Zhang, K., Robertson, E., Kautz, M., Martens, B., Jiang, C., Arneth, 



A., Georgievski, G., Li, W., Ceccherini, G., Anthoni, P., Lawrence, P., Wiltshire, A., Pongratz, J., Piao, S., Sitch, S., Goll, D.S., Arora, V.K., 

Lienert, S., Lombardozzi, D., Kato, E., Nabel, J.E.M.S., Tian, H., Friedlingstein, P., Cescatti, A., 2020. Increased control of vegetation on 

global terrestrial energy fluxes. Nat. Clim. Chang. 10, 356–362. 

Juang, J.Y., Katul, G., Siqueira, M., Stoy, P., Novick, K., 2007. Separating the effects of albedo from eco-physiological changes on surface 

temperature along a successional chronosequence in the southeastern United States. Geophys. Res. Lett. 34, 1–5. 
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Eugster, W., Gerten, D., Gianelle, D., Gobron, N., Heinke, J., Kimball, J., Law, B.E., Montagnani, L., Mu, Q., Mueller, B., Oleson, K., Papale, 

D., Richardson, A.D., Roupsard, O., Running, S., Tomelleri, E., Viovy, N., Weber, U., Williams, C., Wood, E., Zaehle, S., Zhang, K., 2010. 

Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature 467, 951–954. 

https://doi.org/10.1038/nature09396

Liao, W., Rigden, A.J., Li, D., 2018. Attribution of Local Temperature Response to Deforestation. J. Geophys. Res. Biogeosciences 123, 1572–

1587. https://doi.org/10.1029/2018JG004401

Luyssaert, S., Jammet, M., Stoy, P.C., Estel, S., Pongratz, J., Ceschia, E., Churkina, G., Don, A., Erb, K., Ferlicoq, M., Gielen, B., Grünwald, 

T., Houghton, R.A., Klumpp, K., Knohl, A., Kolb, T., Kuemmerle, T., Laurila, T., Lohila, A., Loustau, D., McGrath, M.J., Meyfroidt, P., Moors, 

E.J., Naudts, K., Novick, K., Otto, J., Pilegaard, K., Pio, C.A., Rambal, S., Rebmann, C., Ryder, J., Suyker, A.E., Varlagin, A., Wattenbach, M., 

Dolman, A.J., 2014. Land management and land-cover change have impacts of similar magnitude on surface temperature. Nat. Clim. Chang. 

4, 389–393. https://doi.org/10.1038/nclimate2196

(5) Equations 6-10, why are total derivatives with respect to LAI? For example, there may be a variety of 

factors that affect changes in LE and H, such as wind speed, potential air temperature, changes in incident 

shortwave radiation, precipitation, soil moisture, VPD, etc. Assuming that LAI is the only driver of these 

surface changes is clearly invalid. 

Response: Thank you for raising these important points. Indeed, turbulent fluxes are also affected by thermal 

and hydrological conditions of the lower atmosphere and soil. We argue these changes do not affect our 

results significantly due to the similar background climate assumption, as we mentioned in the response to 

your major comment (1). To further support our hypothesis, we further calculate the partial derivatives of LE 

to LAI (
𝜕𝐿𝐸𝑏𝑖𝑜

𝜕𝐿𝐴𝐼
), with other climatic variables (shortwave radiation, precipitation, surface air temperature, and 

wind speed from ERA Land datasets) included in the regression input. Similarly, the partial derivatives are 

obtained by the moving window strategies with the same model parameter (window size: 50×50 km; 

elevation difference < 100 m; main landcover fraction difference < 10%), and the multiple linear regression 

method is used to calculate the sensitivity. The comparison of climatological sensitivity of January and July 

is shown in Fig. R8, which shows good consistency between 
𝜕𝐿𝐸𝑏𝑖𝑜

𝜕𝐿𝐴𝐼
 and 

𝑑𝐿𝐸𝑏𝑖𝑜

𝑑𝐿𝐴𝐼
. This result indicates that the 

impact of meteorological factors on the energy budget terms is weakened due to the spatial moving window 

strategy. 



Figure. R8. Latitudinal patterns comparison and density scatter plots between latent heat sensitivity from single LAI Theil-Sen’s slope and 

multiple regression slope.

(6) L589-590: Why is it not induced by large-scale atmospheric circulation and biochemical processes? I 

cannot understand. 

Response: Thank you for your attention to this issue. The main reason is the spatial regression method can 

only extract local effects. We have made an explanation in Line 628–633: 

Theoretically, greening could also affect non-local climate, through horizontal heat or vapor transfer, 

and could also induce global cooling by absorbing the atmospheric CO2. However, the radiation sensitivities 

from our method do not contain the contributions from these two processes, mainly because the spatial 

regression cannot extract the tele-connected or global uniform signal. In this study, the radiation sensitivity 

indicates the vertical impact of greening on climate. Specifically, greening directly alters energy absorption 

as well as water and heat exchange efficiency between the surface and atmosphere, subsequently affecting 

near-surface temperature, relative humidity, atmospheric transmittance and cloud cover locally (Duveiller 

et al., 2021), which could further alter surface downward shortwave and longwave radiation. 

Reference:

Duveiller, G., Filipponi, F., Ceglar, A., Bojanowski, J., Alkama, R., Cescatti, A., 2021. Revealing the widespread potential of forests to increase low 

level cloud cover. Nat. Commun. 12, 1–15. https://doi.org/10.1038/s41467-021-24551-5

(7) Investigating seasonal energy balance should not ignore surface heat fluxes. They may have a significant 

contribution, especially in colder regions. 

Response: Thank you for your valuable suggestions. We ignore the contribution of surface heat flux (G) 

partially because there are no proper G products to assess its contribution. Moreover, a few studies showed 

that vegetation changes have little impact on G on seasonal or interannual timescales (Juang et al., 2007; Lee 

et al., 2011; Lian et al., 2022).

Here, we performed the analysis of G using monthly simulations of NOAH land surface model in GLDAS 



(Global Land Data Assimilation System) dataset, which has 0.25° spatial resolution. The same moving 

window strategy is used here to get the sensitivity of G to LAI, but the size is set to 3×3 pixels (about 70×70 

km near the equator). As shown in Fig. R9a, we confirm the small contribution of G to the final LST 

sensitivity annually (
𝑑𝐿𝑆𝑇𝑏𝑖𝑜

𝐺

𝑑𝐿𝐴𝐼
, 0.017 K m2 m-2). The stronger impact of G is found in spring and autumn in mid-

latitudes, but these temperature effects show different signs and offset each other. Similarly, 
𝑑𝐿𝑆𝑇𝑏𝑖𝑜

𝐺

𝑑𝐿𝐴𝐼
  for 

winter and summer also show a symmetrical pattern, leading to the final minor annual signal. Comparing 

with the final LST sensitivity or the sensitivity of albedo and turbulent fluxes, we confirm the small 

contribution of G at both annual and seasonal scales (Fig. R9b). Hence, we argue the effect of G is negligible 

in our attribution analysis.

Fig. R9 Latitudinal patterns of seasonal and annual 
𝑑𝐿𝑆𝑇𝑏𝑖𝑜

𝐺

𝑑𝐿𝐴𝐼
.
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Margolis, H., Meyers, T., Monson, R., Munger, W., Oren, R., Paw U, K.T., Richardson, A.D., Schmid, H.P., Staebler, R., Wofsy, S., Zhao, L., 2011. 

Observed increase in local cooling effect of deforestation at higher latitudes. Nature 479, 384–387. https://doi.org/10.1038/nature10588
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Comments specific to the line. 

(1) L155: Which two processes? 

Response: Thank you very much for pointing this out. We have revised the sentence and it now reads (Line 

171–174):

Symmetrical latitudinal patterns are found between the radiative warming and non-radiative cooling, 

which suggests that their intensity may be controlled by the same factors.

(2) L170: Why are all changes in snow attributed to changes in LAI? 

Response: Since the spatial nearby pixels share a similar background climate, we assume the snowfall and 

temperature of the comparison samples are the same. Hence, vegetation greening can affect the proportion 



of snow exposed to direct sunlight, then affect the shortwave energy absorption.  According to the Beer-

Lambert Law, the energy that can be reflected by snow (𝐼𝑠𝑛𝑜𝑤) is related to LAI:

𝐼𝑠𝑛𝑜𝑤  = 𝐼0 × exp (−𝑘𝐿𝐴𝐼)

where 𝐼0 is the downward solar radiation above the canopy and k is the extinction coefficient related to the 

distribution of leaf orientation within the canopy. The higher LAI value means the lower percentage of snow 

exposed to direct solar radiation, thus the lower shortwave radiation reflection from the hybrid pixel. 



Reviewer #3 (Remarks to the Author):

Review of “Biophysical impacts of Earth greening can mitigate up to 50% of the land surface temperature 

warming” 

This study applies an observationally based framework to quantify the temperature effects, globally and 

regionally, of the observed global greening trend over the past 20 years driven by biophysical mechanisms. 

Furthermore, the sensitivity of the temperature response is decomposed into contributions from radiative, 

non-radiative, and indirect climate feedbacks to delineate the underlying driving factors, as well as 

differences between vegetation types. The study generally confirms the main features of biophysical effects 

of vegetation changes found in previous work but adds value by using a purely observation-based 

approach and applying it to a less well studied case of greening rather than large-scale land use 

conversions. Overall, the paper is well structured with good figures. I find the study interesting, providing 

details on biome and process level that gives it the potential to be of importance for understanding the 

responses in further modeling-based work. Below are a few comments and questions for the authors’ 

consideration before I can recommend publication, in particular related to treatment of uncertainties in 

the numbers and how the results are formulated in the context of mitigation. 

Response: We appreciate your positive comments. We have revised our manuscript carefully and hope that 

the revised paper could be more suitable for publication. Specifically, the uncertainty estimation was added 

for the evaluated temperature effect of greening, and the discussions of our results were revised in the context 

of mitigation based on your comments. The point-to-point responses are as follows.

General comments: 

(1) There is no uncertainty/error estimate in any of the numbers provided, whereas Fig. 1 show substantial 

standard errors, in some cases even in terms of sign sensitivity with vegetation type. This should preferably 

be quantified and at the very least better discussed, including in the abstract. 

Response: Thank you very much for your valuable comments and constructive suggestions. In fact, the larger 

standard deviation presented in the sensitivity is the result of the spatial variability of sensitivity. Meanwhile, 

we fully agree that uncertainty estimation is essential for the temperature trends induced by greening 

(𝛿𝐿𝑆𝑇𝑏𝑖𝑜). In the new version, we have changed the method for calculating 𝛿𝐿𝑆𝑇𝑏𝑖𝑜 based on the major 

comments (3) of reviewer #2. The description of uncertainty calculation based on the new method is as 

follows (Lines 673–674): 

The uncertainty of 𝛿𝐿𝑆𝑇𝑏𝑖𝑜  could be further estimated using the 95% confidence interval of the 

regression slope of year-to-year greening-induced temperature variation. 

In addition, the uncertainty of mitigation ratios is also quantified as follows (Line 693–696): 

Then, the mitigation percentage can be represented by the ratio of greening induced temperature trend 

to the warming rate without the mitigation of greening (−
𝛿𝐿𝑆𝑇𝑏𝑖𝑜

𝛿𝑇𝑜𝑏𝑠−𝛿𝐿𝑆𝑇𝑏𝑖𝑜
× 100%) . Furthermore, the 

uncertainty of this ratio is calculated based on the error propagation of 𝛿𝑇𝑜𝑏𝑠 and 𝛿𝐿𝑆𝑇𝑏𝑖𝑜.

All the numbers of 𝛿𝐿𝑆𝑇𝑏𝑖𝑜 in abstract and main text are updated with uncertainty estimations. Here, we 

show an example of the number modification (Line 260–263):

Correspondingly, the global mean greening-induced temperature trend (𝛿𝐿𝑆𝑇𝑏𝑖𝑜 ) is -0.013 ± 0.009 

K/decade (Fig. 5a), which offset 4.6 ± 3.2 % of surface warming trend of 0.289 K/decade within the vegetated 



area.

(2) It is not immediately clear to me if the percentage numbers given are the fraction of the total 

temperature impact due to greening only that is “mitigated” or the fraction of the total observed warming 

(i.e. total human-induced). Should be clearly written in the text throughout. 

Response: The fraction number is closer to your latter definition. We rewrite the method for calculating this 

ratio to avoid ambiguity (Line 690–696):

Here, 𝛿𝑇𝑜𝑏𝑠 represent the temperature response to all forcings, which is dominated by the increasing 

CO2 concentration induced warming, and we use 𝛿𝑇𝑜𝑏𝑠 − 𝛿𝐿𝑆𝑇𝑏𝑖𝑜  to represent the temperature trend 

without biophysical feedback of greening. Then, the mitigation percentage can be represented by the ratio of 

greening induced temperature trend to the warming rate without the mitigation of greening 

(−
𝛿𝐿𝑆𝑇𝑏𝑖𝑜

𝛿𝑇𝑜𝑏𝑠−𝛿𝐿𝑆𝑇𝑏𝑖𝑜
× 100%). Meanwhile, the uncertainty of this ratio is further calculated based on the error 

propagation of 𝛿𝑇𝑜𝑏𝑠 and 𝛿𝐿𝑆𝑇𝑏𝑖𝑜.

Here is an example, if the greening could induce a cooling of -0.2 K/decade and the observed warming is 0.2 

K/decade, we can say that greening mitigate −
−0.2 𝐾/𝑑𝑒𝑎𝑐𝑑𝑒

(0.2−(−0.2)) 𝐾/𝑑𝑒𝑎𝑐𝑑𝑒
× 100% = 50% of the warming.

(3) The title gives impression of a very large mitigation potential of the greening. Upon seeing the findings, 

I feel it should be explicit about this being local/regional effects (and depending on the answer to the 

comment above, maybe further revised). Later parts of the paper states that the global magnitude of 

biophysically based mitigation is limited. 

Response: Thank you for pointing this out. Indeed, the large mitigation potential of greening is only found 

regionally. We have changed the title into:

Biophysical Impacts of Earth Greening Can Mitigate Substantial Regional Land Surface Temperature 

Warming

(4) The results are generally discussed in terms of mitigation and the authors for instance say that the 

cooling effect derived over India and China can mitigate up to 50% of global warming. But how confident 

are the authors in the potential for extrapolating these results based on historically observed changes? I.e. 

does dynamic vegetation changes or saturation effects come into play? Strictly, one would only be able to 

state that these changes have offset some of the total warming, which maybe should be reflected in the 

wording. 

Response: Thank you for your attention to this issue. In this paper, the temperature effect induced vegetation 

change is solved by our spatial regression method. Unfortunately, this effect is difficult to be extrapolated 

directly from historically observed changes, since the actual observed changes of the climate contains 

complex signal from natural and anthropogenic forcings. 

Our assessment represents only the climate effects of vegetation greening over 2001 to 2018. Since the 

vegetation greening trend is only confirmed after the 1980s, the dynamic vegetation changes may have 

insignificant impact on the temperature in terms of long-term historical climate change. Meanwhile, our 

results show that the temperature trend induced by greening is influenced by saturation effects, especially in 

forests with high LAI values. 

In addition, we have revised the verb “mitigate” before the ratio with “offset” as you suggested. 



Nevertheless, we fully understand your concerns about the powerful regional mitigation effects of greening. 

Here, we should emphasize that the results are based on the land surface temperature (LST), which is different 

from the air temperature used in the field of climate change. In fact, there could be discrepancies in 

temperature sensitivity if different temperature measurements are used. A discussion of the potential 

overestimation of the mitigation effect due to the temperature measurements can be found in result section 

(Line 432–442): 

However, when the acquisition of sensitivity is not limited to our method, previous studies have also 

shown the different responses of air temperature and surface temperature to vegetation changes (Novick and 

Katul, 2020; Winckler et al., 2019). Specifically, based on the ESM simulations of different scenarios, the 

local 2 m air temperature sensitivity is about 35% to 65% of the local surface temperature sensitivity. If we 

take this difference in temperature measurements into account, the cooling effect of greening will be also 

correspondingly halved. However, the climate mitigation ratio could reach 24.5% and 10.5% in India and 

China (assuming the air temperature sensitivity is half the surface temperature sensitivity), which still shows 

the strong climate mitigation effects of anthropogenic greening. Thus, we argue the role of vegetation 

greening cannot be ignored in the assessment of future climate, especially for the hot spots of greening 

induced directly by human activities. 

Reference:

Novick, K.A., Katul, G.G., 2020. The Duality of Reforestation Impacts on Surface and Air Temperature. J. Geophys. Res. Biogeosciences 125, 1–15. 

https://doi.org/10.1029/2019JG005543

Winckler, J., Reick, C.H., Luyssaert, S., Cescatti, A., Stoy, P.C., Lejeune, Q., Raddatz, T., Chlond, A., Heidkamp, M., Pongratz, J., 2019. Different 

response of surface temperature and air temperature to deforestation in climate models. Earth Syst. Dyn. 10, 473–484. https://doi.org/10.5194/esd-10-

473-2019

(5) Related: from previous studies, it is my impression that the observed global greening is primarily driven 

by fertilization effects due to increased CO2, which makes it more a consequence of our emissions. How 

actively can we continue to enhance the greening without exacerbating the CO2 or other pollution? Should 

perhaps a mention of the driving factors of greening be included? Some discussion of irrigation and 

forestation is there, but these are the types of conversions that the authors explicitly say they do not 

address here… 

Response: Thank you for your valuable suggestions. Earth greening since the 1980s is mainly due to the 

increasing CO2, climate change, and direct human land management. In the recent 20 years, the greening 

trend is found stronger in China and India, where human activity could be the major driving factor of greening. 

This direct human land management and land use (such as agricultural intensification and ecological projects) 

can be the solution for enhancing the greening without exacerbating the CO2 or other pollution. In the revised 

manuscript, the driving factors of greening including increasing CO2 and human activities are discussed as 

follows (Lines 375–389): 

The increasing CO2 concentration is the major driving force of both global warming and earth greening 

in recent decades. However, compared with the global warming rate, we confirm the very limited effect of 

biophysical-based climate mitigation from earth greening. Meanwhile, our results also provide evidence of 

the significant surface cooling in regions with extensive greening trends. Specifically, we find that greening-

related cooling can offset about 20% and 40% of the warming trend in China and India (Fig. 6), respectively. 

These results highlight the role of the biophysical impact of greening in future adaptation strategies against 



ongoing warming. A previous study proved that China and India are the leaders in global greening in the 

21st century, which is achieved by human land-use management, such as the afforestation project in China 

(Ge et al., 2019) and the increased harvested area by fertilization and irrigation in India (Chen et al., 2019). 

This suggests the large potential of human land use and land management strategies and ecological projects 

to mitigate climate pressure, not only through carbon uptake from the atmosphere but also the biophysical 

processes.

About the type conversion, we admit it is incorrect to separate the contribution of LULCC to vegetation 

greening. In the revised manuscript, those regions with landcover changes are also included in the analysis 

through a spatial aggregation strategy (please refer to the response to comment (5) of reviewer #1). 

Reference:

Chen, C., Park, T., Wang, X., Piao, S., Xu, B., Chaturvedi, R.K., Fuchs, R., Brovkin, V., Ciais, P., Fensholt, R., Tømmervik, H., Bala, G., Zhu, Z., Nemani, 

R.R., Myneni, R.B., 2019. China and India lead in greening of the world through land-use management. Nat. Sustain. 2, 122–129. 

https://doi.org/10.1038/s41893-019-0220-7

Ge, J., Guo, W., Pitman, A.J., de Kauwe, M.G., Chen, X., Fu, C., 2019. The nonradiative effect dominates local surface temperature change caused by 

afforestation in China. J. Clim. 32, 4445–4471. https://doi.org/10.1175/JCLI-D-18-0772.1

(6) Is LAI a sufficient variable? How about SAI – would that factor into the, in particular, albedo changes? 

Moreover, there are a number of satellite-derived products out there, with large discrepancies suggested 

by some. A word on the GLASS LAI compared to other products would be useful. 

Response: Thank you for your constructive comments. We choose LAI here, but not other spectral vegetation 

indexes (such as NDVI and EVI) here, because LAI is a vegetation structural variable with explicit physical 

meaning. More importantly, LAI is an input driving factor of land surface models, which means our results 

could be comparable with LSM. 

We perform additional sensitivity tests using different LAI products, please refer to the response to comment 

(2) of reviewer #1. 

Specific: 

(1) Line 36: LUCC – should it rather be the more commonly used LULCC? 

Response: We have revised this abbreviation as suggested (Line 39 and 524).

(2) Line 64: this could be a good place to clarify what temperature signals are compared, i.e. is this the total 

observed temperature change relative to some baseline climatology or the total temperature signal due 

to greening alone? 

Response: Thank you for your suggestion. We have revised the sentence and it now reads (Line 66–68): 

This estimated signal is subsequently compared with the observed historical temperature variation to 

evaluate the potential climate benefits of greening at global and regional scales.

(3) Line 87: seems like a significant difference - can the authors offer some suggestions for why? 

Response: Thank you for your comment. We have explained the reason for this difference in Line 92–93: 

This difference is mainly due to the inherent difference between the abrupt change from openland to 

forest and the vegetation persistent greening.



More specifically, the temperature effect of afforestation can be recognized as the integral of the sensitivity 

(∫
𝑑𝐿𝑆𝑇𝑏𝑖𝑜

𝑑𝐿𝐴𝐼

𝑏

𝑎
𝑑𝐿𝐴𝐼 ). Here, a and b indicate the LAI value before and after the forestation. However, the 

sensitivity indicates only derivative of LST over LAI values, that is, the temperature response to a slight 

disturbance to LAI value. 

(4) Line 243: Could be useful with a figure that show the regional ratio of biophysically-driven to total (as 

in the current Fig. S9) temperature 

Response: Thanks for your suggestion. We present the ratio in the way you propose (Fig. 6a) and the 

discussion is as follows (Line 309–317): 

To investigate the regional climate benefit of greening, we calculate the mitigation ratio of greening 

using observed surface air temperature trend (𝛿𝑇𝑜𝑏𝑠) and the estimated greening-induced temperature trend 

(𝛿𝐿𝑆𝑇𝑏𝑖𝑜) at pixel and national scale (see method). The higher value of this ratio indicates larger warming 

trend the biophysical feedback of greening can offset. As shown in Fig. 6a, regions where greening can 

significantly mitigate climate change are overlapped with significant greening areas, (e.g., China, India, 

Europe, southern Brazil, and the central United States). These regions have also been confirmed by the 

previous study to dominate the global greening signal after the 21st century. (Chen et al., 2019). 

Figure 6. Potential mitigation effect of biophysical impact of earth greening. a Spatial map of mitigation ratio. Areas with statistically significant 

LAI trends are masked by black dots (Mann-Kendall test, P < 0.05) Only pixels that are significant at 95% confidence interval are shown. b Comparison 

of observed LST trend and greening-induced LST in 10 countries with a sizeable vegetated area. Error bars indicate the uncertainty of greening induced 

temperature trend. The percentage under each blue bar indicates the climate mitigation ratio (mean ± uncertainty). Here, European Union (EU) is included 

in the analysis. Other abbreviations: US, United States; DRC, Democratic Republic of the Congo.

(5) Line 245: does this also affect the total temperature impact of the greening and hence the ratio/fraction 

of warming that is offset? 



Response: Indeed, the cooling effect of those areas with significant greening does affect the total temperature 

impact and the ratio. Here, we made more discussion to show the strong contribution of such regions (Line 

263–267): 

When considering those pixels with statistically significant LAI trends (Mann-Kendall test, P<0.05), the 

cooling trend can increase to -0.029 ± 0.008 K/decade. Greening in such regions could offset about 9.2 ± 

3.7% of the corresponding warming trend, and contribute about 68% of the global cooling signal.

(6) Throughout: some typos that need fixing… 

Response: We apologize for the mistakes in the manuscript. We have checked the paper carefully and 

corrected typos and grammar errors. 



REVIEWERS' COMMENTS

Reviewer #1 (Remarks to the Author): 

The authors have addressed my concerns in the revised version and I therefore recommend the 

publication of this work. 

Reviewer #2 (Remarks to the Author): 

I thank the authors for writing a perfect rebuttal, and I enjoyed reading it. I realized that the 

authors are very thoughtful about this study. The current version has been greatly improved and is 

in a good shape. Excellent Job! I recommend publishing. No need for me to review it again. 

I only have some minor comments: 

Perhaps this paper is helpful. One seasonal pattern analysis based on model simulations was 

published in Nature Communications several months ago. Please see 

https://www.nature.com/articles/s41467-022-31671-z. 

In rebuttal #4, how robust is it to assume that the ratio of H to LE is invariant? Vegetation 

changes will lead to changes in surface biophysical factors (e.g., roughness, stomatal 

conductance), and once these surface biophysical factors change, the Bowen ratio should change. 

LST in many areas, especially during the growing season, should be governed by changes caused 

by these surface biophysical factors, through turbulence fluxes (more important than albedo). It is 

helpful to the readers if the authors could add some discussion on this hypothesis. 

Reviewer #3 (Remarks to the Author): 

The authors have addressed at least my concerns and comments in a satisfactory manner. Hence, 

pending that the other reviewers don't find new issues introduced by the revisions, I would support 

publication of the manuscript. 

I have only one additional small comment: in the new methodology description on line 583-585 in 

the track changes version (Eq. 3-5), it's not entirely clear to me what is meant by the subscript 

"correct" and how these terms enter into later equations. (Also, the sentence before say "we first 

perform (...)" which seems to apply that there should be some sort of "we then" - either I'm 

missing something or there is something missing...)



 Response to Reviewers’ Comments

We greatly appreciate the postive comments from the reviewers. Below are the point-by-point responses to 

the comments, along with the revision of the manuscript (typed in italics) and the location of the revision 

(typed in bold). Hope the revision will make it more acceptable for publication. 

Reviewer #1 (Remarks to the Author):

The authors have addressed my concerns in the revised version and I therefore recommend the 

publication of this work.

Response: We appreciate all the constructive comments by reviewer #1, which helped a lot for the 

improvement of the manuscript. 

Reviewer #2 (Remarks to the Author):

I thank the authors for writing a perfect rebuttal, and I enjoyed reading it. I realized that the authors 

are very thoughtful about this study. The current version has been greatly improved and is in a good 

shape. Excellent Job! I recommend publishing. No need for me to review it again.

Response: Thank you for the valuable comments for improving the quality of the manuscript. 

I only have some minor comments:

Perhaps this paper is helpful. One seasonal pattern analysis based on model simulations was 

published in Nature Communications several months ago. Please see 

https://www.nature.com/articles/s41467-022-31671-z.

Response: Thank you for pointing this. We have cited the Lian et al. (2022) recommended by the reviewer in 

the revised manuscript (Line 667-668):

Lian, X. et al. Biophysical impacts of northern vegetation changes on seasonal warming patterns. Nat. Commun. 

13, 3925 (2022). 

In rebuttal #4, how robust is it to assume that the ratio of H to LE is invariant? Vegetation changes 

will lead to changes in surface biophysical factors (e.g., roughness, stomatal conductance), and once 

these surface biophysical factors change, the Bowen ratio should change. LST in many areas, 

especially during the growing season, should be governed by changes caused by these surface 

biophysical factors, through turbulence fluxes (more important than albedo). It is helpful to the 

readers if the authors could add some discussion on this hypothesis.

Response: Thank for your comment. Indeed, vegetation changes affect LST mainly through modifing the 

Bowen ratio. However, the residual distribution process based on the invariant Bowen ratio assumption is 

only used to force the energy closure of multi-source energy balance terms, which does not mean that the 

Bowen ratio is constant when the LAI value has changed. We have added the explanation to this issue in Line 

473:

Notably, this invariant assumption does not mean the Bowen ratio is constant when the vegetation has 

changed.

Reviewer #3 (Remarks to the Author):

The authors have addressed at least my concerns and comments in a satisfactory manner. Hence, 

pending that the other reviewers don't find new issues introduced by the revisions, I would support 

https://www.nature.com/articles/s41467-022-31671-z


publication of the manuscript.

Response: Thank you for the constructive comments for in the last round review, which helped a lot for the 

improvement of the manuscript. 

I have only one additional small comment: in the new methodology description on line 583-585 in 

the track changes version (Eq. 3-5), it's not entirely clear to me what is meant by the subscript 

"correct" and how these terms enter into later equations. (Also, the sentence before say "we first 

perform (...)" which seems to apply that there should be some sort of "we then" - either I'm missing 

something or there is something missing...)

Response: Thank you for pointing this out. The subscript "correct" was changed to "corrected" (Line 470-

471):

𝐿𝐸𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 = (𝑅𝑛 − 𝐺) ×
𝐿𝐸

𝐿𝐸+𝐻
                                (3)

𝐻𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 = (𝑅𝑛 − 𝐺) ×
𝐻

𝐿𝐸+𝐻
                                (4)

Meanwhile, we used the word “then” instead of “first”, as suggested by the reviewer (Line 468). 

In addition, we added the sentence in Line 474 to illustrate how the corrected turbulent fluxes data are used:

Subsequently, the corrected turbulent fluxes (𝐿𝐸𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 and 𝐻𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑) data are then used for the further 

attribution analysis in this paper.


