
Open Access This file is licensed under a Creative Commons Attribution 4.0 
International License, which permits use, sharing, adaptation, distribution and 
reproduction in any medium or format, as long as you give appropriate credit to 

the original author(s) and the source, provide a link to the Creative Commons license, and indicate if 
changes were made. In the cases where the authors are anonymous, such as is the case for the reports of 
anonymous peer reviewers, author attribution should be to 'Anonymous Referee' followed by a clear 
attribution to the source work.  The images or other third party material in this file are included in the 
article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is 
not included in the article’s Creative Commons license and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright 
holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. 

Peer Review File



REVIEWER COMMENTS 

Reviewer #2 (Remarks to the Author): 

This manuscript addresses a fundamental question for the learnability of models from data: in the 

presence of finite datasets and noise, when can the generative process underlying the data be correctly 

inferred? Using a generic approach in a simplified setting, the authors report the existence of different 

regimes for the learnability of the model, including a size-dependent transition between learnable and 

unlearnable regimes. I believe these are significant results of broad interest because they connect 

directly to fundamental questions in Data Science and Machine learning. After the authors address the 

points below, in particular the question about the role of priors, I believe the manuscript can be 

published in Nature Communications. 

1. Main concern. In footnote/reference [16] the authors state that "all results described below are 

independent of the choice of prior.". It is not clear to me in which extent this is true. In figure 2b, when 

some of the key results of the paper are described, the quantity being plotted is only depended on the 

prior. It is thus clear that there are underlying assumptions for the choice of the prior. One of them 

seems to be that simpler models have a higher prior probability. While this is reasonable, it is neither 

obvious nor necessary. It is thus essential to: 

1a) Clarify what are the underlying choices of prior for which the results hold. 

1b) Give a brief review about how priors are chosen in the "Machine Scientists", the readers will not all 

be familiar with this prior work and it is important for this manuscript to be self contained. 

Specific points: 

2. I believe that one strong underlying assumption is that the model used to generate the data is part of 

the set of models being considered in this analysis. This is typically not known or not an assumption (in 

Bayesian data analysis). I think it'd be important to indicate this point, possibly in the first paragraphs of 

the manuscript. 

3. In Eq. (4), what are the assumptions for which the BIC approximation hold? 

4. In Fig. 1, how are the x1,x2 values of the points chosen? What is the range of possible values? 



Reviewer #3 (Remarks to the Author): 

Dear authors, 

Please find attached my report. 

Best regards. 



Reply to Reviewer #2

COMMENT: This manuscript addresses a fundamental question for the learn-
ability of models from data: in the presence of finite datasets and noise, when
can the generative process underlying the data be correctly inferred? Using
a generic approach in a simplified setting, the authors report the existence of
different regimes for the learnability of the model, including a size-dependent
transition between learnable and unlearnable regimes. I believe these are sig-
nificant results of broad interest because they connect directly to fundamental
questions in Data Science and Machine learning. After the authors address
the points below, in particular the question about the role of priors, I believe
the manuscript can be published in Nature Communications.

We are very grateful for your careful reading of our manuscript, for your posi-
tive assessment of the work, and for your comments, which we address below and
in the revised version of the manuscript.

COMMENT: Main concern. In footnote/reference [16] the authors state that
“all results described below are independent of the choice of prior.” It is not
clear to me in which extent this is true. In figure 2b, when some of the key
results of the paper are described, the quantity being plotted is only depended
on the prior. It is thus clear that there are underlying assumptions for the
choice of the prior. One of them seems to be that simpler models have a higher
prior probability. While this is reasonable, it is neither obvious nor necessary.
It is thus essential to:

1. Clarify what are the underlying choices of prior for which the results
hold.

2. Give a brief review about how priors are chosen in the “Machine Scien-
tists”, the readers will not all be familiar with this prior work and it is
important for this manuscript to be self contained.

We thank you for pointing out that this was not clear in the original submis-
sion. What we meant in the footnote was that none of the qualitative results in the
paper depend on the choice of priors (optimality of the Bayesian model selection
approach, existence of a transition, and possibility to derive analytical bounds for
the transition point). As you note, some of the specific quantitative results that we
show are indeed reliant on our particular choice of priors.

The key consideration here is that, no matter how priors p(m) are chosen, some
model mt = argmaxm p(m) (or, at most, a finite subset of models) different from
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the true generating model m∗ will be most plausible a priori.1 As the noise in the
data increases, and the data-dependent term p(m|D) stops being able to clearly
discriminate between m∗ and all other models, the choice of model starts being
driven by p(m)—at this point, mt becomes the most plausible/compressive model
overall, and m∗ becomes unlearnable.

In this manuscript, as well as in previous publications, we choose our prior as
the maximum entropy distribution over models that is consistent2 with an empir-
ical corpus of mathematical equations (Guimera et al., Science Advances, 2019).
As you mention, this leads to the most plausible models being the simplest ones
(e.g. m = const or m = x1), which, as you also mention, is reasonable but not
necessary. It also happens to be convenient in that it allows us to obtain a simple
analytical expression for the description length of mt and, thus, for the transition
point where p(m∗, D) = p(mt, D). That being said, the fact that the crossover
exists and the method to obtain the crossing point are independent of the specific
choice of prior.

We have now clarified all of this in the manuscript. In particular, we have added
a Methods section describing in detail our choice of priors, as well as a discussion
on the qualitative (vs quantitative) generality of our findings. We have also added
an analysis of a model not drawn from the prior and, indeed, quite implausible
a priori (Supplementary text and Fig. S1; see also Fig. 1 below in our reply to
Reviewer #3).

COMMENT: I believe that one strong underlying assumption is that the model
used to generate the data is part of the set of models being considered in this
analysis. This is typically not known or not an assumption (in Bayesian data
analysis). I think it’d be important to indicate this point, possibly in the first
paragraphs of the manuscript.

Indeed, we assume that the data have been generated using a closed-form math-
ematical model. This is crucial to the question we want to explore, namely, that
even when the data are generated from a closed-form model it is not obvious that
the true model can be identified from data. That being said, note that our approach
includes any closed-form mathematical model—since the Bayesian machine scien-
tist can explore (at least asymptotically) all closed-form mathematical expressions,
the only assumption is that the true generating model can be written in closed form.

1As discussed in the the original publication on the Bayesian machine scientist, choosing a uni-
form prior is not an option because: (i) it is improper; (ii) there are infinitely many complex models
than simple models and thus, for entropic reasons, choosing a uniform prior would lead to infinitely
complex models for any dataset.

2In terms of the number of times that each operation occurs, and their variance.
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In a practical situation in which we aimed to identify an expression for some
arbitrary data set, things might be different—data could come, for example, from a
differential equation whose solution cannot be expressed in closed form. Although
we know that our approach can also find excellent approximations in those cases
(Guimera et al, Science Advances, 2019; Reichardt et al., Physical Review Letters,
2020), studying the expressive power of closed-form mathematical models is be-
yond the scope of this manuscript. In any case, this is not very different from other
contexts where Bayesian model selection is applied. Consider, for example, the use
of Bayesian methods in network science for link prediction or to select the optimal
partition of nodes into groups using stochastic block models (SBM). In that case,
there is virtual certainty that the network has not been generated with the SBM;
yet, SBM provides good approximations and, often, excellent results.

As per your suggestion, we have added a clarification along these lines in the
introduction, as well as a longer sentence in the discussion about the ability of
closed-form models to describe data generated by models that cannot be expressed
in closed form.

COMMENT: In Eq. (4), what are the assumptions for which the BIC approxi-
mation holds?

The BIC results from using Laplace’s method to the integration of the distri-
bution p(D|m, θ)p(θ|m) over the parameters θ. Thus, the calculation assumes
that: (i) the likelihood p(D|m, θ) is peaked around θ∗ = argmaxθ p(D|m, θ),
so that it can be approximated by a Gaussian around θ∗; (ii) the prior p(θ|m) is
smooth around θ∗ so that it can be assumed to be approximately constant around
θ∗. Whereas these assumptions are sometimes unjustified (for example, in network
inference problems with the stochastic block model), in regression-like problems
they are typically warranted.

We have clarified this in the manuscript.

COMMENT: In Fig. 1, how are the x1, x2 values of the points chosen? What is
the range of possible values?

In Fig. 1 and throughout the manuscript, x1 and x2 are chosen uniformly at
random in the interval [−2, 2].

We have now clarified this in the caption of Figs. 1 and 2.
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Reply to Reviewer #3

COMMENT: This work investigates the problem of inferring a statistical model
from noisy data. Information theoretically, this problem is optimally solved
by an exact estimation of the posterior distribution over the models given the
data, which the authors approximate using a Monte Carlo sampling strat-
egy called Bayesian machine scientist introduced in a work by a subset of the
authors [1]. This estimation strategy is probed in a series of controlled exper-
iments where data is generated from a true model (sometimes also refereed
to as planted or teacher-student setting). The main results in the manuscript
are:

1. The minimum description length (MDL) model (known in the statis-
tics literature as the maximum a posteriori (MAP) estimator) estimated
from the “Bayesian machine scientist” achieves quasi-optimal generali-
sation error (error on fresh, unseen data).

2. The existence of a learnability transition as a function of the model noise
and quantity of data available. Three regimes are identified: a learnable
regime where the MDL/MAP coincides with the true model generating
the data, an unlearnable regime where the MDL/MAP does not coincide
with the true model and a transition regime where the MDL/MAP coin-
cides with the true model for a fraction of the realisation of the problem.

3. An analytical upper bound for the critical noise below which the model
is learnable, as a function of the number of samples, the size of the true
model, description length gap and averaged reducible error of the trivial
model.

We thank you for your careful reading of the manuscript and for your precise
summary of the main results of our work. We also appreciate your thoughtful
comments, which we hope are convincingly addressed below.

COMMENT: As a general comment, while the global message of the manuscript
is clear, I found hard to grasp the core technical assumptions and details be-
hind the results. For instance, it is not clear whether in the estimation of the
posterior the authors use or not information about the model that generated
the data. In the introduction the authors write:

When is it possible to identify m as the as the true generating
model among all possible closed-form mathematical models, for
someone who does not know the true model beforehand?
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Which suggests the true model is not used during estimation. But in the dis-
cussion, the authors write:

In particular, the setup of our work here is the same as in other
teacher-student learning scenarios [18], in which both prior and
likelihood (of closed-form models, instead of parameters) are known.

Which suggests instead that the true model likelihood and prior are known
to the statistician. Part of this confusion comes from the fact that the work
heavily relies on an algorithm (“Bayesian machine scientist”) which is not dis-
cussed in the paper - not even on the Methods section. Although I understand
that this algorithm is the subject of a published work, I would encourage the
authors to consider adding a pseudo-code of the algorithm used together with
a discussion of the main assumptions.

We now realize how these statements in the manuscript could seem contradic-
tory and, thus, generate confusion; we apologize.

In our manuscript, we assume that the observations yi of the dependent variable
are generated as yi = m∗(xi, θm∗) + ϵi, where θm∗ are the parameters of model
m∗, and ϵi is a Gaussian, unbiased noise. We also assume that the model m∗ can
be written in closed-form, but we do not know anything else about it (for example,
it could be m∗(x, θ) = θ0 + θ1x1 or m∗(x, θ) = sin(x1) + exp(θ1x2 − x1) − θ2
or anything else). The functional form of the model m∗ is what we aim to find
(not just the value of the parameters)—it is in this sense that we say that we “do
not know the model beforehand.”

However, because the observational noise is Gaussian, we can write the likeli-
hood of each functional form m as

p(yi|m, θm) =
1√
2πs2ϵ

exp

(
(yi −m(xi, θm))2

2s2ϵ

)
. (1)

It is in this sense (for each m, we can calculate its likelihood) that we wrote that
we are “in a teacher-student scenario.”

This is not unlike what happens in “ordinary” learning settings in which one
aims to learn the parameter values (for a fixed model structure), rather than the
model structure itself, which is what we do here.3 Simply, the role played by
parameters there is played by model structures m here.

We have clarified this in the manuscript and removed any potentially confusing
reference to teacher-student scenarios. Following your suggestion, we have also

3Note that, in our setting, the parameters θ are eventually integrated out into the Bayesian infor-
mation criterion, so our learning problem is about identifying m∗, not the true value of its parameters
θ∗.
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added a section to the Methods section describing in some detail the workings of
the Bayesian machine scientist, which is an MCMC (Metropolis) algorithm that
allows us to sample from the posterior p(m|(y, x)).

COMMENT: One of my main concerns is in how this work differs from the
long line of works discussing the computational-to-statistical gaps (a.k.a. hard
phase) in estimation problems [2, 3]. These works are based on an exact
asymptotic analysis of the posterior distribution, so unless I am missing some-
thing I don’t see how they can be different. However, the picture painted by [3]
is richer, with the “learnability transition” (sometimes called “perfect recov-
ery” in this line of work) being one among a plethora of possible behaviours
in planted estimation problems, see e.g. [4] for a classification. If this is the
case, the core of this work would be already contained in this literature.

Following up on our previous reply, we wish to emphasize that the setup of the
problem is quite different from what is in the literature that you provide. There, the
learning task is always about identifying the correct parameter values for a fixed
(and known) model, whereas our work in this manuscript deals with identifying
the correct (closed-form) model itself, m∗. Therefore, we believe that the core of
this work is by no means contained in the literature.

That being said, we do expect that there are parallels with that literature. A
case in point is the transition that we identify (defined by the crossing of model
description lengths), which is akin to information theoretical transitions in “ordi-
nary” learning problems (defined by the crossing of free energies). However, not
all connections are so straightforward. In particular, many of the properties of the
hard phase are a consequence of the structure of the configuration space of pa-
rameter values, which may or may not be shared by the (discrete and much more
complex) space of closed-form model structures m. We expect that the study of
these questions may lead to very important and general insights about model dis-
covery/selection, but they are beyond the scope of this manuscript.

In any case, we have now expanded the framing and discussion of our results
vis a vis the literature on learnability transitions and the hard phase in estimation
problems.

COMMENT: In general, sampling for the posterior is computationally costly,
and can become prohibitive when the model size is large.
How does the “Bayesian machine scientist” algorithm used in this work scale
with the number of samples N and the model dimension? I noticed the data
models used here are 2 dimensional. Would it be possible to run experiments
of sizes comparable with the simplest modern learning tasks, say MNIST (784
dimensions) or CIFAR10 (3072 dimensions)?
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The context in which the Bayesian machine scientist was developed is one in
which one aims to identify interpretable, closed-form mathematical models m con-
necting a dependent variable y = m(x) to a set of independent variables xi, with
i = 1, . . . , k. This, in fact, is the general setup in what is referred to, in different
fields (and with slightly different meanings) as symbolic regression, computational
equation discovery, or systems identification. Such approaches are applied, among
others, to problems such as fluid mechanics (Reichard et al., Physical Review Let-
ters, 2020), chemical kinetics (Pablo-Garcı́a et al., ACS Catalysis, 2022), or even
as tools to approximate unknown functions with the goal of performing analytical
calculations (Artime & De Domenico, Nature Communications, 2021).

In these contexts, and taking into account that the focus is on interpretability
and simple, closed-form mathematical models, one rarely deals with more than a
handful of independent variables; virtually never more than k = 10.

In any case, the complexity of each MCMC step is determined by the cal-
culation of the Bayesian information criterion, which scales as the number N of
observations (xi, yi) (since it involves the calculation of mean squared errors). In-
creasing the dimension k of the problem has the effect of increasing the size of the
space of possible models, which may slow down the convergence towards equilib-
rium models but has no effect on the computational complexity of the algorithm. In
other words, for a fixed N , the number of models explored on a given time should
not depend on the dimensionality k, although we may need more steps to sample
the space of models properly.

COMMENT: How important is the additive i.i.d. Gaussian noise hypothesis
here? Why can’t one consider a general true model likelihood P (y|m∗)?

The assumption of i.i.d. Gaussian noise is standard in regression and sym-
bolic regression problems, and it is what allows us to write the likelihood as in
Eq. (1) above. In principle, we could assume other noise structures (for exam-
ple, multiplicative noise) or, as you mention, even more general likelihoods, but
these would be hard to justify in the context of regression and symbolic regres-
sion/model discovery. In any case, we do not expect that the qualitative behavior
(optimality, transition, and so on) should change in any way from what we report
in the manuscript.

We have clarified this in a new note in the introduction.

COMMENT: Is the discussion specific to the MAP estimator? How would it
change if instead one considers other statistics of the posterior, say the poste-
rior mean mMMSE = E[m|D]?

In the context of model selection, and given that each m is a different closed-
form mathematical model (again, one model could be m1(x, θ) = θ0 + θ1x1,
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another could be m2(x, θ) = sin(x1) + exp(θ1x2 − x1) − θ2), we do not fully
understand what you mean by mMMSE = E[m|D]. Indeed, since the Bayesian
approach is consistent, selecting the most plausible model amounts to using the
MAP of p(m|D).

When it comes to generalization to fresh, unseen data in the second section,
things are different. There, the optimal prediction would come, indeed, from av-
eraging over models. For example, we have that yMMSE = E[y|D]m, where the
expectation is over the posterior p(m|D) (see Guimera et al., Science Advances,
2020, for more details on this). However, in this section and throughout the present
manuscript we focus on the problem of identifying the true generating model, so
we limit ourselves to using the MAP throughout (see also our reply to your next
comment below).

COMMENT: Probably that’s due to my confusion on what is assumed in the
“Bayesian machine scientist” algorithm, but I don’t understand the point of
Section II. Doesn’t the fact that the estimators generalise follow from the opti-
mality of the posterior? Or the point of the section is to show that the approx-
imation involved in the algorithm does not hurt generalisation?

Both, to some extent. Indeed, except for the (relatively mild) approximation
in the calculation of the description length leading to the Bayesian information
criterion, the posterior p(m|D) results in optimal model selection. However, the
optimal generalization to unseen data is achieved by averaging (integrating) over
models, rather than by using the MAP of p(m|D) alone. The purpose of the section
is, thus, to show: (i) that the approximations in the calculation of the description
length are warranted; (ii) that, even by using the most plausible model instead of
averaging over models, our approach leads to quasi-optimal generalization (except
in the region close to the transition).

Additionally, we fear that, especially within sectors of the computer science
community (less so in physics), the optimality of the posterior and, more generally,
of probabilistic approaches is not always fully appreciated. So, to be honest, we
also wanted to dispel doubts and anticipate questions in this regard.

We have clarified this in the manuscript.

COMMENT: To elucidate better the connections with the literature (Q1) and
the computational limitations of this work (Q2), an interesting point of com-
parison could be to see how the “Bayesian machine scientist” algorithm per-
forms in a generalised linear estimation problem. As an example, take the
real phase retrieval problem where the data is given by m∗(xi, θ

∗) = |xi · θ∗|
with xi, θ

∗ ∈ Rd. Bayes-optimal estimation for this problem has been exten-
sively studied in [5, 6, 7], where it was shown that for i.i.d. Gaussian inputs
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xi ∼ N (0, Id/d) and weights θ∗ ∼ N (0, Id) the information theoretically θ∗

can be reconstructed with N ≈ d samples, but computationally (with a first
order algorithm) only with N ≈ 1.18d. However, positive correlation (i.e.
partial recovery) with θ∗ can be achieved with N ≈ 0.5d. Where does the
learnability transition lies here? How does the “Bayesian machine scientist”
perform for d = 1000 and N = 250, 600, 1100, 1500?

The generalized linear estimation problem that you propose is quite different
from the symbolic regression problem that we tackle in the manuscript (by means
of the Bayesian machine scientist). Indeed, what we aim to identify is the func-
tional form of m∗, rather than the values of the parameters θ∗. Additionally, our
observed data are noisy, so for any finite data size N , we observe the learnabiliy
transition at a finite variance of the observation noise sϵ. In other words, the size
N alone does not determine the transition, but rather the balance between N and
sϵ.

In any case, we have now used your request to hopefully clarify our contri-
bution. Following your suggestion, we have generated data using the generalized
linear model m∗(x, θ∗) = |x · θ∗|, so that individual, noisy observations are given
by yi = |xi·θ∗|+ϵi, with ϵi ∼ N (0, sϵ). For the reasons discussed above, we do not
use d = 1000 but rather d = 5, which would be considered more suitable within
the context of symbolic regression. Other than this, data sets are generated exactly
as suggested, with xi ∼ N (0, Id/d), weights θ∗ ∼ N (0, Id), and N ∈ {50, 600}.
Additionally, we generate different data sets for each level of noise sϵ.

Again, the learnability question we are interested in is whether it is possible
to identify the true generating model m∗ = |x · θ| (regardless of the precise value
of the parameters), as opposed to competing models such as m = (x · θ)2, m =
|x1θ1+x2θ2+θ3|, m = x ·θ, or any other expression. As we show in Fig. 1 below
(and new Fig. S1 in the manuscript), the learnability transition for this model is
exactly as for the 2 models reported in the manuscript.4 Note also that we are well
beyond the information theoretic transition for the learnability of model parameters
since N ≫ d, and yet we still observe the learnability transition at finite values of
the observation noise. This transition thus happens in a region that is far from the
information theoretical transition where the values of the parameters themselves
become unlearnable.

We have now added this analysis to the manuscript as supplementary infor-
mation. We have also clarified that, even in the noiseless case, the ability of our
approach to detect the correct model is limited by the inability to learn the param-
eter values in the transition described in your references [5, 6, 7].

4Note that this is true even though this model is not drawn from the prior p(m). Indeed, this
model is quite implausible a priori, according to our maximum entropy priors.
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Figure 1: Learnability transition for a generalized linear estimation problem, where
the true generating model is yi = |θ∗ · xi|+ ϵi, with θ∗ ∈ Rd and xi ∈ Rd, d = 5.
We generated data using ϵi ∼ N (0, sϵ), xi ∼ N (0, Id/d), weights θ∗ ∼ N (0, Id),
and N ∈ {50, 600}. Even though this model is not directly drawn from the prior
and, in fact, has low a priori probability, and even though points are generated
differently from the examples the body of the paper, the transition occurs exactly
as in those examples and as predicted by our theory.
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COMMENT: The authors repeat at several points in the text (pages 1, 2-3, 6)
that:

This is in contrast to standard machine learning approaches, which
generate very complex models that, as we show, are suboptimal in
the region of low observation noise.

This assertion is too generic and misleading. How standard ML methods (here
taken broadly as empirical risk minimisation on parametric models) compare
to Bayes-optimal estimation is subtle, and depends on the data distribution
and model class. This question has been investigated for generalised linear
models for different data models, e.g. in a teacher-student framework [8, 9]
and for Gaussian mixture data [10, 11], where it has been shown that in some
cases optimally regularising your model (say by cross-validation) is enough
to reach Bayes-optimal performance. In these cases, ERM is a much more
efficient way to reach optimal performance than posterior sampling.

We agree that this statement was too generic. We have modified the text where
necessary to make it clear that the limitations we are discussing are restricted to the
particular problem we study here.

11



REVIEWER COMMENTS 

Reviewer #2 (Remarks to the Author): 

The addressed have addressed all my comments, I recommend the manuscript for publication. 

Reviewer #3 (Remarks to the Author): 

Dear authors, 

First let me thank you for carefully answering my questions and for welcoming my suggestions. I think 

most of my confusion has been cleared by your reply. However, there are still some points I would like 

to clarify. 

1. As you probably have noticed, the difference between parameter estimation vs. model/symbolic 

estimation did not come accross very clearly in my first reading. While the first paragraph of the section 

"I. Discussion" stresses this difference, I think it could be stressed earlier in the manuscript, for instance 

in the introduction. This would help the reader who is more familiar with the former rather than the 

latter. 

Of course, despite the conceptual distinction, the whole philosophy of modern machine learning 

methods such as neural networks is not very far from "model estimation". Indeed, choosing a huge 

parametric model with large model complexity means one can potentially learn very different functional 

models (i.e. feature learning and model adaptivity). Exploring the space of closed-form mathematical 

expressions weighted by a plausability measure (i.e. choice of prior) with the "Bayesian machine 

scientist" is not very different from finding a basis (i.e. features) in the space of functions with universal 

approximators such as deep neural networks. 

For this reason, I find the comparison proposed in the section "Artificial neural network benchmarks" 

quite interesting. However, choosing a very narrow network for the targets in Fig. 1 might not be a fair 

comparison (can you reasonably approximate these models with 10 relu units?). The "phase retrieval" 

target I proposed in my review might be a fairer comparison, since the absolute value function can be 

actually learned with 2 units. 



2. I appreacite the authors have added more details on the "Bayesian machine scientist" algorithm. But 

overall I am still confused about it. In particular, beside the data D, what are the inputs to the algorithm? 

Crucially, does it knows the groud truth noise level $s_{\epsilon}$ or not? Please clarify this also in this 

new section. 

3. Related to my previous "Question 2". How does the BIC criterion exactly scales with the number of 

observations N (e.g. linearly, quadratically, exponentially, etc.)? And how the number of possible models 

scale with the dimension k? Finally, how the MC mixing time scales with the number of possible models? 

I fully understand that your motivation is small $k$ where these questions might not be very relevant. 

However, I think these are crucial questions for a paper which proposes to solve a problem from 

computer science. If small $k$ is a bottleneck of the proposed methodology (which it seems to be the 

case), it is better to be fully transparent about it. 



Reply to Reviewer #2

COMMENT: The authors have addressed all my comments, I recommend the
manuscript for publication.

We thank you for your constructive comments and for your recommendation.

Reply to Reviewer #3

COMMENT: First let me thank you for carefully answering my questions and
for welcoming my suggestions. I think most of my confusion has been cleared
by your reply. However, there are still some points I would like to clarify.

We thank you again for your constructive feedback, both in the first round and
now. We are happy that our answers and revision of the manuscript have cleared
most of your questions.

COMMENT: As you probably have noticed, the difference between parame-
ter estimation vs. model/symbolic estimation did not come across very clearly
in my first reading. While the first paragraph of the section “I. Discussion”
stresses this difference, I think it could be stressed earlier in the manuscript,
for instance in the introduction. This would help the reader who is more fa-
miliar with the former rather than the latter.

Following your suggestion, we have now emphasized this in the introduction
as well as at the beginning of the results section, when we formulate the problem
probabilistically.

COMMENT: Of course, despite the conceptual distinction, the whole philoso-
phy of modern machine learning methods such as neural networks is not very
far from “model estimation”. Indeed, choosing a huge parametric model with
large model complexity means one can potentially learn very different func-
tional models (i.e. feature learning and model adaptivity). Exploring the space
of closed-form mathematical expressions weighted by a plausability measure
(i.e. choice of prior) with the “Bayesian machine scientist” is not very differ-
ent from finding a basis (i.e. features) in the space of functions with universal
approximators such as deep neural networks.

For this reason, I find the comparison proposed in the section “Artificial
neural network benchmarks” quite interesting. However, choosing a very nar-
row network for the targets in Fig. 1 might not be a fair comparison (can you
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reasonably approximate these models with 10 relu units?). The “phase re-
trieval” target I proposed in my review might be a fairer comparison, since
the absolute value function can be actually learned with 2 units.

This is, we agree, an interesting test. Following your suggestion, we have now
studied the performance of the benchmark artificial neural networks (ANNs) on
the phase retrieval problem that you proposed. The results (now added to Fig. S1
in the Supplementary Materials and shown below) confirm that the accuracy of the
ANN on fresh data is limited in the low-noise regime.
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Figure 1: Learnability and extrapolation ability of probabilistic model selection
and ANNs.

This cannot be a problem of insufficient expressiveness of the ANN—as you
point out, a few hidden units are enough to model the true data perfectly, in prin-
ciple. Rather, we argue that this is caused by too much expressiveness. In the
low-noise regime, the BMS is almost certain to identify the correct model, and
thus it interpolates optimally between observations in the training set—only the
correct model is considered. By contrast, the ANN has a lot of flexibility to inter-
polate, that is, it finds many acceptable ways to interpolate between the observed
points. Thus, in this region, the accuracy of the ANN is not limited by the noise in
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the data but by the density of points in the training set—lower density means more
possibilities to interpolate.

COMMENT: I appreacite the authors have added more details on the “Bayesian
machine scientist” algorithm. But overall I am still confused about it. In
particular, beside the data D, what are the inputs to the algorithm? Crucially,
does it knows the ground truth noise level sϵ or not? Please clarify this also in
this new section.

Data D is the only input to the algorithm. The ground truth noise level sϵ
is unknown to the Bayesian machine scientist; it is estimated from D using the
maximum likelihood estimator, as prescribed by the calculation of the Bayesian
information criterion. We have clarified this in the new section as requested.

COMMENT: Related to my previous “Question 2”. How does the BIC criterion
exactly scales with the number of observations N (e.g. linearly, quadratically,
exponentially, etc.)? And how the number of possible models scale with the
dimension k? Finally, how the MC mixing time scales with the number of
possible models?

I fully understand that your motivation is small k where these questions
might not be very relevant. However, I think these are crucial questions for a
paper which proposes to solve a problem from computer science. If small k is
a bottleneck of the proposed methodology (which it seems to be the case), it is
better to be fully transparent about it.

The BIC is extensive in the number of observations N . Its calculation involves
estimating the values of the parameters of the model by least squares, which in
general is a difficult problem whose solution is not guaranteed for most models
m. In practice, the MCMC generates new models mi+1 by changing the currently
sampled model mi (with parameters θi). Therefore, estimating the parameters θi+1

of a newly generated model, mi+1, from those of the preceding model, θi, is typ-
ically much easier than in the worst case. In any case, each iteration of the least
squares procedure is of order N .

With regards to number of possible mathematical expressions for a given k,
the dependency is (in the worst case) kL, where L is the number of leaves of the
tree that represents the expression. Thus, the number of possible mathematical
expressions grows as a (large) power of the number of features. Finally, we do not
have a precise estimation of the mixing time, but we observe large variability for
different models, even for fixed k. In particular, the Markov chain will typically
thermalize quickly for simple models (for example, a linear model) even for a
relatively large number of features, whereas it will take longer for a complex model
with few features.
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We have now clarified upfront in the introduction that we focus on the the
regime in which the dimension of feature space is low compared to some other
machine learning settings.
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REVIEWERS' COMMENTS

Reviewer #3 (Remarks to the Author): 

I thank the authors for welcoming the suggestions and for their rebuttal. I can confirm they have 

addressed all my questions and concerns in this revised version. Therefore, I can recommend the 

manuscript for publication.



Reply to Reviewer #3

COMMENT: I thank the authors for welcoming the suggestions and for their
rebuttal. I can confirm they have addressed all my questions and concerns in
this revised version. Therefore, I can recommend the manuscript for publica-
tion.

We thank the reviewer again for their constructive feedback during the whole
reviewing process.

1


	6 - Peer review cover page.pdf
	R1.pdf
	365850_1_rebuttal_7026715_rkd43m_convrt.pdf
	r2.pdf
	365850_2_rebuttal_7177262_rmw0hd_convrt.pdf
	r3.pdf
	365850_3_rebuttal_7321569_rpnmcz_convrt.pdf

	Title: Fundamental limits to learning closed-form mathematical models from data


