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COMPARISON OF SYMMETRIC AND ASYMMETRIC CONTRIBUTIONS TO

THE CRITICAL CURRENT.
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FIG. S1. Field dependence of symmetric and asymmetric parts of the switching current.

(a,b) Temperature dependence of ∆I and ⟨Isw⟩ measured as a function of B⊥ (θ = 90 deg). The

curves are offset by -0.1 µA (∆I) and 0.01 (⟨Isw⟩). (c,d) Angle dependence is measured by rotating

magnetic field of constant magnitude B = 100 mT at the base temperature.

The switching current can be decomposed into symmetric ⟨Isw⟩ = (⟨I+sw⟩ + ⟨I−sw⟩)/2

and asymmetric ∆I = ⟨I+sw⟩ − ⟨I−sw⟩ parts. Their dependence on magnetic field is plotted

in Fig. S1. Both ⟨Isw⟩ and ∆I are non-monotonic functions of B⊥, however they have

very different T - and field-angle-dependencies. ∆I is almost unaffected by temperature

up to T ∼ 0.6Tc, while a dip around B⊥ = 0 in ⟨Isw⟩ is developed at T < 0.3Tc. At

constant B = 100 mT, the angular dependences are ∆I ∝ sin(θ), but field-dependent

correction to ⟨Isw⟩ is ∝ cos(2θ). These differences in energy scales (T -dependence) and

angular dependencies indicate that suppression of ⟨Isw⟩ near B = 0 and asymmetric ∆I

have different physical origins. Indeed, suppression of a critical current near B = 0 has been

reported in previous works on single-layer nanowires and was attributed to the presence

of quasiparticles and/or magnetic impurities [1, 2], which differ from geometrical effects

responsible for ∆I(B) dependence.
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DEPENDENCE OF NRC ON TEMPERATURE.
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FIG. S2. The effect of temperature on NRC. (a) The amplitude of NRC [∆I(−100mT ) −

∆I(100mT )], (b) the standard deviation of the switching currents at B⊥ = 0, and (c) the average

switching current at B⊥ = 0 are plotted as a function of the reduced temperature. NRC amplitude

follows the T-dependence of the Cooper pair density ns(T ), consistent with Eq. (S13). ⟨Isw⟩(T )

follows the Bardeen relation[3].
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DEPENDENCE OF NRC ON B∥.

Non-reciprocity of the switching current is linearly suppressed by an in-plane magnetic

field B∥∥I and vanishes at ≈ 750 mT. Within the same range of B∥ the magnitude of the

switching current remains almost constant (decreases < 2.5% at B∥ = 750 mT).
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FIG. S3. The effect of an in-plane current B||I on the non-reciprocal supercurrent. (a)

Evolution of ∆I in the presence of B∥. The plots are vertically shifted for clarity (b) The NRC

amplitude falls approximately linearly with |B∥| (c) Dependence of average switching current ⟨Isw⟩

at B⊥ = 0 on B∥. All data is taken at the base temperature.
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NRC IN NANOWIRES OF VARIOUS WIDTH

We have studied NRC in several nanowires of different width and length. Since all devices

were fabricated from similar wafers, the Josephson coupling and, therefore, lJ are similar in

all devices, and we expect the amplitude of ∆I and period ∆B to be similar. Indeed, that

is the case for most devices, see Fig. S4a. One nanowire showed ≈ 2× enhancement of ∆I

and ≈ 2× reduction of ∆B, which would be consistent with a local enhancement of lJ by a

factor of 2.
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FIG. S4. NRC in other devices. (a) NRC in nanowires of different width. The plots are shifted

vertically for clarity. (b) Multiple sign reversal of ∆I in another nanowire. (c) one out of ∼ 20

nanowires fabricated from similar wafers showed enhanced magnitude of ∆I and reduced ∆B.
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GATE DEPENDENCE OF NRC AND CRITICAL CURRENT.

On one of the samples we fabricated an electrostatic gate which covered the wire and a

surrounding InAs 2D gas. In order to deplete electrons in InAs in the regions where it is

not screened by Al, we apply a large negative gate voltage. We see no observable effect on

the NRC when varying the gate voltage. InAs is expected to be fully depleted for applied

gate voltage -1.5V. We measured NRC at different gate voltages varying from 0 to -4.5V and

observed no variation of α = d∆I/dB⊥ near B = 0 or ∆B. Slight (up to 0.26%) increase of

⟨Isw⟩ at large negative gate voltages is observed. Negative gate voltage also depletes carriers

in Al (albeit their negligibly small fraction) and, thus, should result in the decrease of Ic,

contrary to the observed increase. The observed increase of the switching current may result

from the reduction of quantum fluctuations due to the reduction of InAs volume for Cooper

pairs to enter and, as a consequence, increasing switching current to be closer to the value

of the critical current.

FIG. S5. The effect of gate voltage on NRC. (a) NRC shows no observable difference on

varying the gate voltage. (b) α shows very little variation with gate voltage. (c) When a negative

gate voltage is applied the ⟨Isw⟩ increases.
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ABSENCE OF NRC IN ALUMINUM NANOWIRE.sf6
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FIG. S6. No NRC in a control device. A control 150 nm wide and 3 µm long nanowire is

fabricated from a 20 nm thick Al film deposited on a semi-insulating Si wafer. This device shows

no NRC.
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IN-PLANE MAGNETIC FIELD ALIGNMENT
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FIG. S7. (a) Field dependence of ⟨Isw⟩ shows a Meissner state up to Bz ≈ 18 mT. (b) No NRC is

observed in an out-of- plane magnetic field.

Magnetic fields are generated by a 3-axis vector magnet. The critical out-of-plane field

for our wires is Bz
c2 ≈ 60 mT. A sharp reduction of ⟨Isw⟩ at Bz > 18 mT is associated with

an entrance of Abrikosov vortices. In order to align the in-plane field with the plane of the

sample the following alignment procedure has been used. The in-plane field was ramped to

B
′

∥ ≈ 800 mT, beyond the field where NRC is observed. Next, Bz field is scanned ±30 mT

and a symmetry point B
′
z is determined. In subsequent scans a linear correction Bz = aB∥,

where a = B
′
z/B

′

∥, is applied to keep B∥ aligned with the sample plane with a precision of

< 0.1 degree.
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THEORY: GEOMETRIC EFFECTS AND Ic NON-RECIPROCITY IN COUPLED

SUPERCONDUCTING WIRES

In this section we derive the critical superconducting current in two Josephson-coupled

superconducting wires (the “two-wire model”) in the presence of an external magnetic field.

We show that at high enough magnetic field, it becomes energetically favorable to form a

Josephson vortex (Fig. S8a), which in turn can lead to an oscillatory non-reciprocity of the

critical current (Fig.4 of the main text). Furthermore, the oscillations will be damped due

to one of the wires turning normal upon increasing the magnetic field.

Let us consider a pair of parallel superconducting wires 1 (Al wire) and 2 (proximitized

(a) (b)

FIG. S8. (a) Schematic picture of the model to explain non-reciprocity. The dark grey regions de-

pict two superconducting wires labeled 1 and 2 (corresponding to Al and proximitized InAs wires,

respectively) with the order parameter phases ϕ1, ϕ2. The region between the wires denotes the

insulating barrier of thickness d. In most positions x, the phases are locked to ϕ1 = ϕ2 (mod 2π)

due to a strong Josephson coupling. In the region of length lv spanned by the Josephson vortex

the phases are not equal and as a result the phase difference winds by an additional 2πn over

the vortex. The vertical arrows denote the resulting Josephson currents flowing between the two

wires in the vortex. (b) Total energy vs magnetic field in the two-wire model. The dashed curves

show the spectrum obtained from Eq. (S7). The three parabolas correspond to Josephson vor-

tices/antivortices with n = −1, 0, 1. The solid curves show the energies when coherent vortex

tunneling (strength Et = 0.4 in units of η
1+η

ℏ2
e2L1lJ

) is included, leading to avoided crossings of

states with different n.
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InAs) along the x-direction with a magnetic field B⊥ in the y-direction, normal to the plane

containing two wires. The corresponding vector potential is Ax(z) = B⊥z with the two wires

separated by distance d being at positions z = z1,2 = −(−1)1,2d/2, see Fig. S8a. We ignore

here the screening of the magnetic field by the Josephson vortex; this effect would merely

modify the Josephson length lJ (introduced below). We also approximate the wires as one-

dimensional, given that their typical thickness is smaller than the penetration depth and the

width is smaller that the size of the Peal vortex. This makes the supercurrent distribution

approximately uniform within the wire. Denoting ϕ1,2 the phases of the superconducting

order parameters, we have a supercurrent in wire i given by

Ii =
1

2eLi

(ℏ∂xϕi − 2eAx(x, zi)) , (S1)

in terms of the kinetic inductances (per length) Li = mi/(e
2Sini) for wires i = 1, 2. Here Si,

mi, and ni denote the cross-sectional area, the effective mass, and the Cooper pair densities.

For Al wire (i = 1) we will account for disorder by multiplying ni by
√
l/ξ, where l ≈ 2nm

is the mean free path and ξ ≈ 1µm is the coherence length [3]. Thus, we use L1 → L1

√
ξ/l

in our final estimates.

The phases ϕ1,2(x) can be found by minimizing the total energy

Etot =

∫
dx

[
1

2
L1I

2
1 +

1

2
L2I

2
2 − EJ cos(ϕ1 − ϕ2)

]
, (S2)

that includes kinetic energies of each wire and a Josephson energy density EJ coupling the

two wires. In the presence of an applied external supercurrent Iext, there is a constraint

I1(x) + I2(x) = Iext at every point x. The constrained energy minimization leads to the

Sine-Gordon equation for φ = ϕ1 − ϕ2,

∂2φ

∂x2
= l−2

J sinφ , (S3)

where lJ = 1/
√
8e2EJ(L1 + L2)/ℏ2 is the Josephson length that determines the characteristic

size of a Josephson vortex. We now solve Eq. (S3) with the appropriate boundary conditions.

We assume that the Josephson coupling in Eq. (S2) is strong, such that ϕ1 = ϕ2 (mod 2π)

for most x. If the two phases were locked for all x, i.e. φ(x) = 0 (mod 2π), we would

find a non-reciprocal critical current Ic(B⊥) with the non-reciprocity ∆I = Ic,+ − Ic,− that

increases monotonically with B⊥. Experimentally, a non-monotonic dependence is observed,

see Fig.1b.
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The non-monotonic ∆I can be explained by a formation of a Josephson vortex, see Fig.4.

In the Josephson vortex, the phase difference φ increases by 2π approximately over the

distance 2πlJ ; explicitly, φ(x) = 4 arctan ex/lJ for a vortex at x = 0.

The Josephson vortex solution yields a current distribution

I1(x) =
1

1 + η
Iext + δIn(x) , (S4)

I2(x) =
η

1 + η
Iext − δIn(x) , (S5)

δIn(x) =
2η

1 + η

1

2eL1

ℏ
lJ

(
n sech

x

lJ
− 3

π

Φ

Φ0

)
, (S6)

where we introduced an integer index n, n = ±1 for the Josephson vortex/antivortex and

n = 0 in the absence of the vortex. The vortex is centered at x = 0, which also turns out

to be the position of the maximal circulating currents in the wires 1 and 2. We denote

η = L1/L2 = S2
n2

m2
/S1

n1

m1
and introduce the flux Φ/Φ0 = SvB⊥/(πℏ/e) through the effective

vortex area Sv = (π2/3)lJd.

The formation of the Josephson vortex becomes energetically favorable at a large enough

magnetic field B⊥. The energy cost is determined from Eq. (S2) by the balance of the

Josephson energy EJ lost and the kinetic energy gained in the creation of a vortex. Ignoring

n-independent terms, we find (see Fig. S8b),

EVortex(n) =
η

1 + η

ℏ2

e2L1lJ

[(
n− 3

2

Φ

Φ0

)2

+
1

2
|n|

]
(S7)

where n = 0,±1. This energy is analogous to the (inductive) energy of a superconducting

ring with a phase winding 2πn [4] apart from the last term in Eq. (S7) which is the cost

in Josephson energy. In the absence of quantum fluctuations and at T = 0, one finds from

Eq. (S7) that the thermal average ⟨n⟩ = [Φ/Φ0] is given by the nearest integer to Φ/Φ0,

leading to a sawtooth-like dependence for ∆I versus B⊥ (see below). Fluctuations will smear

out the sawtooth dependence. In analogy to a superconducting ring [4], we expect to find a

harmonic dependence on the flux on a linear background in the case of strong quantum or

thermal fluctuations,

⟨n⟩ = Φ

Φ0

− δn sin
2πΦ

Φ0

, (S8)

where δn ≪ 1 due to strong fluctuations. Importantly, in the case of quantum fluctuations,

δn is independent of the temperature, whereas for thermal fluctuations one has exponential
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dependence on 1/T . As we discuss below, the harmonic dependence on the flux translates to

a similar dependence in the non-reciprocal part ∆I of the critical current, in agreement with

experimental data. The observed weak T -dependence in Fig. S1a indicates that quantum

fluctuations exceed thermal fluctuations in the experiment.

The critical current through our two wire system with contacts, effectively forming a ring-

like structure is determined by the condition that at large enough Iext, one of the wires (

arms of the ring) turns normal. (Experiment indicates that the switching happens in Al, i.e.,

wire 1, see below.) Assuming that Iext > 0 and the wire 1 turns normal, the corresponding

condition is Iext = Ic,+, where

Ic,± = (1 + η)(±I1,c − δI) , (S9)

I1,c is the critical current of wire 1 and δI = ⟨δIn(0)⟩ is the circulating current at its peak

value at x = 0. Likewise, for Iext < 0 we find Iext = Ic,−. This yields

∆I = Ic,+ + Ic,− (S10)

= −2η
1

L1e

ℏ
lJ

(
⟨n⟩ − 3

π

Φ

Φ0

)
, (S11)

which determines the slope α = d∆I/dB⊥. We note that if the wire 2 is normal, then

n2 = 0, η = 0 and ∆I vanishes. The B⊥-dependence of the critical current Ic,± in such

FIG. S9. Left: The critical current non-reciprocity ∆I, Eq. (S12), versus the flux Φ = B⊥dlv

through the Josephson vortex. The crosses correspond to the approximation, Eq. (S13). The

applied field B∥ suppresses the proximity effect and therefore ∆I. In the figure Et = 0.4 in units

of η
1+η

ℏ2
e2L1lJ

. Right: ∆I (at B∥ = 0) for different strengths Et (in units of η
1+η

ℏ2
e2L1lJ

) of coherent

vortex tunneling that controls vortex number fluctuations; weak tunneling leads to a sawtooth-like

∆I.
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case would merely show a monotonic decrease (without non-reciprocity) corrresponding to

suppression of the superconducting gap in Al. Experiments show a few distinct oscillations

in the asymmetric non-reciprocal part ∆I of the critical current, see Figs.1c and S3. We

attribute the experimentally observed vanishing amplitude of ∆I (loss of non-reciprocity)

at fields higher than B⊥ ≈ 750mT to the destruction of proximity effect. We can model this

by taking η in Eq. (S11) to be magnetic field -dependent, detailed below.

Proximity effect is also destroyed by an in-plane field B∥ along the wire (along x) at

roughly the same 750mT scale, see Fig. S2a. Since the wire 2 is proximitized in our

model, we include a linear in the field suppression of the Cooper pair density n2 at fields

lower than those describing the superconducting gap suppression in the Al wire. This

leads to η = η0(1− |B|/BInAs,c) in Eq. S11. Here We take BInAs,c ≈ 750mT and denote

|B| =
√

B2
⊥ +B2

∥ assuming that the suppression of proximity is isotropic (in a magnetic

field parallel to heterostructure layers). The linear suppression is taken to match with ex-

perimental observations. In particular, a linear field-dependence is seen in Fig. S3b where

the slope α is plotted as a function of B∥. The measurement shows also that the switching

current does not differ much from its B⊥ = 0 value (see Fig. S2c), indicating that the critical

current is determined by Al wire, as we assumed in Eq. (S9).

We thus obtain the following expression for the non-reciprocal contribution to the critical

current, plotted in Fig.4 and Fig. S9,

∆I(B⊥, B∥) = −2η0
1

L1e

ℏ
lJ

(
⟨n⟩ − 3

π

Φ

Φ0

)(
1− |B|

BInAs,c

)
(S12)

≈ −2η0
1

L1e

ℏ
lJ

(
c
Φ

Φ0

− δn sin
2πΦ

Φ0

)(
1− |B|

BInAs,c

)
, (S13)

where c = (1− 3
π
) ≈ 0.05 and we assumed strong quantum fluctuations of n, see discussion

below Eq. (S8). The approximate period is B⊥ = Φ0(3/π
2)/(lJd), experimentally observed

to be approximately 400mT. This period indicates 500nm for the effective size of the vortex,

given that d = 10nm.

From Eq. (S13) we obtain a zero-field slope d∆I/dB⊥ ≈ −c0η0d/L1 where c0 =

(2π/3) (c− δn2π) is an unknown numerical coefficient (since δn is unknown). However,

the dimensionless quantity δnq ≪ 1 characterizes the amplitude of the persistent current in

the loop (Fig.4) and is suppressed due to quantum phase slips [4]. We can therefore take

c0 ≈ 2πc/3 ≈ 0.1. Using values S1 = 150nm×10nm, n1 = 18·1028m−3 andm1 = 9.1·10−31kg

(Al electron density and effective mass), we obtain d/L1 =
√

l/ξS1
e2n1d
m1

≈ 3.4mA/T. By
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comparing to the zero-field slope d∆I/dB⊥ ≈ 1.6µA/T in Fig. S2b, we obtain η0 ≈ 10−2.

This is consistent with an estimate η0 ≈ 10−2 based on the ratio of Al and InAs kinetic

inductances. We note that non-reciprocal component is proportional to the Cooper pair

density, ∆I ∝ L−1
2 ∝ n2, which is consistent with the temperature-dependence of both

quantities plotted in Fig. S2a.

Different properties of wires 1 and 2, i.e., their asymmetry, is essential to get non-

reciprocity in our model. If the wires were identical, the wire that switches to normal

state first [in Eq. (S9)] would change upon reversing the current direction. We note that

non-reciprocity emerges even if there is no loop (lJ → 0) due to Josephson vortex and no

phase winding, n = 0 from Eq. (S7), but there is nevertheless a circulating diamagnetic

current Idia, Eq. (S6), leading to non-reciprocity, Eq. (S12), due to the assumed Josephson

coupling induced phase locking ϕ1 = ϕ2 between the wires.
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DETERMINING TOTAL CRITICAL CURRENT IN A 2 WIRE MODEL
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FIG. S10. Schematic of current distribution between the wires Ii = I0i − (−1)iIdia, i = 1, 2, and

the phase difference ∆ϕ as a function of an external current Iext = I1 + I2 for (a) β ≤ η − η′,

(b)η − η′ < β < η + η′ and (c) β ≥ η + η′.

The total critical current in a two-wire model depends on the two dimensionless pa-

rameters: the ratio of kinetic inductances η = Lk1/Lk2 and the ratio of critical currents

β = Ic2/Ic1. (The former also determines the current distribution in the absence of mag-

netic field, η = I2/I1.) In a magnetic field, the total critical current will also depends on

the diamagnetic current, which enters via the dimensionless ratio η′ = (η + 1)Idia/Ic1. The

expression of NRC depends on the magnitude of β ≷ η + η′.

For β ≥ η + η′, the wire 1 turns normal first for both directions of By, Ic(B) = (1 +

η)(Ic1 − Idia) and

∆I = −2(1 + η)Idia (S14)

For β ≤ η − η′, the wire 2 turns normal first for both directions of By and

∆I = +2
1 + η

η
Idia (S15)

Finally, for η − η′ ≤ β ≤ η + η′, the wire 1 turns normal first for By > 0 and the wire 2

turns normal first for By < 0 resulting in

∆I =
1 + η

η
[(η − β)Ic1 + (1− η)Idia] (S16)
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The current distribution between the wires for these three cases is shown schematically in

Fig. S10

We note that the slope d∆I/dB⊥ differs by a large factor 1/η depending on which wire

turns normal first. Our data is consistent with Al (wire 1) turning normal first (at that

point the whole structure is turned normal).
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