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Supplementary Figure 

 

 

Supplementary Figure 1 | Basic characterizations of bilayer/bilayer graphene (BLG/BLG) 

device. Raman spectra of a, top-BLG and b, bottom-BLG after exfoliated onto SiO2/Si substrates. 

Here, the G peak at 1582 cm-1 is associated with the doubly degenerate phonon mode at the 

Brillouin zone center (Eg mode), while the 2D peak around 2700 cm-1 is derived from the inelastic 

scattering of second-order zone-boundary phonons. IG and I2D represent the Raman intensity of the 

G peak and the 2D peak, respectively. The scale bars in the insets are 10 µm. c, Optical image of 

the final BLG/BLG device. The scale bar is 10 µm. d, Resistance of the top and bottom BLG layers 

(RT, RB) and inter-layer leakage current (Ileakage) as functions of Vint measured at 200 K. VBG is set 

to be 0 during the measurements. 
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Supplementary Figure 2 | Verification of Onsager reciprocity relations. a, Schematic diagrams 

for two different setups of drag measurements. b, Vp vs Ia curves obtained using these two setups. 

Vint and VBG are set to 0 during the measurements. c, Rdrag vs VBG (at Vint = 0 V) and d, Rdrag vs Vint 

(at VBG = 0 V) obtained using the two setups. All the measurements are conducted at T = 200 K. 
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Supplementary Figure 3 | Vp - Ia characteristics at different temperatures. a-f, Vp - Ia curves 

obtained at different temperatures by using setup 1 (see Supplementary Fig. 2a). Vint and VBG are 

set to 0 V during the measurements. The error bars represent the standard deviation from at least 

four measurements. 
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Supplementary Figure 4 | Evolution of magneto-drag behaviors with varying temperatures 

in the e-h region. a, Rdrag vs (Vint, VBG) at 200 K. b, MRdrag curves measured at different 

temperatures for point “II” indicated in a.  
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Supplementary Figure 5 | Evolution of magneto-drag behaviors with varying carrier 

densities. a, Rdrag vs (nT, nB) at 200 K. b-d, MRdrag curves for typical points in the h-h, e-h and h-

e regions, respectively (as indicated by the dots in a). All these measurements are conducted at T 

= 200 K. 
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Supplementary Figure 6 | Magneto-drag behaviors in another bilayer/bilayer graphene 

(BLG/BLG) device. a, Rdrag vs (nT, nB) in a BLG/BLG device with the thickness of hBN d~15.3 

nm. b,c, MRdrag curves for typical points in the e-e region and e-h region, respectively (as indicated 

by the dots in a). All these measurements are conducted at T = 200 K. 
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Supplementary Figure 7 | Schematics of drag process and the corresponding interference. a, 

One of the leading-order Feynman diagram for drag conductivity, where the two drag processes α 

and β are marked in blue and orange, respectively. b, Schematic of a typical drag process, 

describing how an active carrier at position 𝐫0
a induces a passive carrier moving towards 𝐫2

p
 (as 

detailed in Supplementary Note 4A). c, Interference between two drag processes, α (blue) and β 

(orange). 
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Supplementary Figure 8 | All possible scenarios of inter-layer quantum interference. a-f, 

Distinguishable types of interference containing four pairs of superimposing planar paths, labeled 

by (𝑖, 𝑖′)  with 𝑖 = 1, 2, 3, 4 . The impurity scatterings of diffusion paths are not shown for 

simplicity. 
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Supplementary Figure 9 | Inter-layer quantum interference (QI) in the e-h region. Schematics 

of inter-layer QI between two drag processes in the e-h region depicted in the a, real space and b, 

reciprocal space. Here, the paired superimposing planar paths (𝑙a
α and 𝑙p

α, 𝑙a
β
 and 𝑙p

β
) belong to the 

same drag process. This differs from the e-e case, in which the paired paths belong to different 

drag processes. 
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Supplementary Figure 10 | Feynman diagrams for inter-layer quantum interference (QI). 

a,b, Leading-order Feynman diagrams for drag conductivity. Here, a is topologically equivalent 

to Supplementary Fig. 7a. c, Inter-layer Cooperon ladder. The dotted lines with cross denote the 

impurity scatterings. d,e, Feynman diagrams for the correction arising from inter-layer QI in the 

d, e-e/h-h region and the e, e-h/h-e region, which are derived from Fig. 3b and Supplementary Fig. 

9a respectively. 
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Supplementary Figure 11 | Evolution of magneto-drag behaviors with varying carrier 

densities in the monolayer/monolayer graphene (MLG/MLG) and monolayer/bilayer 

graphene (MLG/BLG) devices. a, Rdrag vs (nT, nB) at 200 K for the MLG/MLG device. b,c, 

Corresponding MRdrag curves for typical points indicated in a. d, Rdrag vs (nT, nB) at 200 K for the 

MLG/BLG device. e,f, Corresponding MRdrag curves for typical points indicated in d. All these 

measurements are conducted at T = 200 K.  For both devices, the magnitude of low-field deviation 

of MRdrag becomes monotonically weaker as the carrier densities increase, identical to the ones 

observed in the BLG/BLG device (Fig. 2c and Supplementary Fig. 5). 
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Supplementary Table 

 

Supplementary Table 1 | Phase analyses in the e-e/h-h region 

      Phase 

Cases 
𝜑α (blue) 𝜑β (orange) 𝜑α − 𝜑β 

A 𝜑1 + 𝜑2 + 𝜑3 + 𝜑4 𝜑1 + 𝜑2 + 𝜑3 + 𝜑4 0 

B 2𝜑1 + 2𝜑2 2𝜑3 + 2𝜑4 2𝜑1 + 2𝜑2 − 2𝜑3 − 2𝜑4 

C 𝜑1 + 2𝜑2 + 𝜑4 𝜑1 + 2𝜑3 + 𝜑4 2𝜑2 − 2𝜑3 

D 2𝜑1 + 𝜑2 + 𝜑3 𝜑2 + 𝜑3 + 2𝜑4 2𝜑1 − 2𝜑4 

E 2𝜑1 + 2𝜑2 2𝜑3 + 2𝜑4 2𝜑1 + 2𝜑2 − 2𝜑3 − 2𝜑4 

F 𝜑1 + 𝜑2 + 𝜑3 + 𝜑4 𝜑1 + 𝜑2 + 𝜑3 + 𝜑4 0 

note:  Cases A-F are schematically shown in Supplementary Fig. 8. 

 

 

Supplementary Table 2 | Phase analyses in the e-h/h-e region 

      Phase 

Cases 
𝜑α (blue) 𝜑β (orange) 𝜑α − 𝜑β 

A 𝜑1 + 𝜑2 − 𝜑3 − 𝜑4 𝜑3 + 𝜑4 − 𝜑1 − 𝜑2 2𝜑1 + 2𝜑2 − 2𝜑3 − 2𝜑4 

B 0 0 0 

C 𝜑1 − 𝜑4 𝜑4 − 𝜑1 2𝜑1 − 2𝜑4 

D 𝜑2 − 𝜑3 𝜑3 − 𝜑2 2𝜑2 − 2𝜑3 

E 0 0 0 

F 𝜑1 + 𝜑2 − 𝜑3 − 𝜑4 𝜑3 + 𝜑4 − 𝜑1 − 𝜑2 2𝜑1 + 2𝜑2 − 2𝜑3 − 2𝜑4 

note:  Cases A-F are schematically shown in Supplementary Fig. 8. 

 

 

Supplementary Table 3 | Magnetic-field-induced phase difference in the e-e/h-h region 

      Phase 

Cases 
𝜃α (blue) 𝜃β (orange) 𝜃α − 𝜃β 

A 𝜃1 + 𝜃2 − 𝜃3 − 𝜃4 𝜃3 + 𝜃4 − 𝜃1 − 𝜃2 2𝜃1 + 2𝜃2 − 2𝜃3 − 2𝜃4 

F 𝜃1 + 𝜃2 + 𝜃3 + 𝜃4 𝜃1 + 𝜃2 + 𝜃3 + 𝜃4 0 

note:  Cases A and F are schematically shown in Supplementary Fig. 8. 
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Supplementary Table 4 | Magnetic-field-induced phase difference in the e-h/h-e region 

      Phase 

Cases 
𝜃α (blue) 𝜃β (orange) 𝜃α − 𝜃β 

B 2𝜃1 + 2𝜃2 2𝜃3 + 2𝜃4 2𝜃1 + 2𝜃2 − 2𝜃3 − 2𝜃4 

E 0 0 0 

note:  Cases B and E are schematically shown in Supplementary Fig. 8. 
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Supplementary Note 

 

Supplementary Note 1. Validity of drag measurements 

To verify the validity of the drag measurements, we first conducted comparative experiments 

by interchanging the active and passive layers (two opposite setups shown in Supplementary Fig. 

2a). As demonstrated in Supplementary Figs. 2b-d, the as-obtained drag curves using these two 

drag set-ups are nearly identical, well obeying the expected Onsager reciprocity relation. 

We futher checked the Vp - Ia relationship at different temperatures using setup 1. A good liner 

Vp - Ia relation occurred at temperatures above 100 K (Supplementary Fig. 3). Lowering the 

temperature leads to unexpected fluctuations, hindering the extraction of accurate Rdrag via linear 

fitting. Similar fluctuations have been observed previously, and were interpreted as mesoscopic 

drag fluctuations as a consequence of phase coherent quantum transport within the constituent 

layers [1-3].  

 

Supplementary Note 2. Theoretical analysis on the high field B2 dependence of drag 

resistance  

The high field behavior of B2 dependence for the drag resistance has been widely reported in 

previous experimental studies [4-6]. Below, we would like to give an explanation for such B2 

dependence based on the Drude-like model for Coulomb drag. 

According to previous study [7], for a drag system wherein the two constituent graphene 

layers are identical, drag resistivity is given by 
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 (1) 

Here 𝑛 = 𝑛e − 𝑛h and 𝑁 = 𝑛e + 𝑛h are the charge and quasiparticle densities in each layer, r0 is 

the zero-field residual resistance of graphene at the charge neutral point, R0 and RH are the Drude 
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and Hall resistances far from the charge neutral point, 𝑅0
D is the zero-field drag resistance far from 

the charge neutral point, and 𝑓±̅ is defined as  

                                                                 𝑓±̅ = 1 −
tanh(𝑊/𝐿±)

𝑊/𝐿±
                                                       (2) 

with 

   𝐿+
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where W is sample width, 𝜅  is the mean quasiparticle kinetic energy, 𝜏ph
−1  and 𝜏Q

−1  are the 

quasiparticle relaxation rate due to the electron-phonon scattering and the inter-layer Coulomb 

interaction, respectively. 

For a sample with small W (𝑊 ≪ 𝐿±), one will find 𝑓±̅ ≈ 𝑊2/(3𝐿±
2 ) and then we have 
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Here B is the magnetic field and μ is the carrier mobility. We can draw two conclusions from 

this expression: (i) The zero field drag resistivity, given by −
𝑛2

𝑁 
2

𝑅0
D𝑟0

2𝑅0
D+𝑟0

, is negative. (ii) The 

magneto-drag resistivity follows a B2 dependence. These results coincide with our experimental 

observations (Fig. 1e in the main text), indicating that the Drude-like model can well describe the 

classical magneto-drag behavior. 

 

Supplementary Note 3. Repeatability of magneto-drag behaviors in BLG/BLG devices 
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Supplementary Fig. 4 presents the evolution of magneto-drag behaviors with varying 

temperatures in the e-h region. It is clearly seen that the low-field correction gets suppressed with 

increasing temperature (Supplementary Fig. 4b), consisting with the evolution behavior observed 

in the e-e region (see Fig. 2b in the main text). 

In Supplementary Fig. 5 we further plotted the MRdrag data measured at different carrier 

densities for the h-h, e-h and h-e regions. All the MRdrag curves show a clear low-field deviation, 

with the magnitude monotonically weakening as the carrier densities of BLG layers increase. 

These observations also consist well with the results from the e-e region (Fig. 2c in the main text). 

To further evaluate the repeatability of the magneto-drag behaviors, we conducted systematic 

measurements on another BLG/BLG device. Supplementary Fig. 6a shows Rdrag as functions of nT 

and nB obtained at 200 K, from which four distinct regions are clearly seen. Low-field deviations 

are evident for the MRdrag curves taken in both the e-e region (Supplementary Fig. 6b) and the e-h 

region (Supplementary Fig. 6c), and show identical characteristics with those obtained in the 

device demonstrated in the main text (Fig. 2c in the main text and Supplementary Fig. 5c). 

 

Supplementary Note 4. Theoretical analysis of quantum interference between inter-layer 

drag processes 

A. Probability amplitude of the drag process 

According to the leading-order Feynman diagram of drag conductivity (Supplementary Fig. 

7a) [8, 9], a typical drag process can be described as follows (Supplementary Fig. 7b): 1) A carrier 

in the active layer (“active carrier”) starts at 𝐫0
a and a carrier in the passive layer (“passive carrier”) 

at 𝐫0
p
; 2) These two carriers interact Coulombically when they travel  separately to 𝐫1

a and 𝐫1
p
 along 

the diffusion paths 𝑙1  and 𝑙3 ; 3) After the Coulomb scattering, they end up at 𝐫2
a  and 𝐫2

p
 after 

traveling along paths 𝑙2 and 𝑙4, respectively. The probability amplitude 𝜓 of such an inter-layer 

transport process is given by:  

                      𝜓 = 𝐺𝑙4(𝐫2
p
, 𝐫1

p
)𝐺𝑙2

(𝐫2
a, 𝐫1

a)𝑉(𝐫1
p
, 𝐫1

a)𝐺𝑙3(𝐫1
p
, 𝐫0

p
)𝐺𝑙1

(𝐫1
a, 𝐫0

a)                                 (5) 

Here, 𝑉 describes the inter-layer Coulomb interaction and 𝐺𝑙 is the propagation amplitude along 

diffusion path 𝑙. We note that the inter-layer Coulomb interaction will transfer energy ∆𝜀 from the 

active layer to the passive layer, and thus introduce phase factors 𝑒i∆𝜀𝑡  and 𝑒−i∆𝜀𝑡  to the 
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propagating amplitudes of the active carrier and the passive carrier, respectively. However, these 

two phase factors are involved in 𝐺𝑙2 and 𝐺𝑙4, respectively, and will cancel out with each other 

eventually. That is, the inter-layer Coulomb interaction does not lead to any dephasing for the 

overall drag process.  

Then the probability 𝑃(𝐫2
p
, 𝐫0

a) for an active carrier at 𝐫0
a inducing a passive carrier moving 

to 𝐫2
p
 is: 

𝑃(𝐫2
p
, 𝐫0

a) = ∫𝑑𝐫0
p
𝑑𝐫2

a |∫𝑑𝐫1
a𝑑𝐫1

p
∑ 𝜓

𝑙1𝑙2𝑙3𝑙4

|

2

(6) 

Here, 𝐫2
a and 𝐫0

p
 are integrated since they are not recorded in the drag measurement. As the drag 

conductivity can be obtained from 𝑃(𝐫2
p
, 𝐫0

a)  and the knowledge of current vertices in 

Supplementary Fig. 7a, analysis of 𝑃(𝐫2
p
, 𝐫0

a) can provide a qualitative understanding of the drag 

conductivity/current. 

 

B. Inter-layer interference between drag processes 

 For a pair of drag processes “α” and “β” (see Supplementary Fig. 7c), the interference term 

in 𝑃(𝐫2
p
, 𝐫0

a)  is given by 2|𝜓α𝜓β|cos(𝜑α − 𝜑β) . Here, 𝜓  and 𝜑  represent the probability 

amplitude of the drag process and the corresponding phase, respectively. Note that these two drag 

processes α and β have the same initial and final states, i.e., {𝐫0
a, 𝐫0

p
} and {𝐫2

a, 𝐫2
p
}, which is 

necessary for the emergence of interference. As a result, the diffusion paths involved in the 

interference, i.e., {𝑙1
α, 𝑙2

α, 𝑙1
β
, 𝑙2

β
} and {𝑙3

α, 𝑙4
α, 𝑙3

β
, 𝑙4

β
}, form a closed loop within both the active and 

passive layers (Supplementary Fig. 7c). The phase of the probability amplitude for drag process α 

or β can be obtained by adding up the phases of constituent diffusion paths: 

𝜑α/β = ∑ 𝜑
𝑙𝑖
α/β

𝑖=1,2,3,4

 (7) 

In general, interferences of nearly all pairs of drag processes cancel out after being averaged 

over all possible diffusion paths. Only pairs of drag processes with constant 𝜑α − 𝜑β that are 

independent of constituent paths will have observable interference effect that contributes to the 
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drag signal. To identify these paired drag processes, we first divide the corresponding eight 

diffusion paths, i.e., {𝑙𝑖
α, 𝑙𝑖

β
 | 𝑖 = 1, 2, 3, 4}, into four groups of two. The two paths in each group 

are required to have a definite phase relation and contribute to a constant in 𝜑α − 𝜑β. Here, a 

definite phase relation refers to either a constant difference or a sign reversal, depending on that 

these two paths belong to different drag processes or the same one. For inter-layer QI, these two 

paths are further required to reside respectively in the two separate layers.  

The above requirements can be satisfied only when the impurity potentials acting on the two 

layers are identical, and thus carriers from different layers could maintain their motions along 

superimposing planar paths. Here, a pair of superimposing planar paths are interrelated by either 

inter-layer mirror reflection or a combination of inter-layer mirror reflection and time reversal. 

Supplementary Fig. 8 shows all the possible scenarios of interference containing four pairs of 

superimposing planar paths, labeled by (𝑖, 𝑖′) with 𝑖 = 1, 2, 3, 4. Below, we present systematic 

phase analyses for these scenarios, which were performed separately for the e-e/h-h and e-h/h-e 

regions.  

(1) e-e/h-h region 

For the e-e/h-h region, the propagation amplitudes along the two superimposing planar paths 

have the same phase, that is: 

𝜑𝑖 = 𝜑𝑖′  (𝑖 = 1, 2, 3, 4). (8) 

Here, we note that time reversal does not change the propagation amplitude. Supplementary Table 

1 lists the calculated phase difference of two drag processes  𝜑α − 𝜑β , from which only the 

scenarios shown in Supplementary Figs. 8a,f can survive the impurity average since the overall 

phase differences for these circumstances are constant and therefore independent of constituent 

diffusion paths. 

(2) e-h/h-e region 

For the e-h/h-e region, the propagation amplitudes along the two superimposing planar paths 

have opposite phases (see Supplementary Note 4E), that is: 

𝜑𝑖 = −𝜑𝑖′  (𝑖 = 1, 2, 3, 4). (9) 

After conducting analyses similar to the e-e/h-h case, we conclude that only the scenarios shown 

in Supplementary Figs. 8b,e survive the impurity average (Supplementary Table 2).  
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C. Magnetic-field-induced phase difference 

When a vertical magnetic field is applied, an additional phase (𝜃 = ±∫
𝑐
𝐀 ∙ 𝑑𝑙) arises for a 

carrier propagating along path 𝑙 under a vector potential 𝐀, with its sign depending on the polarity 

and the propagation direction of the carrier. For the above identified pairs of drag processes, the 

corresponding 𝜃 can be readily obtained, as listed in Supplementary Table 3 and Table 4. It is 

concluded that only the interference shown in Supplementary Fig. 8a (Fig. 8b) for the e-e/h-h 

region (e-h/h-e region) is destroyed by the magnetic field, and responsible for the observed low-

field corrections of drag resistance.  

 

D. Quantum correction to the drag resistance 

The finally established inter-layer QI for the e-e and e-h regions are schematically shown in 

Fig. 3b (right panel) in the main text and Supplementary Fig. 9a, respectively. Each pair of 

superimposing planar paths in these interferences are interrelated by inter-layer mirror reflection 

and time reversal. For convenience, we define 𝑙a
α = {𝑙1

α, 𝑙2
α} and 𝑙p

α = {𝑙3
α, 𝑙4

α}. As detailed in the 

main text, in the reciprocal space, the drag process involved in the inter-layer QI corresponds to 

the case that an active carrier with momentum 𝐤 scatters a passive carrier into the −𝐤 state (Fig. 

3c in the main text and Supplementary Fig. 9b), which can be referred to as inter-layer 

backscattering.  

Assuming that the drive current is 𝐼a = 𝑞a𝑣a(𝐤), the correction induced by the above inter-

layer QI to the drag current would be 𝐼p
cor = 𝑞p𝑣p(−𝐤), with its direction opposite to 𝐼a for both 

the e-e and e-h regions. Here, 𝑞 and 𝑣 are the charge and velocity of carrier respectively. We note 

that in our model, a hole with momentum 𝐤 means that the 𝐤 state is unoccupied. Thus, the hole 

with momentum −𝐤 in the conduction band has the same velocity as the electron with momentum 

𝐤 in valence band.  

Similar to the analysis for the e-e region presented in the main text, here we discuss the 

correction of inter-layer QI to the drag resistance in the e-h region. For typical Coulomb drag 

obeying momentum transfer mechanism, the classical drag current 𝐼p
cla will flow along the opposite 

direction as the drive current 𝐼a in the e-h region. The enhancement of inter-layer backscattering 
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due to QI will leads to an increase in the total drag current (Ip
cla + Ip

cor). The corresponding increase 

in accumulated open-circuit voltage between the electrodes (i.e., the measured Vp) leads to an 

increase in the magnitude of drag resistance. This is consistent with the experimentally obtained 

deviation of zero-field Rdrag (Fig. 1f in the main text).  

As detailed in Supplementary Note 4C, applying a magnetic field will break the interference. 

Thus, the quantum correction to the drag current 𝐼p
cor will be suppressed with increasing magnetic 

field, leading to negative MRdrag for the e-h region at low-field regime. This conclusion also 

consists well with our experimental data (Supplementary Figs. 4b and 5c). 

 

E. Propagation amplitudes of carriers 

To investigate the impurity scatterings of a carrier in a crystal, the 𝑇-matrix in scattering 

theory is defined as: 

𝑇 = 𝑉I + 𝑉I
1

𝜀 − 𝐻0
𝑉I + 𝑉I

1

𝜀 − 𝐻0
𝑉I

1

𝜀 − 𝐻0
𝑉I ⋯ (10)  

Here, 𝑉I is the impurity potential, 𝐻0 is the Hamiltonian of the perfect crystal, and 𝜀 is the energy 

of carrier. 

For convenience, we will discuss the propagation amplitude in the reciprocal (quasi-

momentum) space, and the conclusions hold for the real space as well. A diffusion path in the 

reciprocal space can be defined as a sequence: 

𝑙 = {𝐤, 𝐤1,⋯ , 𝐤𝑛, 𝐤′} (11) 

where 𝐤 and 𝐤′ are the initial and final momenta, respectively, and 𝐤𝑖 are intermediate momenta.  

For monolayer and bilayer graphene, we will consider the commonly used low-energy two 

band models [10-12] with band index 𝑠 = ±1 corresponding to conduction and valence bands, 

respectively. In these models, the matrix elements of the impurity potential are independent of 

band index: ⟨𝑠𝐤′|𝑉I|𝑠𝐤⟩ = ⟨−𝑠𝐤′|𝑉I|−𝑠𝐤⟩ = 𝑉𝐤′𝐤
I  [11]. For an electron in the conduction band 

with 𝑠 = +1, the propagation amplitude along 𝑙 is: 

𝑇𝑒 = 𝑉𝐤′𝐤𝑛

I 1

𝜀 − 𝜀+1,𝐤𝑛

𝑒 ⋯ 𝑉𝐤2𝐤1

I 1

𝜀 − 𝜀+1,𝐤1

𝑒 𝑉𝐤1𝐤
I (12) 
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In this expression, inter-band transitions are ignored.  

For a hole in the valence band with 𝑠 = −1, the propagation amplitude along 𝑙 is: 

𝑇ℎ = 𝑉𝐤𝑛𝐤′
I 1

𝜀 − 𝜀−1,𝐤𝑛

ℎ ⋯𝑉𝐤1𝐤2

I 1

𝜀 − 𝜀−1,𝐤1

ℎ 𝑉𝐤𝐤1

I (13) 

We note that here, a hole with momentum 𝐤 means that the 𝐤 state is unoccupied. The energy of 

hole is 𝜀−1,𝐤
ℎ = −𝜀−1,𝐤

𝑒 = 𝜀+1,𝐤
𝑒 . We then find that the probability amplitudes of an electron in the 

conduction band and a hole in the valence band propagating along the same diffusion path are 

complex conjugate, i.e., 𝑇𝑒 = (𝑇ℎ)∗. 

 

Supplementary Note 5. Mathematical analysis of the drag resistivity 

A. Classical drag resistivity 

Given the conductivity matrix 𝝈 = (
𝜎1 𝜎d

𝜎d 𝜎2
), where 𝜎1 and 𝜎2 are the classical conductivity 

of each layer respectively, and 𝜎d is the classical drag conductivity, the resistivity matrix is [8, 13]: 

𝝆 = (
𝜌1 𝜌d

𝜌d 𝜌2
) = 𝝈−1 = (

𝜎2

𝜎1𝜎2 − 𝜎d
2

−𝜎d

𝜎1𝜎2 − 𝜎d
2

−𝜎d

𝜎1𝜎2 − 𝜎d
2

𝜎1

𝜎1𝜎2 − 𝜎d
2

) ≈

(

 

1

𝜎1

−𝜎d

𝜎1𝜎2

−𝜎d

𝜎1𝜎2

1

𝜎2 )

    (14) 

Here, 𝜎1, 𝜎2 ≫ 𝜎d. The classical drag resistivity is 𝜌d =
−𝜎d

𝜎1𝜎2
, which is a direct measurement of the 

inter-layer Coulomb interaction [14]. 

 

B. Intra-layer quantum correction 

Taking the conventional intra-layer QI effect into account, the conductivities of the active 

and passive layers are 𝜎1(1 + 𝜂1) and 𝜎2(1 + 𝜂2), respectively, where 𝜎1𝜂1 and 𝜎2𝜂2 correspond 

to the quantum corrections in each layer. According to previous theoretical studies [8, 9], the drag 

conductivity is 𝜎d(1 + 𝜂1 + 𝜂2). The whole conductivity matrix is therefore: 

𝝈 = (
𝜎1(1 + 𝜂1) 𝜎d(1 + 𝜂1 + 𝜂2)

𝜎d(1 + 𝜂1 + 𝜂2) 𝜎2(1 + 𝜂2)
) (15) 
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Since 𝜎1, 𝜎2 ≫ 𝜎d and 𝜂1, 𝜂2 ≪ 1, the resistivity matrix 𝝆 up to the first order of 𝜂1 and 𝜂2 is: 

𝝆 = 𝝈−1 ≈

(

 
 

(1 − 𝜂1)

𝜎1

−𝜎d

𝜎1𝜎2

−𝜎d

𝜎1𝜎2

(1 − 𝜂2)

𝜎2 )

 
 

 (16) 

As such, the intra-layer quantum correction to the magneto-drag resistance is negligible [8]. 

 

C. Inter-layer quantum correction 

For the inter-layer QI effect, the conductivity matrix can be rewritten as: 

𝝈 = (
𝜎1(1 + 𝜂1) 𝜎d(1 + 𝜂1 + 𝜂2) + 𝜎d

cor

𝜎d(1 + 𝜂1 + 𝜂2) + 𝜎d
cor 𝜎2(1 + 𝜂2)

) (17) 

Here, 𝜎d
cor is the inter-layer-QI-induced correction to the drag conductivity. The resistivity 𝝆 up 

to the first order of QI effect is therefore: 

𝝆 = 𝝈−𝟏 ≈

(

 
 

(1 − 𝜂1)

𝜎1
−

𝜎d + 𝜎d
cor

𝜎1𝜎2

−
𝜎d + 𝜎d

cor

𝜎1𝜎2

(1 − 𝜂2)

𝜎2 )

 
 

 (18) 

In addition to the classical drag resistivity 𝜌d
cla =

−𝜎d

𝜎1𝜎2
, an additional inter-layer quantum correction 

to the drag resistivity is given as 𝜌d
cor =

−𝜎d
cor

𝜎1𝜎2
. 
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