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Supplementary Fig. 1

Supplementary Fig. 1 Number of yearly citations returned by Google Scholar, by searching for
“CyTOF”, “scRNA-seq”, and “CyTOF & scRNA-seq”. The blue curves show the true citations counts,
and the orange curves show the exponential curves fitted to the true citation counts. Source data are
provided as a Source Data file.
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Supplementary Fig. 2

Supplementary Fig. 2 One example breast cancer Imaging CyTOF dataset. The per-cell
staining of the Ecadhe (E-cadherin), Ki67, SMA (α-smooth muscle actin), and CD45 channels were
shown in the spatial context. Source data are provided as a Source Data file.
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Supplementary Fig. 3

Supplementary Fig. 3 Performances of the DR methods on the simulation data. (a) Performances
of the DR methods on the simulation data for each specific category of the accuracy metrics. (b)
Performances of the DR methods on the simulation and real data for each major category of the accuracy
metrics (scores of the specific categories averaged for each major category). Source data are provided as
a Source Data file.
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Supplementary Fig. 4

Supplementary Fig. 4 The runtime and memory usage performances of several tSNE algorithms.
This plot focuses on the scalability of tSNE with increasing numbers of cells. “tSNE” in the main figures
refers to “FIt-SNE (openTSNE)” here. “tSNE (sklearn)” in the main figures refers to “BH tSNE (Sklearn)”
here. Source data are provided as a Source Data file.
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Supplementary Figure 5

Supplementary Fig. 5 Manual cell type assignment results of the CyTOF data from the Lung
cancer cohort. All cell types are visualized by a colored UMAP embedding. Source data are provided
as a Source Data file.



Supplementary Note 1: Additional analyses and discussions

Web resources we generated for this CyTOF DR review study

We generated three resources, a webserver for displaying the results for benchmarking CyTOF
DR methods (Supplementary Fig. 6), a webserver for providing our easy-to-deploy
implementations of the DR methods and our evaluation metrics (Supplementary Fig. 7), and the
Cytomulate algorithm for simulating CyTOF data (Supplementary Fig. 8).

Supplementary Fig. 6 Screenshot of CyTOF DR playground. The user interface of the
webserver.



Supplementary Fig. 7 Screenshot of CyTOF DR package. The landing page of CyTOF DR
Package’s documentation.

To facilitate open and user-friendly deployment and evaluation of DR methods, we established
the CyTOF DR Package website (CytofDR.readthedocs.io, Supplementary Fig. 7) to provide
implementation of the DR methods and our evaluation metrics, which is streamlined as much as
possible. As we illustrated in Fig. 1f, a new DR user of CyTOF data can take a prior
knowledge-driven approach of examining our DR benchmark results of the datasets evaluated in
this study, shared conveniently through “CyTOF DR Playground”, and then run their favorite DR
methods using their own installation or the implementations that we provide on “CyTOF DR
Package”. The user can also take an empirical approach of deploying the evaluation metrics (or a
subset of our evaluation metrics according to preference or data availability) on their own
CyTOF datasets, using the evaluation and DR code implementation that we offered through
“CyTOF DR Package”, for picking the best approach. We also envision our system to be quite
useful to future developers of DR methods for CyTOF data or other types of data in general. The
extensive collection of evaluation metrics will allow future developers to craft their own
benchmark recipes for DR in any field. At the same time, developers can easily extend the
framework and add functionalities by simply deriving from our Python classes. We hope such a
unified and streamlined evaluation-execution paradigm will become more widely adopted for
various bioinformatics development scenarios.

Supplementary Fig. 8 Screenshot of Cytomulate. The landing page of Cytomulate’s
documentation website.

An example simulated CyTOF dataset generated by Cytomulate



In Supplementary Fig. 9, we showcase a simulated CyTOF dataset generated by Cytomulate.
Multivariate Gaussians were used to generate the protein expressions of cells of various cell
types. SAUCIE was used to visualize the single cells in a two dimensional space. According to
the overall pattern of distribution of this dataset and those of real CyTOF data (Fig. 4a), we can
see that Cytomulate closely mimics real CyTOF data. Compare the pattern of distribution of cells
(such as level of dispersion with respect to the clusters) in this figure with the SAUCIE figure of
Fig. 4a. More analyses and results validating the performance of Cytomulate in simulation of
CyTOF data can be found in our Cytomulate work 1.

Supplementary Fig. 9 One simulated CyTOF dataset visualized in the SAUCIE space.
Source data are provided as a Source Data file.

Detailed inspection of the DR results for the BC dataset

SAUCIE is the top performer in terms of Global structure preservation. Further, SAUCIE
significantly outperforms UMAP and scvis in the cell-type cluster concordance subcategory of
Downstream performance (Supplementary Fig. 10a). These two results suggest that SAUCIE is
the best at detecting and distinguishing the main types of cells that exist in the samples. We
classified the cells in the BC CyTOF samples into four clusters in the DR space as guided by the
original BC publication, which reported four cell types (tumor, immune, vessel, stroma). Then,
we visualized the clusters in the spatial context (Supplementary Fig. 10b). The red cells in both
panels and the green cells in the right panel from UMAP denote tumor cells. This shows that
SAUCIE tends to be better at clustering all tumor cells together as a whole.

https://sciwheel.com/work/citation?ids=13183683&pre=&suf=&sa=0


Supplementary Fig. 10 Closer examination of the DR results for the BC dataset. (a) The
performances of the DR methods in terms of global accuracy metric and cell type-cluster
concordance subcategory of Downstream performance. (b) The cells in the BC dataset (sample
#1) were classified into four types, according to clustering of the cells in the DR space. The cells
and these clusters were visualized in the cells’ spatial context. Left: SAUCIE; right: UMAP. (c)
The correlation between spatial distances and the distances in gene expression between pairs of
cells in the same “clusters” that were determined in (b). Box boundaries represent interquartile



ranges, whiskers extend to the most extreme data point which is no more than 1.5 times the
interquartile range, and the line in the middle of the box represents the median. For each method,
the sample size is , which corresponds to the 14 samples from the BC cohort. Source𝑁 = 14
data are provided as a Source Data file.

A comparison between downsampling-based and Point Cluster Distance (PCD)-based
benchmark metrics

In our accuracy metrics, EMD and COR of the Global Category utilized PCD, which basically
means that they used cluster centroids instead of actual data points and their embeddings to
assess performance, in parts of the accuracy computation process. We chose this approach to
avoid the quadratic computational complexity of certain metrics. However, one concern is that
collapsing cell clusters to their centroid will obfuscate instances where two clusters overlap in
the low dimensional embedding, and that clustering methods are not perfect, which means that a
suboptimal clustering will lead to a suboptimal gold standard. To remove the concern regarding
the negative impact of this potential caveat of PCD-based approaches, we also tested an
alternative approach. We computed the pairwise distance in the embedding and DR space in a
randomly sub-sampled set of 10,000 cells (without replacement) for each CyTOF dataset and
then computed the full pairwise Euclidean distances within this subset. Other ranking and
analysis methods remained the same, as they did not involve PCD. We compared the results
obtained from both approaches in Supplementary Fig. 11 and found that both PCD- and
subsampling-based methods yield very similar results in real and simulated CyTOF samples.
Critically, the results are nearly identical for the top-ranking methods.



Supplementary Fig. 11 Global accuracy results from both downsampling-based and
PCD-based approaches. Orange color indicates better performance, while the blue color
indicates worse performance. All sub-metrics of the accuracy criterion were averaged. Source
data are provided as a Source Data file.



Supplementary Fig. 12 Accuracy performance on all 10% downsample real datasets. This
plot corresponds to the results displayed in Fig. 3b, which does not downsample for evaluation.
The performance of DR methods is similar to that of the main figure. Orange color indicates
better performance, while the blue color indicates worse performance. All sub-metrics of the
accuracy criterion were averaged. Source data are provided as a Source Data file.



Supplementary Fig. 13 Accuracy performance on all 10% downsample simulation datasets.
This plot corresponds to the results displayed in Supplementary Fig. 3a, which does not
downsample for evaluation. As with real datasets, the performance shown here is again
comparable. Orange color indicates better performance, while the blue color indicates worse
performance. All sub-metrics of the accuracy criterion were averaged. Source data are provided
as a Source Data file.



Supplementary Fig. 14 Examples of bad DR embeddings from the Levine32 dataset. The
left panel is LLE, which fails to distinguish any cell types or clusters meaningfully. The right
panel is the PHATE embedding. PHATE, which usually performs decently, produces a confusing
embedding with cell types mixed with each other. Source data are provided as a Source Data file.

Supplementary Fig. 15 Examples of bad IMC plots from the BC cohort Sample 1. The left
panel is clustering results from KPCA RBF and the right panel from scvis. As compared to the
good clustering performance from SAUCIE embedding (Supplementary Fig. 10b), these two
DR methods’ embeddings fail to cluster tumor cells in one cluster (red and green clusters).
Further, KPCA RBF’s blue and purple cells are noticeably mixed together as well. Source data
are provided as a Source Data file.



Supplementary Discussion 1: Discussion of Scalability and Dimensionality

As discussed in the Introduction section of our paper, a unique differentiating factor between
CyTOF and scRNA-seq is the dimensionality of the datasets. Namely, CyTOF has orders of
magnitude less channels (features denoted as ) and much more cells (sample size denoted as𝑃 𝑁
). The scalability benchmark clearly indicates that different methods scale vastly differently with
respect to both but not so much for . Here, we discuss efficiency concerns of some of the𝑁 𝑃
prominent methods and their fit for CyTOF data analysis purposes.

SAUCIE

SAUCIE2 is based on an autoencoder implemented in tensorflow. It uses an 8-layer neural
network, and DR is achieved by extracting the middle bottleneck layer. While SAUCIE does not
give a specific efficiency claim in terms of N or P, both its author and our study found that its
efficiency for DR is top-tier. Surprisingly, the performance of SAUCIE, even without using
GPUs, is on par with the most efficient methods tested. Given the nature of the autoencoder, only
the input and output layers have to have the same size as P of the original training data. Thus, the
impact of P should be small, unless larger intermediate layers are needed for higher dimensional
data like scRNA-seq. Sample size N can potentially interact with the choice of batch size which
may in turn impact scalability, but our results suggest that default settings already produce good
embeddings for CyTOF. From our study, SAUCIE remains fast and accurate for CyTOF samples.
Thus, CyTOF’s dimensionality is not of concern for SAUCIE.

scvis

scvis3 uses variational inference to find the latent variable to represent the latent variable
representing underlying structure in the data. To aid the visualization of the latent space, it
utilizes the idea of tSNE as a regularizer: specifically, it uses KL divergence to minimize
distance as defined by a Gaussian kernel. While scvis is among the least efficient methods
without memory bounds, we found that the number of features does not play a role in its runtime
with typical CyTOF feature spaces. However, sample size poses a significant concern here𝑁
since a typical sample can take as much as 12 hours to run on a server even though runtime does
tend to plateau. The use of scvis is thus a compromise between theoretical fit and practicality.

UMAP

UPAM falls under the second tier of methods in terms of efficiency. In UMAP’s methodological

paper4, the authors claimed approximately for the optimization algorithm. Since UMAP𝑂(𝑁1.14)
falls in the same category of algorithms that utilize k-nearest neighbors graphs, its performance
mostly depends on sample size rather than like Fit-SNE. However, due to the fact that it𝑃 𝑁
does not need to normalize the density in the optimization step, the authors claimed that UMAP
can be much more efficient when reducing dimensions down to more than 2 or 3 dimensions.
While higher dimensional DR embeddings are not the focus of this paper, it is a common

https://sciwheel.com/work/citation?ids=7589687&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=5375302&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=12611897&pre=&suf=&sa=0


workflow in scRNA-seq data analysis, which may help explain the advantage of UMAP in that
setting.

PHATE

PHATE5 is a method that focuses the differentiation path of cells. Namely, it calculates the local
similarity and global relationship. Then, it uses potential distance to account for the overall
structure and metric MDS for visualization. There is no explicit claim of efficiency, but we
observed that it is among the least efficient methods for runtime. Like other methods,
dimensionality does not play a large role for efficiency except for using larger vectors, but it
scales at least quadratically with the number of cells. Like scvis, the original paper also used
PHATE for scRNA-seq data. Therefore, dimensionality should not be much of a concern given
that it is a distance-based method, but sample size again poses a challenge.

SQuaD-MDS

SQuaD-MDS6 improves upon the original MDS by employing Stochastic Quartet Descent.

CyTOF’s large sample size renders MDS unusable without downsampling because of𝑁 𝑂(𝑁2)
memory complexity. SQuaD-MDS vastly improves the efficiency by reducing runtime and
memory complexity down to , which is on par with the second tier of methods. As with𝑂(𝑁)
other force-directed methods, dimensionality does not play nearly as large of a role as .𝑁
SQuaD-MDS is one of the methods that is general-purpose. However, it was tested on both
image data with high dimensions and some low-dimensional scRNA-seq benchmark datasets by
its authors. We can thus reasonably expect that SQuaD-MDS will work for CyTOF and
scRNA-seq datasets across a wide range of dimensionality.

tSNE (All major variants)

As tested extensively in this study, tSNE’s implementation has important ramification in terms of
scalability. While we included two implementations in main benchmarks and five in
Supplementary Fig. 4, these implementations can be divided into the following categories:

1. Original tSNE 7

2. Barnes-Hut tSNE 8

3. Fit-SNE9

The original tSNE has for computation time and memory efficiency. This is obviously𝑂(𝑁2)
unrealistic for large CyTOF samples: in fact, any samples with can start to become𝑁 > 10, 000
problematic. As tSNE’s optimization involves the pairwise forces exerted by each point in both
the original and DR space, the main bottleneck is rather than .𝑁 𝑃

The Barnes-Hut optimization for tSNE (BH tSNE) reduces the run time to for𝑂(𝑁 𝑙𝑜𝑔𝑁)

https://sciwheel.com/work/citation?ids=7889072&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=13934174&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=14535758&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=11357558&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=6419848&pre=&suf=&sa=0


computation and for memory usage. In our benchmarks, BH tSNE can be realistically used𝑂(𝑁)

for most CyTOF datasets, but significant time is needed when samples are large. Recently,

Fit-SNE further reduces runtime to . Fit-SNE is by far the fastest implementation we𝑂(2𝑝𝑁)

tested while also being the most competitive with other methods (e.g. UMAP). The one caveat

with Fit-SNE is its availability since it is still relatively new, but there are already

implementations and wrappers available for use.
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