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In this supplementary information we present the calculation of the electron-electron mean free
path, derive the operator of angular diffusion, and detail the solution of the differential equation for
boundary scattering.

ELECTRON-ELECTRON COLLISION RATE FROM THE SCREENED COULOMB INTERACTION

To quantify the strength of the interaction we focus the study on the relaxation length, lee, the mean free path for
electron-electron collisions. In Fermi liquid theory normal metals have a relaxation length with a T−2 temperature
dependence. We emphasize that in WTe2, the assumption of a T−2-dependence is not justified a priori. Instead, it is
necessary to calculate lee down to low temperatures in order to extract a reliable temperature dependence. In our
previous calculation [1], we indeed found that the low temperature limit approaches a T−2 behavior, but such happens
only at energies much smaller than the Fermi level, which in WTe2 is unusually low at EF ≈ 150K. Since the Fermi
energy, and the Fermiology of the Fermi surface play a prominent role in WTe2 [2], and since our previous estimate for
ℓee ≈ 10µm was only 1.5 orders of magnitude to large to explain the hydrodynamic electron flow, here we repeat our
calculation for two other band structure candidates for WTe2. This way, we can make sure that the reported absence of
a sufficiently small ℓee is not an artifact of the specific choice of band structure, but holds invariably for this material.

Formalism

Electron-electron interactions arise from the coupling of the electrons to the electromagnetic field. In 3D, the bare

coulomb interaction is given by Ubare(q) =
4πe2

|q|2 . The presence of electrons modifies the bare interaction, such that the

renormalized interaction W becomes

U(q, ω) =
4πe2

|q|2 − 4πe2Π(q, ω)
. (S1)

Here, Π(q, ω) is the particle-hole susceptibility of the electromagnetic field, given by the one-loop integral

Π(q, ω) =
∑
i,j

∫
d3k

(2π)3
|ρi,k,j,k+q|2

n(ξi,k)− n(ξj,k+q)

ξi,k − ξj,k+q + ω − iη
. (S2)

i, j are band indices, n(ϵ) is the Fermionic occupation number, ξ = ϵ− ϵF and |ρi,k,j,k+q|2 = |⟨ui,ke
iqr|uj,k+q⟩|2 is the

exchange density. At finite temperature the electronic self-energy due to the Fock diagram is

ImΣ(q, ϵnq) = −π
∑
m

∫
d3k

(2π)3
|ρn,q,m,k|2(b(ϵmk − ϵnq) + n(ϵmk))ImU(k − q, ϵmk − ϵnq), (S3)

where b(ϵ) is the bosonic occupation number. The electron-electron relaxation rate of a state is defined in terms of the
self energy as

[τee(q, ϵnq)]
−1 =

2

ℏ
ImΣ(q, ϵnq). (S4)

The average relaxation rate is then the average of the relaxation rate on the Fermi surface, normalized by the total
density of states:

⟨τ−1
ee ⟩FS =

∑
n

∫
d3k
(2π)3 [τee(q, ϵnq)]

−1 ∂fnq

∂ϵnq∑
n

∫
d3k
(2π)3

∂fnq

∂ϵnq

(S5)

Finally, the relaxation length is given as the inverse of the relaxation rate,

lee = vF ⟨τ−1
ee ⟩−1

FS . (S6)
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Candidate band structures

Weyl semimetal candidate band structure The chemical potential resides at µ = 7.22eV , the lattice parameters
are ax = 0.3483nm, ay = 0.6265nm, az = 1.4043nm. The resulting parameters are listed in Supplementary Table I.

n ϵf [eV ] vF [10
5m/s] (kF )x[nm

−1] (kF )y[nm
−1] (kF )z[nm

−1] g(ϵf )[eV
−1nm−3] n(ϵf )[nm

−3]
55 0.0496 1.09 0.60 0.63 0.54 2.1655 0.0631
56 0.0834 1.327 0.61 0.92 0.54 2.9942 0.1056
57 0.0691 2.35 0.34 0.60 0.93 1.0546 0.0498
58 0.0679 2.32 0.30 0.55 0.89 0.9026 0.0393

Supplementary Table I. Details of the Weyl semimetal phase.

Relaxed candidate band structure The chemical potential sits at µ = 8.5083. This band structure is motivated
by Ref. [2], with lattice parameters ax = 0.3460nm, ay = 0.6200nm, az = 1.3090nm. Compared to the other band
structures, this corresponds to a compression along the kz-direction. The position of the atoms inside the lattice was
subsequently optimized to minimize the total energy. The result is shown in Supplementary Table II.

n ϵf [eV ] vF [10
5m/s] (kF )x[nm

−1] (kF )y[nm
−1] (kF )z[nm

−1] g(ϵf )[eV
−1nm−3] n(ϵf )[nm

−3]
55 0.1944 2.91 1.23 1.48 1.27 1.4147 0.2752
56 0.2074 2.95 1.35 1.74 1.28 1.7539 0.3501
57 0.2565 2.80 0.73 1.48 1.11 2.6862 0.3231
58 0.2307 3.03 0.64 1.30 1.15 1.9589 0.2338

Supplementary Table II. Details of the relaxed band structure.

Candidate band structure based on hybrid functionals Here, the chemical potential is µ = 6.965eV . The
chosen lattice parameters are ax = 0.3483nm, ay = 0.6265nm, az = 1.4043nm. Supplementary Table III lists the band
structure parameters obtained when using hybrid functionals in the self consistent stage of the calculation in order to
better account for exchange.

n ϵf [eV ] vF [10
5m/s] (kF )x[nm

−1] (kF )y[nm
−1] (kF )z[nm

−1] g(ϵf )[eV
−1nm−3] n(ϵf )[nm

−3]
55 0.0669 2.57 - - - 0.2158 0.0065
56 0.0801 2.49 - - - 0.2923 0.0101
57 0.0430 2.95 - - - 0.3450 0.0120
58 0.0419 2.68 - - - 0.1587 0.0040

Supplementary Table III. Details of the band structure obtained from hybrid functionals.

We briefly comment on consistency checks using the density of states, and why they are less relevant in the present
calculation. For example, the total density of states of the relaxed phase is 7.81eV −1nm−3 and according to the
calculation of the real part of the susceptibility at ω = 0.01eV it is 6.47eV −1nm−3, which agrees within 20% with the
total density of states. Likewise, the total density of states of the Weyl semimetal phase is 7.12eV −1nm−3 and according
to the calculation of the real part of the susceptibility at ω = 0.01eV it is 4.27eV −1nm−3, which is further apart, with
a 67% difference. As the main reason we suspect the more sensitive dependence on ω in the Weyl semimetal band
structure. However, for a faithful estimate of the self-energy this effect is not relevant because we are predominantly
interested in the imaginary part of U , which becomes zero exactly at ω = 0.

Results for the electron-electron mean free path

The electron-electron mean free path according to Supplementary Eq. (S6) and its temperature scaling are shown
in Supplementary Fig. 1 for all three candidate band structures. Clearly, the low-energy asymptotic scaling onsets
at or even slightly above 150K in all three cases. Extrapolating the obtained temperature scaling, we arrive at the
low-temperature quoted in the main text.
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Supplementary Figure 1. lee as function of temperature for the three band structures. (a) Small pockets: due to the compensation
of electrons and holes and the similar velocities of the bands, lee and lhh are similar, we can see a good fit to a power law, but
with a weaker dependence on temperature than inverse square. (b) Anisotropic pockets: the Fermi level was chosen in a way
that the compensation of holes and electrons is not perfect, more electrons than holes. This is reflected both in an effective lower
Fermi level and lower velocity for the holes, which manifest in the form of lhh < lee. Still, we can see a good fit to a power law,
specifically for electrons, a T−2. (b) Relaxed phase: resembels a metal and as such fits well to a T−2 power law. The relatively
large lee compared to the previous two band structures is mainly due to the large Fermi level, which leads to high screening,
reducing the effective interaction.

DIFFERENTIAL OPERATOR

The derivation of the differential operator was first done in Ref. [3], but uses a highly customized notation. For this
reason, we reiterate here the steps needed to obtain Ôθ. We start from the general boundary scattering condition in
terms of the scattering potential (Eq. (2) in the main text), f>(k) = f<(k) + I where the integral is defined as

I = kz

∫
k′z(f

<(k′)− f<(k))W (k′,k) (S7)

Recalling that the scattering potential has the explicit form W (k′,k) = W0e
− |k−k′|2

2σ2 , we proceed with a saddle point
approximation. Denoting g(k′) = k′z(f

<(k′) − f<(k)), it is clear that g(k) = 0. Expanding up to second order in
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k′ − k, in spherical coordinates on the Fermi surface, it is therefore

g(k′) =
∑
i

[∂ig(k)](k
′ − k)i +

1

2

∑
ij

[∂i∂jg(k)](k
′ − k)i(k

′ − k)j (S8)

Inserting the expansion into the integral I = I1 + I2, we obtain

I1 = W0kz
∑
i

[∂ig(k)]

∫
(k′ − k)ie

− |k−k′|2

2σ2 (S9)

I2 =
1

2
kzW0

∑
i,j

[∂2
i g(k)]

[ ∫
(k′ − k)i(k

′ − k)je
− |k′−k|2

2σ2

]
(S10)

In polar coordinates relative to k, we notice that (k′ − k)i is anti-symmetric with respect to the transformation

k′ → 2k − k′, while e−
|k−k′|2

2σ2 is symmetric. Therefore the integral on the components that are perpendicular to k,
meaning i = θ, φ vanish. On the other hand, the integral on the radial direction, does not vanish from this argument,
but instead vanishes identically, as |k′| = |k| is enforced identically on the entire integration range. Thus it is I1 = 0.

For I2, obviously the same argument holds for the radial direction. It thus suffices to look at directions i, j that are
perpendicular to k. Considering i ̸= j next, the integrand is odd in either direction and vanishes due to antisymmetric
cancellation. So the only terms that contribute are i = j for the two directions perpendicular to k,

I2 =
1

2
pzW0

∑
i=1,2

[∂2
i g(k)]

[ ∫
(k′ − k)2i e

− |k′−k|2

2σ2

]
.

The integral inside the brackets can be solved by noticing that for the two directions perpendicular to k, the result is
the same from rotational symmetry around the k/|k| axis:∫

(k′ − k)2i e
− |k′−k|2

2σ2 =
1

2

∫
(k′ − k)2e−

|k′−k|2

2σ2 = −σ2k2F
∂

∂α

[
e−

αk2
F

σ2

∫
e

αk2
F cos θ

σ2 sin θdθdφ

]
|α=1 (S11)

= 2πσ4

[
2k2F
σ2

e−
2k2

F
σ2 − (1− e−

2k2
F

σ2 )

]
≡ 2Q

W0
(S12)

In summary, the integral I evaluates to

I = I2 = kz
∑
i=1,2

[∂2
i g(k)]Q = Qkz

[∑
i=1,2

∂2
i

]
(kzf

<(k)). (S13)

We note that ∂2
i where i = θ, ϕ is exactly the Laplace-Beltrami operator on the sphere. We can therefore write more

formally

f>(k) = f<(k) +Qkz∇2(kzf
<(k)). (S14)

Using the identity ∇2(kzf
<(k)) = f<(k)∇2kz + kz∇2f<(k) + 2∇kz · ∇f<(k) and noting that ∇2kz = 0, we recover

the form of Ref. [3],

f>(k) =

(
1 +Qkz(∇kz · ∇+ 2kz∇2)

)
f<(k). (S15)

In spherical coordinates, this is

∇kz · ∇ = (− sin θθ̂) · (θ̂ 1

kF
∂θ + φ̂

1

kF sin θ
∂φ) = − sin θ

kF
∂θ (S16)

∇2 =
1

k2F sin θ
∂θ(sin θ∂θ) +

1

k2F sin2 θ
∂2
φ (S17)

Since we consider a thin slab where the thickness d is much smaller than the width w, we can neglect derivatives with
respect to the in-plane angle ϕ, which are expected to only contribute weakly due to the smooth dependence of f on ϕ.
In term of the reduced distribution function h(z, θ) the boundary condition therefore simplifies to

h(d/2,−|θ|) =
[
1 +Q cos θ

(
cot θ∂θ(sin θ∂θ)− 2 sin θ∂θ

)]
h(d/2, |θ|) (S18)

=
[
1 +Q cos2 θ

(
(cot θ − 2 tan θ)∂θ + ∂2

θ

)]
h(d/2, |θ|), (S19)
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Supplementary Figure 2. (a) Iterative solution of the differential equation (S20). Parameters are α = 0.05, Q = 2, θ0 = 0.2α.
The converged solution is obtained for λ = 0.0098715246968, and the solution is very sensitive to the initial conditions, deviating
substantially already when changing λ by only 10−8. In blue we show less precise solutions which have been obtained for a
much larger θ0, for two different choices for c′(θ0). Nevertheless, their deviation from the correct value at θ = π/2 remains small.
(b) Comparison between the exact differential equation (S20), and the expansion for small α (Eq. (8) of the main text), for
a comparatively sizable α = 0.05. Both compare favorably for moderate values of Q. Only if Q ≫ 1, the solutions deviate
noticeably. In all examples the specularity parameter is q = 1.

which, after shifting θ → θ − π/2 and adding the specularity coefficient Rθ is the form quoted in the main text in
Eq. (3). While it may look as though Supplementary Eq. (S19) contains a divergence at at θ = 0, we point out that this
divergence is of the form 1/ sin θ, which is rendered finite upon integration with the Jacobian k2F sin θ on the sphere.

SOLUTION OF THE DIFFERENTIAL EQUATION FOR BOUNDARY SCATTERING

The differential boundary condition, Eq. (5) in the main text, can be rewritten in terms of the variable s = sin θ,
and reads explicitly (

1− s2
) [

α2Q− s3
(
q + 2αQ− qeα/s

)
+ s2

(
1− α2Q− e

2α
s

)]
=

(
1− s2

) [
α2Q− s3(q + 2αQ) + s2

(
1− α2Q− e

2α
s + 1

)]
c(s)

+
Qs2

1− s2

[
2α

(
1− s2

)2
+ s

(
3s4 − 4s2 + 2

)]
c′(s) +Qs4c′′(s). (S20)

A unique solution for c(θ) is obtained by imposing smooth continuity for this periodic and even function, i. e. we
demand that c′(0) = c′(π/2) = 0. However, since θ = 0, π/2 are singular points, this way of solving Supplementary
Eq. (S20) is impractical, and it is preferable to instead use initial conditions for c(θ0) and c′(θ0), where θ0 ≈ 0 is
chosen small enough for the effect of the derivatives in Supplementary Eq. (S20) to become vanishingly small at θ0.
This makes sense because for θ → 0 Eq. (5) of the main text can be solved algebraically, yielding

c0(θ) = 1− qeα csc θ

q + csc θ
(
e2α csc θ − α2Q cot2 θ − 1

)
+ 2αQ

. (S21)

Then, using initial values c(θ0) = 1− (1 + λ)(1− c0(θ)) and c′(θ0) = (1 + λ)c′0(θ), and slowly adjusting the tuning
parameter λ ≈ 0 such that the solution does not diverge at π/2 presents a reliable way to construct physically relevant
solutions for c(θ). A typical iterative solution is presented in Supplementary Fig. 2
Unfortunately, this procedure still encounters issues at small α as the distribution function becomes exponentially

close to 1, which means that the initial condition c(θ0) ≈ 1 is rendered increasingly sensitive to machine-precision
limitations. We found two avenues to remedy this issue.
One approach amounts to choosing a much larger θ0, which obviously cannot capture the form of c(θ) for angles

below θ0, but converges smoothly to the correct solution at large θ. The second option is to expand Supplementary
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Supplementary Figure 3. (Left) Logarithmic divergence of c1/α in the limit α → 0, obtained from solving Eq. (8) of the main
text, for the parameter q = 0.9. The gray curves show the fit with a logarithm, c1(α)/α = u logα−1 + v. (Middle, Right) Results
from fitting the relation c1(α)/α with the parameters u (v) are shown in the middle (right). The red points are values of u and
v as determined from numerically solving Eq. (8) as a function of α for various values of (q,Q). Overlaid are the functions
Eqs. (S25,S26), for the parameter values λ2 = 0.39, λ3 = 0.46 and λ1 = 0.061.

Eq. (S20) in the limit α → 0. Doing so removes the exponential functions, and thus the essential singularities at θ = 0,
so that the choice of very small θ0 remains unproblematic even for small α. Supplementary Fig. 2 shows the differences
and commonalities between both approximations.
We calculate the limiting value c(π/2) ≡ c1 in two steps. Using the expanded differential equation, Eq. (8) in the

main text, the canonical expansion of c(θ) around π/2 yields

c(π2 ) =
2Q

q
c′′(π2 ) +

2− q + 2Q

q
α (S22)

c′′(π2 ) =
4Q

3q + 20Q
c(4)(π2 ) +

3(4− q)

3q + 20Q
α (S23)

c(4)(π2 ) =
2Q(3q + 20Q)

5q2 + 120qQ+ 488Q2
c(6)(π2 ) +

q(−25q − 234Q+ 160) + 1336Q

5q2 + 120qQ+ 488Q2
α (S24)

with all odd derivatives being equal zero. The expansion indicates that no non-analyticities are acquired at any finite
order. On the other hand, as is visible in Supplementary Fig. 3, c1/α as a function of α reveals clearly contains a
logarithmic divergence c1 ∝ α logα−1. Based on the structure displayed in the sequence of derivatives, we therefore
make the ansatz that c′′(π/2) ≈ α log(λ1/α)/(λ2q + λ3Q) with three fitting parameters λ1, λ2 and λ3.

Then, we perform a numerical fit to c1(α)/α = u logα−1 + v for a range of values of (q,Q). The result of this fit is
shown in Supplementary Fig. 3. Obviously, the fitting parameters u and v are related to λi via

u =
2Q

q

1

λ2q + λ3Q
(S25)

v =
2Q log(λ1)

λ2q+λ3Q
+ (2− q + 2Q)

q
(S26)

These relations are used to fit λ2 = 0.39 and λ3 = 0.46 from u in Supplementary Eq. (S25) and after fixing them, to
also fit λ1 = 0.061 from v, Supplementary Eq. (S26), thus yielding the approximate form of c′′(π/2) stated in the main
text.
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