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Reviewer #2:

Para-Hydrodynamics from weak surface scatteringin
ultraclean thin flakes

The manuscript titled "Para-Hydrodynamics from weak surface scattering in ultraclean thin flakes"
investigates the microscopic kinetic origins of an interesting question arising from recent electron-
hydrodynamic experiments at low-temperatures, namely: 'does nearly-specular surface scattering
from the top and bottom surfaces of a thin conductor enhance the in-plane momentum-conservation
in experimental signatures"?

The results appear scientifically rigorous and internally consistent. In particular, the analytical
derivation of the 1D channel distribution is very nice, and provides an analytically-simple extension
for specular boundary conditions amenable to numerical calculations.

Considering the recent interest in the field of electron hydrodynamics, and the advent of spatially-
resolved current density measurements in spatially-complex geometries, this work is very timely and
will be a worthwhile contribution to the field.

Main Concerns

| have three main concerns, which pertain to the scope of the claims the manuscript makes given the
approximation of neglecting the spatial dependence along the width of the channel:

1. If  understand the experiments (which the manuscript draws motivation from describing)
correctly, they measure the projected induced magnetic flux along the width of the channel. As
such, | was expecting the work in this manuscript to draw conclusions on the in-plane current
densities, given the choice of out-of-plane boundary conditions.

This indeed has a natural precedent in ideal fluids, which | believe would be beneficial for the
authors to mention: The 'Poiseuille' velocity profile in a rectangular channel is of the form:
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In the regime the manuscript is concerned about (h/w — 0), the above develops an in-plane
current density which deviates from the usual parabolic profile to a 'snubbier' current profile.
Note: of-course the above assumes no-slip boundary conditions, and in-general a kinetic theory
vs a pde-hydrodynamic solution would be desirable in the case in question (as the authors
rightly point out.)

My confusion stems from the following: "How can the authors conclude about the nature of
experimental results measuring in-plane current densities, when their analysis rules them out by
assumption?"

2.In a similar vein, the authors use an isotropic Fermi velocity in their analysis, claiming that in-
contrast to the highly-anisotropic Fermi surfaces the Fermi velocity is fairly isotropic in a
footnote. This is fine, although calculations showing the distribution of the Fermi velocity in the
SI'would be more convincing. However, since the Fermi velocity enters the BTE as:

V.f+eE-Vif=1I[f]
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then in-order for their assumption pointed out in 1. above to be justified, they would require
instead that v, — 0, not that it's isotropic in 3D. This is clearly violated in WTez looking at Figure
2.

3. The bulk collision integral used in (1), given by the single-relaxation time approximation
Iy[f] = |v| (f — fo)/l conserves no collisional invariants and thus cannot be used to construct
hydrodynamic theories. This is nicely discussed in eq. (9) and Appendix A of de Jong and
Molenkamp (Phys. Rev. B 51, 13389). While this is usually rendered a moot-point due to the
symmetry of the channel geometry, the authors need to be more careful in general geometries
such as the experimental double-chamber geometry they're referencing. More generally, it
would be nice if the authors could include a momentum-conserving term in their bulk collision
integral, e.g. using the dual-relaxation time approximation. | understand this will of-course make
the analytical solution much harder, so it might be out-of scope.

Minor Points

e | believe the term 'para-hydrodynamics' is unnecessarily confusing, and would urge the authors
to remove it. As illustrated above with the velocity profile of an ideal fluid in a rectangular
channel, the geometry let alone the boundary conditions naturally affect the observed current
densities. To the extent that "electron hydrodynamics" is used to describe electron flow that's
"fluid-like" the term "hydrodynamics" should be taken to quantify the extent to which
momentum is conserved in the system.

e Please include ¢ in your schematic in Figure 1a.

e Please use a different notation than D for your modified Gurzhi parameter in (10). Currently the
two sentences immediately after (10) are rather confusing.

e The discussion in the last results section Effective mean free paths is a bit too high-level. Please
explain how the "nature" of the transport regime can be reconstructed by inspecting the
distribution function more clearly (I found myself digging through references [47,53] to grasp
this), especially since the distribution function is geometry dependent?

¢ | believe the divergences in the angular diffusion operator should be discussed in more detail. In
particular, approaches to regularize them in numerical implementations (see below) would be
useful.

If the authors can adequately alleviate my confusion on the scope of the claims, | would be happy to
recommend this for publication in Nature Communications.

Proof-of-concept Calculations Guiding Concerns

| tried to resolve some of the confusion discussed above, namely points 1. and 2., by the following
proof-of-concept 3D numerical calculations. In case it's useful for the authors, | include them here.

In particular, | investigated a simple channel geometry with the following parameters:

e Slenderness ratio (h/w = 1/10)
e 3D Isotropic Fermi velocity (N = 256 carriers distributed evenly on the surface of a unit sphere)
e Three different isotropic bulk collision integrals using the dual-relaxation time approximation:

o "diffusive": Ly /w = 0.05, Lype/w = 10)
o "hydrodynamic": (Ly,,/w = 10, l,,./w = 0.05)
o "ballistic": (inr/w = 10, L. /w = 10)
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e Periodic boundary conditions along the length of the channel
(i.e. carriers exiting the right of the geometry get injected back on the left, and vice versa)

e Diffusive boundary conditions along the width of the channel
(i.e. carrier distributions exiting the front of the geometry get uniformly scattered into backward-

traveling carriers)
e Three different boundary conditions along the height of the channel

o Diffusive boundary conditions
(as above)

o Specular boundary conditions as in the paper, Ry = 1 — gsin (|6|)
(g =10.5)

o Specular + angular diffusion operator as in the paper,
Op = Qsin?(0) ((2 cot (6 — tan (9)))dy + 57)

(Q = 2, 9y and 83 computed using central finite differences of order 4)

i) First, note it's easy to show that using the "hydrodynamic" bulk collision integral and diffusive
boundary conditions for h/w = 1/10 and h/w = 1 one indeed obtains 'snubby' and 'parabolic'
profiles respectively (as shown analytically above in point 1.). This suggests that point 2. above is
important, i.e. that the 3D nature of the Fermi velocity is important, and one needs to justify v, — 0.

hiw =1

hiw =1/10

i) Second, it is indeed true that for the slender geometries (h/w = 1/10) making the out-of-plane
boundary conditions specular (g = 0.5, Q) = 0) alters the in-plane current distributions. However,
the effect is negligible when using "diffusive" bulk collision integrals, small when using "ballistic" bulk
collision integrals, and strong when using "hydrodynamic" bulk collision integrals.

This suggests that point 1. above is important and supports the authors claims, however the
phenomenon is not unique (and in-fact weaker) in the "ballistic" regime, and did not require the

angular-diffusion operator.
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i) Third, the angular diffusion boundary condition (¢ = 0.5, QQ = 2) resulted in numerical
instabilities. | believe this is due to the divergences highlighted above? Alternatively, the authors can
suggest in the Sl a better discretization scheme for the angular derivatives other than central finite
differences.

Georgios Varnavides



Referee Report

The manuscript titled ”Para-Hydrodynamics from weak surface scattering in ultra-
clean thin flakes” investigates the microscopic kinetic origins of an interesting question
arising from recent electronhydrodynamic experiments at low-temperatures, namely:
"does nearly-specular surface scattering from the top and bottom surfaces of a thin con-
ductor enhance the in-plane momentum-conservation in experimental signatures’? The
results appear scientifically rigorous and internally consistent. In particular, the analyt-
ical derivation of the 1D channel distribution is very nice, and provides an analytically-
simple extension for specular boundary conditions amenable to numerical calculations.
Considering the recent interest in the field of electron hydrodynamics, and the advent
of spatially resolved current density measurements in spatially-complex geometries, this
work is very timely and will be a worthwhile contribution to the field.

If the authors can adequately alleviate my confusion on the scope of the claims, I
would be happy to recommend this for publication in Nature Communications.

We thank the referee for his positive assessment of the content and impact of our work,
and his (tentative) recommendation for publication. We also thank the referee for the
great amount of work which he invested in setting up a numerical calculation to check
our results. We are highly confident that we can fully address his remaining points of
COMCErns in OUr TeSPonse.

Main Concerns

I have three main concerns, which pertain to the scope of the claims the manuscript
makes given the approximation of neglecting the spatial dependence along the width of
the channel:

The referee is correct that for our calculation we do not consider the spatial depen-
dence of the current density perpendicular to the channel direction. This is a simpli-
fication which allowed us to derive our semi-analytical solutions and is central to the
approach. However, this approrimation does not imply that v, — 0, neither does it
imply that the resulting (three-dimensional) flow is hydrodynamic, or that hydrodynamic
approaches can capture the three-dimensional flow profile. Quite the opposite - the limit
that we consider is given by h/w — 0 combined with .. — 0o and lastly with rather
specular in-plane boundaries, i.e. it corresponds to a microscopically ballistic fluid which
is disturbed marginally due to surface scattering in the thin flake limit, such that it de-
velops two fluid components which flow uniformly along the width of the channel. The
resulting flow is still microscopically ballistic (meaning that it is not possible to use a
Stokes-Ohm hydrodynamic description for the three-dimensional distribution function),
but the in-plane components of the flow velocity exhibit relaxation properties which are
indistinguishable from hydrodynamic (viscous) flows. This is our main result: The effec-
tive in-plane momentum conserving and momentum relaxing mean free paths as derived



from the microscopic distribution function exhibit a logarithmic scale separation. This
novel, intermediate regime is therefore unlike neither ballistic nor hydrodynamic flow,
and thus presents a unique and new flow regime which is exclusively produced by the di-
mensional crossover. Importantly, it was not reported before anywhere in the literature.
In order to make this point clearer, in the updated manuscript we have expanded the
introductory text where we explain our approach.

1. If T understand the experiments (which the manuscript draws motivation from
describing) correctly, they measure the projected induced magnetic flux along the width
of the channel. As such, I was expecting the work in this manuscript to draw conclusions
on the in-plane current densities, given the choice of out-of-plane boundary conditions.
This indeed has a natural precedent in ideal fluids, which I believe would be beneficial
for the authors to mention: The ’Poiseuille’ velocity profile in a rectangular channel is
of the form:
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In the regime the manuscript is concerned about (h/w — 0) , the above develops an
in-plane current density which deviates from the usual parabolic profile to a ’snubbier’
current profile.

We agree with the referee that hydrodynamic flow and the corresponding Poiseuille
profile crosses over into a ’snubbier’ profile according to the formula quoted above if
(and only if) the hydrodynamic-to-diffusive crossover is calculated using a reflectivity
parameter which encodes either no-slip or partial-slip boundary conditions. Such bound-
ary conditions have represented the go-to for almost all calculations regarding nearly
hydrodynamic flows in the last decade.

We would indeed recover this phenomenology in our approach whenever Q = 0 and
with small finite £ee. Namely, if Q = 0, the Boltzmann equation reverts to the stan-
dard form discussed in the literature. Specifically, the emergence of the snubbier profile
corresponds to the crossover from hydrodynamic to diffusive flow when the rectangular
channel becomes so narrow that the channel width w > h is much larger than the ef-
fective in-plane mean free path £y, (as calculated for example from the in-plane current
density).

However, in the manuscript, we do not consider this limit. Instead, we concentrate
on the Gurzhi regime where w < Ly,-. That latter case corresponds most closely to what
the referee dubbed ’specular out-of-plane BCs’ and it does not represent a hydrodynamic-
to-diffusive crossover but a hydrodynamic-to-ballistic crossover, where the exact nature
of the in-plane boundaries are much less important. As the referee correctly points out
i his calculations, both the ballistic and the hydrodynamic profiles which the referee
calculated for almost specular out-of-plane BCs are essentially parabolic, and merely
feature a different curvature, the precise value of which would be determined by the (in-
plane) slip length.



The main result of the present manuscript reveals a new type of hydrodynamic-to-
ballistic crossover: We show that the ballistic peak in the distribution function which
would normally lead to a ballistic flow, is so much suppressed if angular diffusion from
surface scattering is present that the flow is prevented from becoming ballistic. In other
words, our main finding is that the phenomenology which was previously suggested to
govern the hydrodynamic-to-ballistic crossover is incomplete, because it misses an im-
portant source of viscous correlations which can be induced by weak surface scattering.
We do not expect that this new crossover will be detectable in the in-plane current pro-
file: As the referee has pointed out themselves, the in-plane current profile is not very
sensitive to the distinction between ballistic and hydrodynamic flow.

The new transport regime that we find is therefore not in disagreement with anything
that the referee has pointed out, but importantly our results cannot be captured by a
formalism which uses only a reflectivity coefficient. Neither can the Poiseuille velocity
profile which the referee quoted for the hydrodynamic-to-diffusive crossover describe this
regime. Thus, the expressions documented in the literature for the in-plane current den-
sities are not applicable in this new transport regime. In the updated manuscript we have
made this point much sharper, and we thank the referee for asking this question, because
him asking has helped us to better emphasize the novelty of our results.

Note: of-course the above assumes no-slip boundary conditions, and in-general a ki-
netic theory vs a pde-hydrodynamic solution would be desirable in the case in question
(as the authors rightly point out.) My confusion stems from the following: ”"How can the
authors conclude about the nature of experimental results measuring in-plane current
densities, when their analysis rules them out by assumption?”

As mentioned, the in-plane current profile for the channel flow cannot distinguish well
between ballistic and viscous flows. Therefore, we refrained from using it as an indicator
of hydrodynamic correlations. Instead, we directly construct the effective mean free paths
from the distribution function, which is a simple and unambiguous measure for the flow
regime.

While a numerical solution to the boundary scattering problem would be desirable, as
the referee pointed out himself, this is outside of the scope of the present work, neither is
it instrumental for the new crossover regime which we find. To repeat, our main result
is that angular diffusion leads to a novel transport regime with a new scaling dependence,
which has not been documented before.

We remark in passing that the experimental work on which this theory investigation is
based on (Nature 607, 7/-80 (2022)), similarly did not invoke the shape of the current
profile to detect hydrodynamic flow, neither for the flow in the channel nor in the cham-
ber. Instead, we used the direction of the transverse current component, which reverses
sign at a specific opening angle of the chamber, as a (binary) and thus robust indicator
of hydrodynamic flow. Indeed, one of the main goals of the experiment was to establish a
transport measurement/device geometry which allows to diagnose the flow regime inde-
pendent from the precise current density profile, which can determine the Gurzhi length
quantitatively. This is possible based on whether or not a vortical flow develops in the



chamber for different device geometries.

2. In a similar vein, the authors use an isotropic Fermi velocity in their analysis,
claiming that in contrast to the highly-anisotropic Fermi surfaces the Fermi velocity is
fairly isotropic in a footnote. This is fine, although calculations showing the distribution
of the Fermi velocity in the SI would be more convincing. However, since the Fermi
velocity enters the BTE as:
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then in-order for their assumption pointed out in 1. above to be justified, they would
require instead that v, — 0, not that it’s isotropic in 3D. This is clearly violated in
WTes looking at Figure 2.

Here we disagree with the referee, for two reasons: Firstly, the gradients in y-direction
are much smaller than in z-direction, which is well justified in the limit h/w — 0.
Namely, our analysis holds in the limit that the viscous dissipation due to the bulk e-e
interaction is negligible compared to the dissipation coming from the surface scattering
mechanism. This is a good approrimation because we consider the case that the momen-
tum conserving bulk mean free path is much larger than all other length scales, which
implies that the in-plane components of the gradient terms which enter in the Boltzmann
equation are negligible when taking the limit h/w — 0.

Secondly, the assumption of a mostly uniform Fermi velocity is not primarily tied to
the shape of the Fermi surface, but to how uniform the magnitude of the Fermi velocity
1s. The exact shape of the Fermi surface matters parametrically, but not for the scaling
analysis in terms of the fineness ratio a. Thus, while some numerical estimates might
slightly change upon retaining the in-plane gradients, the separation of scales h/w — 0
and the derivations done thanks to it will hold up in this more complicated case as well.
We reiterate that we do not assume anywhere that v, — 0, and in fact our distribution
function is a full three-dimensional one, as stated in the main text below Eq. (1).

3. The bulk collision integral used in (1), given by the single-relaxation time approxi-
mation Iy = |v|(f — fo)/¢ conserves no collisional invariants and thus cannot be used to
construct hydrodynamic theories. This is nicely discussed in eq. (9) and Appendix A of
de Jong and Molenkamp (Phys. Rev. B 51, 13389).

As it is explained by de Jong and Molenkamp (Phys. Rev. B 51, 13389) in Appendiz
A, for them (and generally in the absence of magnetic fields, cf. Ref. [48] in the updated
manuscript) the relazation time approzimation does conserve the average particle density
for a channel flow and one can rewrite the corresponding Boltzmann equation in terms
of the difference f — fy.

We agree that Iy does not conserve momentum. However, as our results demonstrate,
short-range correlated surface roughness can serve as a source of momentum-conserving
scattering processes with an effective mean free path Cp,. much shorter than €. Since { is
so much larger than all other length scales in the problem, it then makes sense to discuss



momentum conservation on the much shorter length scale of lpe.

We note that the length scales after which a given quantity decays are always calculated
from the actual distribution function which solves the Boltzmann equation, therefore it
is always possible to define decay rates (or length scales) for all ’collisional invariants’
(i.e. up to which distance the respective quantity is conserved). However, generically
all invariants are conserved only up to the same distance £, and no further. It is the
speciality of hydrodynamic flows that the collisional invariants starting from the second
angular harmonic of the distribution function and higher orders, are much shorter lived
than the first angular harmonic, which corresponds to the statement that momentum is
much longer lived than the average lifetime of a state. In finite-sized geometries, espe-
ctally with the complex scattering cross section which we are using, it is therefore not
possible to rule out the existence of collisional invariants only by inspection of the bulk
scattering integral.

While this is usually rendered a moot-point due to the symmetry of the channel geom-
etry, the authors need to be more careful in general geometries such as the experimental
double-chamber geometry they're referencing. More generally, it would be nice if the
authors could include a momentum-conserving term in their bulk collision integral, e.g.
using the dual-relaxation time approximation. I understand this will of-course make the
analytical solution much harder, so it might be out-of scope.

As we pointed out in the beginning, the main novel finding of our work is that short-
range correlated surface roughness can introduce a scale separation between the effective
momentum conserving and momentum relaxing mean free paths, even when the bulk
momentum conserving scattering is irrelevant. This statement does not rely on a specific
in-plane geometry. As mentioned, we therefore chose a channel flow geometry with
almost specular in-plane boundaries, which makes the in-plane gradients negligible and
allows us to separately discuss the out-of plane component of the distribution function.

We agree with the referee that for a future project, it would be interesting to perform
numerical calculations for more complicated geometries, but it is indeed out of scope for
the present manuscript.

Minor points

I believe the term ’para-hydrodynamics’ is unnecessarily confusing, and would urge
the authors to remove it. As illustrated above with the velocity profile of an ideal fluid in
a rectangular channel, the geometry let alone the boundary conditions naturally affect
the observed current densities. To the extent that ”electron hydrodynamics” is used to
describe electron flow that’s ”fluid-like” the term ”hydrodynamics” should be taken to
quantify the extent to which momentum is conserved in the system.

The para-hydrodynamic regime is distinguished by its dissimilar scaling behavior, and
the resulting flow is outside of the hydrodynamic-to-ballistic crossover reported so far
anywhere in the literature. Since we obtain a macroscopically viscous flows out of a
microscopically ballistic calculation, we feel that it is appropriate to refer to this flow



as para-hydrodynamic (i.e. viscous flow which is unrelated to bulk interactions). Ad-
ditionally, by referring to this flow as para-hydrodynamic, we make the connection to
our previous experimental work (Nature 607, 74-80 (2022)), where the same term was
used both in the abstract and in the discussion. In the latter case, no criticism against
the name "para-hydrodynamics” was raised, and we wish to link this theory manuscript
specifically to the aforementioned experimental work.

Please include ¢ in your schematic in Figure 1a.
We have added ¢ in Fig. 1.

Please use a different notation than for your modified Gurzhi parameter in (10). Cur-
rently the two sentences immediately after (10) are rather confusing.

Per the referee’s request, we changed the symbol in Eq. (10) to D'.

The discussion in the last results section Effective mean free paths is a bit too high-
level. Please explain how the "nature” of the transport regime can be reconstructed
by inspecting the distribution function more clearly (I found myself digging through
references [48,54] to grasp this), especially since the distribution function is geometry
dependent?

We have previously shown (Ref [48] in the updated manuscript) that if the two-
dimensional distribution function describing the flow in a narrow channel is decom-
posed into it’s angular harmonic components, keeping only the first and second angular
harmonics, the Boltzmann equation is simplified to the Stokes-Ohm equation for hy-
drodynamic flow. If higher angular harmonics beyond second order are present in the
distribution function, this is signaling the presence of additional long-lived modes in the
flow, something which is known to happen for a ballistic distribution function. In the
manuscript, we make use of these observations for the calculation of the momentum
relazing and momentum conserving mean free paths: The estimate for the momentum
relaxing mean free path is based on the first harmonic of the distribution function, i.e.
we determine it in a way which is agnostic about the presence of absence of higher an-
gular harmonics in the distribution function. Then, we estimate the influence of higher
harmonics, corresponding to ;% by evaluating the mazimal collision rate based on the
geometry of the channel. This estimate quantifies which value . would assume for a
distribution function which is approaching a cosine form (and thus free of high angular
harmonics). Both these estimates are asymptotically correct because the high angular
harmonics of the distribution function are subleading as a function of a and thus do not
contribute in the limit o — 0.

A much less technical way of making these statements is given in the manuscript:
We basically decompose the distribution function into two fluids, a hydrodynamic fluid
(which features quick relaxation rates in the high angular harmonics and thus has a
cosine-shaped distribution function; and a ballistic fluid which is entirely dominated by



high angular harmonics (i.e. it contains the spiky parts of the distribution function).
In the updated manuscript, we have added a remark which explains the reasoning for
the two-fluid approximation.

I believe the divergences in the angular diffusion operator should be discussed in more
detail. In particular, approaches to regularize them in numerical implementations (see
below) would be useful.

While this is certainly outside the scope of the present work, we agree with the ref-
eree that figuring out how to set up a three-dimensional numerical code constitutes an
important stepping stone for future works. Let us mention which steps we think need to
be taken in order to make such a numerical evaluation: From our experience with the
angular diffusion term so far, the main difference between the path taken in the present
manuscript and a three-dimensional numerical approach is the saddle point approxima-
tion. As we emphasize in the appendiz, in our approach we employ a simplified angular
diffusion operator which emerges when performing the saddle point approximation under
the assumption that the in-plane angle (¢) dependence is reqular and can be factored out
from the distribution function (i.e. there is no further dependence on ¢ left in h(z,6).
On the other hand, if one wanted to also keep irreqular dependencies on ¢, the more
complicated form of the angular diffusion operator which we quote in the appendix in Eq.
S18 is the one which has to be used.

Proof-of-concept Calculations Guiding Concerns

We appreciate that the referee undertook the effort to calculate the current profiles for
various transport regime.

At the same time, as we explained above, current profiles are generically a problematic
indicator of the flow regime (cf. Ref. [14]). A weakly parabolic profile could either point
towards a hydrodynamic flow with fairly specular boundaries, or towards ballistic flow
with very diffusive boundaries. As such, current profiles are not the preferred measure to
assess the flow regime. Instead, the knowledge of the distribution function is the much
better and more versatile indicator of the flow regime.

Independent of this principal issue regarding current profiles, the measured data from
the experiment in Ref. [14] indicates a scenario where the in-plane boundaries constitute
almost no-stress boundary conditions with a reflectivity parameter of around 70%. In the
perfect no-stress scenario, the in-plane current profile would be completely homogeneous
along the width of the channel, irrespective of the scattering properties of the top and
bottom surfaces, which would only serve to reduce the total current density, but uniformly.
In the partial-slip case, the experimental current profile is therefore only weakly parabolic,
with only minor quantitative differences between ballistic and hydrodynamic correlations.
For this reason, the determination of the current profile is not helpful in connecting the
theory result of the present manuscript with the previous experimental findings, neither
i a channel geometry, nor using the chamber geometry.

Thirdly, we emphasize that none of the numerical examples considered by the referee



correspond to the limit considered in our work, because he considers the case where
Q = 0. As the three depicted cases labeled as ”diffusive” ”hydrodynamic” and ”ballistic”
all assume QQ = 0, they represent the reqular hydrodynamic-to-ballistic crossover, which
by construction cannot produce the intermediate para-hydrodynamic flow regime. As
mentioned, in the limit Q = 0, the Boltzmann equation considered in this manuscript
becomes purely ballistic, yielding the standard ballistic phenomenology reported before in
the literature.

What the current densities calculated by the referee show are these following main
effects: The diffusive current profile (blue) is virtually unaffected by the out-of-plane
boundaries, because the intrinsic mean free path is just so much smaller than the the
device size. In contrast, the hydrodynamic flow (red) depends sensitively on the out-of
plane boundary conditions because the momentum-relaxing mean free path is suppressed
substantially by the out-of-plane boundary scattering. Most strikingly, the hydrodynamic
profile is rendered ohmic once £y, becomes much smaller than w, and resembles the
diffusive case (blue). Finally, the ballistic profile changes in similar fashion as the hy-
drodynamic profile upon adding strong out-of-plane scattering, but to a lesser extent
because the effective mean free path (Gurzhi length) in the bulk is much larger. Namely,
the bulk Gurzhi length for the red profiles (hydrodynamic) is 0.35, while it is 5 for the
green profiles (ballistic).

We reiterate that as long as @Q = 0, none of the effects discussed in the manuscript are
present in the numerical calculation. The most representative case is the dashed green
current profile, to which the angular diffusion term stills needs to be added to bring the
flow into the para-hydrodynamic regime.



Reviewers' Comments:

Reviewer #2:

Remarks to the Author:

The concerns raised in the first report have been adequately addressed by the authors in their
rebuttal. I recommend publication of the revised manuscript in Nature Communications, as I
believe the results are very timely and will be of interest to the broad readership of the journal.



Manuscript: “Para-hydrodynamics from weak surface scattering in ultraclean thin
flakes” by Y. Wolf, A. Aharon-Steinberg, B. Yan and T. Holder

Response to the referee(s)

Reviewer #2 (Remarks to the Author):

The concerns raised in the first report have been adequately addressed by the authors in
their rebuttal. | recommend publication of the revised manuscript in Nature Communications,
as | believe the results are very timely and will be of interest to the broad readership of the
journal.

Response:
We thank the referee for recommending publication of the manuscript in its current form.
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