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Supplementary Note 1. MODEL AND THEORY

A. Description of the system
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Supplementary Fig. 1: Optical photograph of the sample chip. (a) The sample consists of two transmission line
resonators with a DC-SQUID embedded in the middle (yellow). The two resonators are coupled by a finger capacitor, as shown
in the top red box. They are also coupled to two external feedlines, as shown in the middle green box. The resonant frequency
and the nonlinearity of each individual resonator is controlled by the T-shaped flux control lines, as shown in the bottom blue
box. (b) Schematic of the entire system, where the resonator is coupled to different baths.

An optical photograph of a reference sample is shown in Supplementary Fig. 1a, which has the same design as
that used in the experiment. The sample is fabricated on a 525µm-thick silicon chip with an area of 10 × 6mm2

using double-angle shadow evaporation and lift-off procedures. The superconductor layer is made of aluminum with
a thickness of 140 nm. The major part of the sample consists of two 7.2mm-long and 13.2µm-wide transmission
line resonators with two DC-SDUIDs embedded in the middle, respectively. The areas of the two SQUIDs are
designed to be 10.5×24.5µm2 and the two junctions in the SQUID loop differ in size to achieve a SQUID asymmetry
of approximately 0.13. In addition, two T-shaped on-chip antennae are placed in proximity to the two SQUIDs,
respectively, to control the magnetic flux threading the SQUID loops. With this sample design we implement two
nonlinear resonators with tunable frequency and nonlinearity [1, 2]. The two resonators are coupled by a 20µm-long
finger capacitor. Furthermore, they are coupled to the outside fields, respectively, by two 40µm-long finger capacitors
at the two ends, and also to the microwave fields in the flux control lines through the two antennae.

In our experiment, we focus on a single resonator which is labelled as “Resonator-2” in the rest of the context. The
other resonator is detuned by at least 100MHz throughout our experiment, which is much larger than the coupling
strength between the two resonators (∼ 5MHz) and thus can be fairly neglected. Supplementary Fig. 1b shows the
schematic of the whole system, of which the Hamiltonian is described as

H/ℏ = ωAa
†a+ Ua†a†aa+

+∞∑
k=−∞

ωkb
†
A,kbA,k + iκA

(
b†A,ka− bA,ka

†
)

+

+∞∑
k=−∞

ωkb
†
M,kbM,k + iκM

(
b†M,ka− bM,ka

†
)

+

+∞∑
k=−∞

ωkb
†
F,kbF,k + iκF

(
b†F,ka− bF,ka

†
)
+ iκφ

(
b†F,k − bF,k

)
a†a. (1)

Here, a, and bA/M/F,k are the field operators of the resonator and the intrinsic, microwave-line, and flux-line reservoirs,
respectively. The parameter κA/M/F/ϕ describes the coupling strength between the system, i.e., the resonator, and
the corresponding reservoirs. Following the standard derivation of the input-output relation [3, 4] and restricting our
discussion to a narrow bandwidth around the driving frequency, ωd, we obtain the following Heisenberg-Langevin
equation for the resonator degree of freedom

ȧ(t) = −iωAa(t)− i2Ua†(t)a2(t)− γA + γM + γF
2

a(t)−√
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in (t)−√
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(
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(F)
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(F)†
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)
,

(2)
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where
√
γA/M/F/φ =

√
2πκA/M/F/φ. Here, we have assumed the intrinsic amplitude reservoir to be in the vacuum

state, and omitted the two-photon loss term by rotating wave approximation (RWA). The input fields are defined as

b
(M/F)
in (t) =

∫ +∞
−∞ dωe−iωtb

(M/F)
ω (0)/

√
2π, while the output field in the microwave line is b

(M)
out (t) = b

(M)
in (t) +

√
γMa(t).

B. Quantum theory of the Duffing oscillator

Because our experiments are performed in the regime where the dephasing rate, γϕ, is smaller than the total
energy dissipation rate, γ = γA + γM + γF, we temporarily omit the dephasing effect in the following discussions.
The experimentally determined values of the sample parameters are reported in Supplementary Note 2D. We will
discuss the dephasing effect and also the possible two-photon processes in Supplementary Note 4E for achieving a
better understanding between the experimental data and the simulation results. In the rotating frame at the driving
frequency, ωd, we obtain the simplified Heisenberg-Langevin equation as

ȧ(t) = −i∆a(t)− i2Ua†(t)a2(t)− γ

2
a(t)− ξ. (3)

Here, ∆ = ωA−ωd is the frequency detuning between the resonator and the drive. Besides, we have assumed the input

field to be coherent such that we can use a complex number to describe the driving strength, ξ = −i
√
γM/F⟨b

(M/F)
in ⟩

[5]. In most measurements reported in the main text, we drive the sample through the flux line while measuring
through the microwave line, in order to avoid the reflecting driving field in the output path.

The above equation describes a quantum-mechanical Duffing oscillator. It has been proven that all orders of signal
moments for the steady state (SS) can be calculated in an analytical way [6]

⟨a†jak⟩ = d∗jdk
Γ(c)Γ(c∗)0F2

(
k + c, j + c∗, 2 |d|2

)
Γ(k + c)Γ(j + c∗)0F2

(
c, c∗, 2 |d|2

) . (4)

Here, we have used the abbreviations c = (∆− iγ/2) /U and d = −ξ/U . Moreover, 0F2 (x, y, z) =∑∞
n=0 Γ(x)Γ(y)z

n/ [Γ(x+ n)Γ(y + n)n!] is the generalized hypergeometric function, where Γ(·) is the gamma special
function. This formula indicates that the signal moments of the SS are single valued in the entire parameter space, such
that a quantum-mechanical Duffing oscillator does not exhibit bistability or hysteresis [6]. Theoretical calculations
also indicate the following Wigner quasi-distribution function of the unique SS [7, 8]

W (α, α∗) = N e−2|α|2 |0F1 (c, 2dα
∗)|2 , (5)

where N is a normalization factor and 0F1(x, z) =
∑∞

n=0 Γ(x)z
n/ [Γ(x+ n)n!] is the hypergeometric function.

C. Classical theory of the Duffing oscillator

If we take the mean value of the Heisenberg-Langevin equation, i.e., Supplementary Eq. (3), and neglect the photon
correlations in the third-order term, i.e., ⟨a†(t)a2(t)⟩ → α∗(t)α2(t) where α(t) = ⟨a⟩, we obtain the classical equation
of motion for the Duffing oscillator [9]

α̇(t) = −i∆α(t)− i2Uα∗(t)α2(t)− γ

2
α(t)− ξ(t). (6)

One can prove that this equation is equivalent to the celebrated Duffing equation under RWA [10–12]. The SS solution
of the classical system can be obtained by solving the following equation [6, 13]

4U2 |α|6 + 4∆U |α|4 +
[(γ

2

)2
+∆2

]
|α|2 − |ξ|2 = 0. (7)

Depending on the specific parameter settings, either one, two, or three solutions of |α|2 are allowed in different
parameter regimes. This observation is in stark contrast to the quantum-mechanical analysis, where a single unique
SS solution is predicted throughout the entire parameter space. The stability of the system can be verified by checking
whether ∂ |ξ|2 /∂|α|2 > 0 [6, 13]. At the boundaries of the hysteretic regime, we have

|α|2 =
−2∆±

√
∆2 − 3 (γ/2)

2

6U
, (8)
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which, in combination with Supplementary Eq. (7), can be used to draw the two boundaries of the hysteretic regime
in the ξ-∆ space, as shown in Fig. 1b of the main text. It indicates that the hysteresis and bistability exist only
in the regime ∆2 > 3 (γ/2)

2
, where the system can have a double-well potential. Outside this parameter regime,

the potential has only a single minimum and there exists only a single unique SS solution. Depending on whether
the driving strength is smaller or larger than either of the two boundaries, the single potential well is approximately
localized at one of the two minima of the double-well potential. This observation leads to the method of initial state
preparation, as will be discussed in detail in Supplementary Note 3.

Supplementary Note 2. SYSTEM CHARACTERIZATION

A. Experimental setup
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Supplementary Fig. 2: Schematic of the experimental setup. The sample is placed at the mixing chamber stage of a
homemade wet-type dilution refrigerator, to which four microwave coaxial cables are connected. We also anchor two pairs of
homemade cryogenic thermometers (blue box) and heaters (red box) to the two 30 dB attenuators at the base temperature to
realize active control of the local temperature. Here, the blue dashed lines indicate the temperature stages of the cryostat, and
the blue dots indicate a heat exchanger for cooling the DC wires. The green thick lines indicate NbTi cables.

The schematic of the experimental setup that is placed inside, or integrated on top of the dilution refrigerator is
shown in Supplementary Fig. 2. From the top to the bottom, the temperature decreases from approximately 290K,
which is stabilized by using the Peltier cooler (Laird Hi-Pot tested 750VOC) and the temperature stabilizer (Telemeter
TR12-PI-2Q2), to a minimum value of 30mK at the sample stage. The input and output microwave lines, labelled as
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MW1/2, FLX1/2, and OUT1/2, are coupled to the two nonlinear resonators through the on-chip finger capacitors
and the T-shaped antennae, as shown in Supplementary Fig. 1. Here, the microwave fields in MW1/2 and OUT1/2
are separated by using the cryogenic circulators (QuinStar QCY-060400CM00). We add also a 5.5-10GHz high-pass
filter in each of the input paths to isolate the sample from higher-frequency harmonics of the driving fields. In each
of the the output paths, we add two circulators (QuinStar CTH1184-KS18, Pamtech CTH1368-K18-A) at 30mK
and 700mK, respectively, to isolate the sample from the high-temperature thermal radiations and the possible back
propagating fields coming from the HEMT amplifiers (LNC4 8A). At the top of the cryostat, we place a 5.5-10GHz
high-pass filter and amplify the cryogenic signal by a low-noise room-temperature amplifier (MITEQ JS2-0200080-08-
0A) in each of the output line. These amplifiers are tightly integrated with the Peltier cooler, such that they operate at
a stable temperature of around 17 ◦C. We place all of the described microwave components in an electromagnetically
shielded room, while the temperature of the entire laboratory is stabilized around 27 ◦C by using the air conditioner.

For the DC part, we combine the output of the DC current sources (ADCMT 6241A) with the microwave fields in
FLX1/2 by using a bias-tee (UMCC BT-S00-HS), which are further connected to the T-shaped antennae on chip. In
addition, two pairs of homemade cryogenic thermometers and heaters are clamped tightly to the two 30 dB attenuators
at base temperature. They are connected to the AC resistance bridge (Picowatt AVS-47B) and the corresponding
PID temperature controller (Picowatt TS-530A), in order to control the local temperatures of the two attenuators
and generate blackbody radiation. This configuration is used to characterize the amplification gain and the noise
temperature of the output paths, as will be discussed in Supplementary Note 2E.

B. Control and readout modules

The schematic of the room-temperature setup for control and measurement is shown in Supplementary Fig. 3, which
consists of three modules. The pulse-shaping module is designed to control the initial state of the nonlinear resonator
and also to drive the system. We use a microwave signal generator (R&S SMF100A) to generate the radio frequency
(RF) carrier wave. The field envelope is modulated by a double balanced mixer (Marki M1-0218LA) with its local
oscillator (LO) port connected to the carrier wave and the intermediate frequency (IF) port to the first channel of
an AFG (arbitrary function generator, Tektronix AFG3252). The RF port of the mixer is connected to the switch
module for further signal routing. The second channel of the AFG is synchronized with the first one, which is used to
trigger the measurement process of the ADC (analogue-to-digital converter, NI FlexRIO 5782). In addition, we place
several attenuators, circulators, and filters in the configuration for the compatibility of different microwave devices.

The measurement module is designed to down-convert the RF signal to an IF frequency of fIF = 62.5MHz for
pulsed heterodyne measurements. This choice of frequency avoids the possible beating between the signal and the
higher order harmonics of the 10MHz Rb frequency standard (SRS FS725), which synchronizes all the instruments
in the lab. We use image rejection mixers (Polyphase IRM4080B) in the first two lines, OUT1/2, to achieve a better
signal-to-noise ratio (SNR), while a double balanced mixer (Marki M1-0218LA) is used in the third reference line for
its relatively low price. However, we use the same LO field, which is generated by the microwave signal generator (R&S
SMB100A), to drive all the three mixers for reaching a phase alignment. We also amplify the two channels, OUT1/2,
by low-noise room-temperature amplifiers (MITEQ AU1447R), and place several attenuators, filters, isolators, power
dividers to improve the SNR. We note that the isolator (MCLI IS-19-1) is designed for the 4-8GHz range, while it still
works in the megahertz regime for our needs of preventing the possible back propagating fields from the IF amplifier.

Besides, we use several microwave coaxial switches (Agilent N1810TL, N1812UL) in the switch module to control the
connectivity of different signal paths for different experimental purposes. The switches are controlled by a commercial
controller (Agilent L4445A) with a homemade remote-control panel. For typical characterization experiments, where
only the scattering coefficients are measured, we connect the two input ports, MW1/2, and the two output ports,
OUT1/2, to the four channels of the VNA (vector network analyzer, Keysight PNA N5222A). However, for quadrature
measurements we connect OUT2 and the reference driving field to the two channels of the ADC, which has a sampling
frequency of fS = 250MHz. The driving field is connected to MW2 for reflection-type measurements, or FLX2 for
transmission-type measurements.

C. Closed-system parameters

To determined the closed-system parameters, such as the resonant frequency, ωA, and nonlinearity, U , we slowly
sweep the current in either of the two antennae and measure the scattering coefficients. Here, we assume a linear
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Supplementary Fig. 3: Schematic of the control and readout modules. The setup consists of three modules: The
measurement module (blue), the pulse-shaping module (red), and the switch module (green). The components enclosed by
the dashed lines are sealed in a 48× 24× 12 cm2 homemade copper box for electromagnetic shielding, grounding, and passive
cooling. The switch module is placed outside the box to avoid potential stray magnetic field that may influence the other
microwave devices.

relation between the flux and the applied currents [2](
ϕ1

ϕ2

)
=

(
A11 A12

A21 A22

)(
I1
I2

)
+

(
ϕ1,off

ϕ2,off

)
, (9)

where A is the crosstalk matrix, ϕ1,off and ϕ2,off are the offset flux threading into the two SQUID loops, and ϕ0 = ℏ/2e
is reduced flux quantum. We sweep respectively the two antenna currents from−600µA to 600µA with 80 intermediate
steps, and measure the scattering responses of the system by using the VNA. The sweeping speed is set to 1µA/s, and
the IF bandwidth of the VNA is set to 1 kHz. We average each data point over 100 times in a point-average mode.
In principle, the output power of VNA should be set as low as possible in order to minimize the nonlinear effects [14].
However, considering the practical compromise between the SNR and the measurement time, we set the output power
to 0 dBm with an additional 30 dB attenuation at room temperature. The exact attenuation of the input cables will
be characterized in Supplementary Note 2F. This configuration corresponds to an approximately 10 h measurement
time for each characterization.

After getting the measurement results, we use an optimization method to find the best estimation of the 9 closed-
system parameters of the sample, as well as the 6 parameters defined in Supplementary Eq. (9) for controlling the
external flux. The automated fitting procedure not only provides the possibility to find the optimal estimation of the
sample parameters, not matter local or global, in the huge parameter space, but also avoids possible biases in manual
characterization and keeps a relatively objective criteria among different experiments. The characterization results
are summarized in Supplementary Table 1, which has been reported in Supplementary Ref. 2. The slight difference of
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CPW resonator

length L 7.395× 10−3 m

inductance per meter l 4.598× 10−7 H

capacitance per meter c 1.697× 10−10 F

SQUID #1, #2

critical current IJ1, IJ2 1.566× 10−6 A, 1.416× 10−6 A

shunting capacitance CJ1, CJ2 9.394× 10−16 F, 1.168× 10−15 F

asymmetry dJ1, dJ2 2.136× 10−1, 1.937× 10−1

Antenna #1, #2

flux offset ϕ1,off , ϕ2,off −3.902× 10−1 ϕ0, −1.149× 10−1 ϕ0

flux change per current dϕ1/dI1, dϕ2/dI1 6.088× 10−4 ϕ0/A, 9.927× 10−4 ϕ0/A

flux change per current dϕ1/dI2, dϕ2/dI2 −3.715× 10−5 ϕ0/A, −5.054× 10−4 ϕ0/A

Supplementary Table 1: Experimentally determined closed-system parameters of the system. Source data are
provided as a Source Data file.

several parameters in Supplementary Table 1 and Supplementary Ref. 2 is attributed to the drift of sample parameters
in different cool down.

D. Open-system parameters
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Supplementary Fig. 4: Experimentally determined open-system parameters of the second resonator. (a) We
tune the resonant frequency to different values and characterize the internal, external, and loaded quality factors. (b) The
result is transformed into the internal and external loss rates, γi and γc, respectively. (c) We separate the frequency-dependent
and independent parts of γi into the dephasing rate, γϕ, and the energy decay rate, γ0, respectively. The latter can be further
split into γA and γF. The shaded area indicates the frequency range not accessible by our sample. Source data are provided as
a Source Data file.

Using an automated sample tuning procedure, we tune the second resonator to different frequencies and measure the
reflection coefficient for characterizing the open-system parameters, such as the total energy dissipation rate, γ. The
measurement data is processed by the recipe described in Supplementary Ref. 3, where the experimental imperfections,
such as acquisition noise and circuit asymmetries, are corrected automatically. We note that the reflection coefficient
of the effective one-resonator system is slightly different from a typical necklace-type λ/2 resonator, because we
consider only the input and output fields at one single end of the resonator. In other words, we attribute all the
photon-loss mechanisms, which include the resonator intrinsic loss as well as the photon loss through the flux line
and the resonator-resonator coupling capacitor, into the internal quality factor, Qi. Considering also the practical
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distortions of the spectrum, we write [2, 3]

S22 (ω) ≈ Ae−j(τω+φ)

(
1− ejϕ2Ql/ |Qc|

1 + 2jQl (ω/ωr − 1)

)
, (10)

Here, 1/Ql = 1/Qi +1/Qc, and we have defined the reflection coefficient of the second resonator as S22. To minimize
the influence of the resonator nonlinearity and obtain a faithful characterization, we keep Pin sufficiently small. We
set the power at the VNA output to −30 dBm and add 30 – 50 dB room-temperature attenuations depending on the
SNR at different frequencies. In this way, the spectrum is kept approximately Lorentzian such that the contribution
of nonlinearity to the scattering coefficient can be fairly neglected [14].

Supplementary Fig. 4 summarizes the characterization results of the second resonator in the range between 6.80
and 7.20GHz. Although the external Q factor is approximately a constant for different ωA, the internal quality
factor decreases when decreasing the resonant frequency. We note that similar observations are also reported in
the literature [15, 16]. We attribute the change of Qi to the possible effect of dephasing, which originates from the
jitter of the resonant frequency due to flux noise. The flux noise can perturb the resonant frequency in time, such
that the dephasing rate should depend on the derivative, γϕ (ωA) = ηdωA/dϕex, of which the exact formula can
be derived from the effective Josephson energy. Here, ϕex is the flux bias and η is a constant to be determined.
This interpretation is consistent with our observation, because dωA/dϕex is increasing with decreasing frequency. By
comparison, the external quality factor does not depend on the resonant frequency, which is also consistent with our
observation. In these regards, we separate the energy dissipation and dephasing rates from the measured internal
loss rate as γi(ωA) = γ0 + γϕ (ωA). The measured results fit very well with these relations, which indicates a good
understanding of the dissipation mechanisms of our system. Besides, we also use a third-order polynomial to fit
the weak dependance of the external decay rate on the frequency, γM (ωA) ≡ γc (ωA), which may originate from
possible experimental imperfections. In total, we obtain the total energy dissipation rate γ(ωA) = γ0 + γM (ωA)
and the dephasing rate γϕ (ωA). The characterization result shows that the second resonator is under coupled with
γ0 = 2.26µs−1 and γM = 1.59µs−1 on average. The total energy dissipation rate, γ, dominates the dephasing rate,
γϕ, for ωA/2π ≥ 6.9GHz. This indicates that the dephasing effect may be fairly neglected in this frequency range.
We note that γ0 is a combination of the intrinsic damping rate, γA, and the coupling induced damping rate, γF, as
discussed in Supplementary Note 1A. With no knowledge on the ratio between the two rates, we simply assume that
γA = γF = γ0/2 in the rest of the discussions, which already shows a good consistency between the simulation and
our experimental results.

E. Gain and noise in the output path
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Supplementary Fig. 5: Experimentally determined parameters of the output channel, OUT2. We tune the second
resonator to approximately 7.10GHz and measure the blackbody radiation from the signal path, OUT2, within a ±2MHz
bandwidth around the central frequency 6.95GHz (blue dots). The blackbody radiation is generated by a 30 dB heatable
attenuator which is mounted just at the sample input. The error bars represent the standard deviation among 16 independent
experiments, and the red solid curve is the numerical fit. Source data are provided as a Source Data file.

We relate the output signal field at the cryogenic temperature, bs,in, and the fields to be measured at the room
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temperature, bs,out, by the Caves formula [17–19]

bs,out ≈
√
G
(
bs,in + b†n,in

)
, (11)

where bn,in is the field operator of the amplification noise, and G is the power gain of the amplification chain. Here,
we have neglected the difference between G and (G − 1) for a sufficiently large gain (G ≫ 1), which is valid in
common experiments of superconducting quantum circuits. We use the thermal noise as a resource to obtain a precise
knowledge of G and bn,in [20–27].
The Planck’s law describes the energy density of a field emitted by a blackbody thermalized at temperature T .

A straightforward derivation of Planck’s law can be obtained by recalling the properties of a single-mode thermal
state at temperature T , where the average photon number is n̄T (ω) = 1/ {exp [ℏω/(kBT )]− 1}. Here, n̄T (ω) has
the dimension of photon number per second per bandwidth. Straightforwardly, the power of thermal radiation in a
narrow band, 2B/2π, can be obtained as P = Bℏωn̄T (ω)/π. The value of P can be calculated from the measured I/Q

quadratures, that is P =
(
I2 +Q2

)
/(2Z0). Here, we have assumed a perfect impedance match at the ADC input

with Z0 = 50Ω. The factor of 2 originates from the sinusoidal nature of the microwave field.

To characterize the parameters G and ⟨b†n,inbn,in⟩, we tightly clamp a homemade cryogenic heater and a homemade

cryogenic thermometer to a 30 dB attenuator to generate the blackbody radiation at the sample input (See
Supplementary Note 2A for detail). The heater is a 100Ω resistor (Vishay MCT 0603), of which the temperature,
T , is measured and controlled by the AC resistance bridge (Picowatt AVS-47B) and the PID temperature controller
(Picowatt TS-530A). The 30 dB attenuator can be modeled as a beam splitter which transmits 0.1% of its input
signal and 99.9% of the thermal radiation from the environment at temperature T . Assuming that the measurement
bandwidth is largely detuned from the resonant frequency of the resonator, ωA, this blackbody radiation can be fully

reflected at the sample input, and then amplified and measured as a finite power Pout ≡ BℏωA⟨b†s,outbs,out⟩/π. In the
form of the Caves formula, we have

Ps,out ≈
GBℏωA

π
[n̄T (ωA) + n+ 1] . (12)

Here, we have defined n ≡ ⟨b†n,inbn,in⟩, and the constant 1 comes from the commutation relation, b†n,inbn,in = bn,inb
†
n,in−

1. In our experiment, we calibrate G and n by sweeping the temperature T .
Supplementary Fig. 5 shows the relation between the measured power, Ps,out, and the temperature, T , for the

output channel OUT2. The resonant frequency of the second resonator is tuned to approximately 7.10GHz, while we
measure the microwave signal at 6.95GHz within a ±2MHz bandwidth. We note that B/2π = 2MHz is the cut-off
frequency of the low-pass digital filter on FPGA, while the two sidebands of the microwave signal around 6.95GHz
are folded into a single sideband during the digital down conversion process. The local temperature of the heatable
attenuator is varied from approximately 50 to 700mK with a precision of ±2.5mK during the measurement time.
At each temperature, we average the measured signal power by approximately 5 × 104 times, where the error bars
are obtained by repeating this procedure 16 times. We use the least square estimation method to fit Supplementary
Eq. (12) with the measurement averages. We observe a power gain of G = 109 dB for the output path, with the mean
noise photon number of n = 7.3 (s ·Hz)−1 corresponding to a noise temperature of 2.4K.

F. Attenuation and offset in the input path

Having the knowledge of the gain, G, and noise photon number, n, in the output path, OUT2, we move on to
characterize the attenuation, A, of the input path, MW2. Assuming that the power of a signal generator is set as Pd,
we relate the measured signal power, Ps,out, and Pd in a similar form of the Caves formula

Ps,out ≈ G

[
APd +

BℏωA

π
(n+ 1)

]
. (13)

The aim of determining A is to establish a relation between Pd and the driving strength, ξ, in the system Hamiltonian,
that is [28]

ξ = −i
√

γM/FAPd/ℏωd. (14)

Here, we have assumed the driving field to be in a coherent state. In our experiment, we drive the system via
a homemade pulse-shaping module, where the carrier wave generated by the signal generator (R&S SMF100A) is
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Supplementary Fig. 6: Experimentally determined parameters of the input channel, MW2. We drive the system
through the input path, MW2, and measure the reflected signal from the path, OUT2, within ±2MHz around the central
frequency 7.00GHz (blue dots). The error bars represent the standard deviation among 16 independent experiments, which
are smaller than the size of the dots, and the red solid curve is the numerical fit. Panels (a)-(c) correspond to different pulse
shapes. Source data are provided as a Source Data file.

modulated by a voltage signal, Vd, generated by the AFG (Tektronix AFG3252), as described in Supplementary Note

2B. We assume a simple relation between Pd and the pulse amplitude Vd as Pd = (Vd − Voff)
2
/(2Z0). Here, Voff is

the offset voltage in the setup, which originates from the imperfect grounding of mixers in the pulse-shaping module.
Besides, we assume a perfect impedance match with Z0 = 50Ω. The goal of the input characterization experiment is
to determine the values of A and Voff .
Supplementary Fig. 6 shows the measured signal power, Pout, as a function of the pulse amplitude, Vd, for the input

channel, MW2. Here, we set the carrier frequency of the input field to 7.00GHz and vary the pulse amplitude from
50mV to 1000mV. The other parameters are set to be exactly the same as for the output characterization experiments.
We employ three different pulse shapes for characterization. Correspondingly, the characterized attenuations are
A = −130.6 dB, −130.6 dB, and −130.5 dB, respectively, which are almost identical to each other. However, the offset
voltage shows a clear dependance on the pulse shape. The results are Voff = 88mV, 118mV, and 79mV, which vary
by approximately 50mV for the three different pulse shapes shown in Supplementary Fig. 6. Besides the imperfect
grounding, this may also be attributed to the finite on/off ratio of the mixer, which mixes the carrier wave with the
voltage signal in the pulse-shaping module. However, we note that a 50mV offset voltage corresponds to an inaccuracy
of ξ/2π being less than 5 kHz, which is negligibly small in all of our experiments.

Supplementary Note 3. EXPERIMENTAL METHODS

The pulsed measurement plays a fundamental role in revealing the non-equilibrium quantum dynamics of the Duffing
oscillator, as is schematically shown in Supplementary Fig. 7. The basic logic of the experiment is (i) to prepare the
system in one of the two wells, (ii) to drive the system at ξ, (iii) to wait for a controllable time τ , and (iv) to start
a short measurement. We note that the control parameters are not swept in a continuous fashion, which is different
from the relevant experiments in the literature.

A. Initial state preparation

To prepare the system in different wells at the initial time, we set the driving strength at either zero (pulse-A)
or the maximum value one can achieve (pulse-C), which is limited by approximately 4.7V at the AFG output when
using the pulse-generation mode. As discussed in Supplementary Note 1C, the system has a single-well potential at a
sufficiently small or large driving strength, which corresponds to one of the two potential wells, respectively. We wait
for approximately 4µs to let the system reach the SS of the single-well potential, which is more than 10 times larger
than the free relaxation time, 1/γ. Next, we switch the driving strength to ξ, which defines the driving strength in
Supplementary Eqs. (3) and (6). The switching time is usually set to 250 ns, which aims to provide a smooth but
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Supplementary Fig. 7: The schematic of the pulsed heterodyne measurement protocol. We prepare the initial
state of system in one of the two potential wells by driving it with either a zero-amplitude (pulse-A) or a high-intensity field
(pulse-C). Then, the driving strength is switched to ξ and lasts for a controllable time τ before we perform a 16 ns quadrature
measurement. This procedure is repeated for more than 106 times to accumulate a histogram of the field quadratures. In
certain experiments, we also drive the system with a constant driving field with driving strength ξ (pulse-B), which prepares
the system in the SS at the initial time.

relatively fast transition between the initial and final values. Depending on the exact value of ξ and ∆, the system
can have a double-well potential in the so-called hysteretic regime, while the initial state is prepared in either of the
two wells. We also drive the system with a constant driving field (pulse-B), where the system is initially prepared in
the SS.

B. Pulsed heterodyne measurement

We always wait for a time duration of τ before starting a measurement. In order to capture the non-equilibrium
dynamics of the system, we measure only one period of the IF signal, which is 16 ns. Here, only 4 data points are
recorded in a single measurement event, corresponding to one data point of the field quadratures, I + iQ, with a time
resolution of 16 ns. Then, we initialize the system and repeat the same measurement procedure by 106 – 109 times
depending on the required measurement accuracy, each of which is triggered at the same relatively time after the
initialization. Because the experimental conditions are kept the same, the measurement results should also be the
same within the uncertainty range defined by the quantum fluctuations. One can figuratively understand the pulsed
measurement as using millions of ADCs that measure the system at the same time. Then, we concatenate the data
recorded by the different virtual ADCs into a long trace and apply a low-pass filter to increase the SNR. Because
the resulting signal is not sequenced in real time, the cut-off frequency, or the ring-up time, of the filter does not
influence the time resolution of the measurement result. It indicates that one can apply a relatively narrow-band
digital low-pass filter (∼ 2MHz in this case) to improve the SNR but keep the 16 ns time resolution of the result.

C. Photon correlations

During the pulsed measurement, we record the two signal moments, ⟨bs,out⟩ and ⟨b†s,outbs,out⟩, as well as the histogram
of bs,out in a 128 × 128-dimentional matrix. The measured histogram is the Q function of the output field, bs,out,
which is a convolution between the input field, bs,in, and the noise field, bn,in, [29–31]

Qs,out(γ, γ
∗) =

1

G− 1

∫
dα2Qs,in(α, α

∗)Pn,in

(
γ∗ −

√
Gα∗

√
G− 1

,
γ −

√
Gα√

G− 1

)
, (15)

where Qs,out, Qs,in, and Pn,in are the quasi-distribution functions of the three fields. Combining Supplementary
Eq. (15) with the input-output relation, bs,in =

√
γMa, one can calculate all orders of the signal moments as

⟨b†ks,outbls,out⟩ =
(
γMBG

π

) k′+l′
2

k∑
k′=0

l∑
l′=0

Ck′

k Cl′

l ⟨a†k
′
al

′
⟩⟨b†k−k′

r,out bl−l′

r,out⟩, (16)

where ⟨b†kr,outblr,out⟩ = (BG/π)
k+l
2 ⟨bkn,inb

†l
n,in⟩ is measured when the resonator is in the vacuum state, Ck′

k is the binomial

coefficient. The filter bandwidth is typically set to B/2π = 2MHz. However, because the coupling strength between
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the resonator and the microwave line, MW2, is approximately 2 times smaller than 2B (See Supplementary Note
2D), we compensate the power gain in our analysis code by −3 dB to characterize the intra-resonator photon number.
This correction leads to a good agreement between all of our experimental results and the simulations with no fitting
parameter. In certain tasks where a high-precision estimation of the photon number is required, for example, the
quantum state tomography discussed in Supplementary Note 4C, we will fine tune the value of G in a ±1 dB range.

Supplementary Note 4. SUPPLEMENTARY DATA

A. Closure of the hysteresis loop in the long-time limit
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Supplementary Fig. 8: Power-delay sweep obtained by a reflection-type measurement. The reflection coefficients,
S22, corresponding to the two MSs branches (blue and red) form a closed loop, which converge to the unique SS solution (back
circle) with increasing τ . Here, the error bars represent the standard deviation over 8 independent experiments. Source data
are provided as a Source Data file.

One major difference between the classical and quantum theories of the Duffing oscillator is the number of SSs.
The former predicts two in the hysteretic regime, which are localized in either of the two potential wells. However,
the latter predicts one unique SS in the entire parameter space. In this regard, one straightforward way to verify the
quantum dynamics of the Duffing oscillator is to prepare the system in either of the two wells and wait for a long
time before measurement. In the absence of thermal noise, the two classical SSs remain in the well such that the area
of the hysteresis loop should not decrease with τ . However, the loop area must decrease in the quantum perspective,
because of the uniqueness of the SS. This latter prediction is confirmed in Fig. 2A of the main text. Moreover, the
two branches must converge to a single curve corresponding to that of the SS when τ ≫ 1/minξ δ1(ξ), where δ1(ξ)
is the Liouvillian gap as a function of the driving strength, ξ. This phenomenon is not demonstrated in Fig. 2A of
the main text, because τ is limited by 45µs there and we did not measure the SS curve in that experiment. As a
supplementary data, we plot in Supplementary Fig. 8 a similar measurement where τ goes up to 75µs. In this case,
the SS is also measured. Here, the closure of the hysteresis loop is observed at τ ≃ 55µs, which is larger than 230
times of the free relaxation time 1/γ. In addition, the two MS branches converge continuously to the SS curve. This
result, in combination with Fig. 2A of the main text, demonstrates the uniqueness of the SS, as predicted in the
quantum theory.

B. Extracting the Liouvillian gap from time-domain measurements

To extract the Liouvillian gap, δ1, from the time-domain measurements, we calculate the distance between the two
MSs branches for each ξ as a function of τ . Supplementary Fig. 9 shows the raw data of Fig. 2C of the main text
with fitted results. Here, we did not correct the cable delay in the time axis, which is measured to be approximately
0.25µs. For each ξ, we fit the data in the τ ≥ 0.5µs range with an exponential function. Because τ > 1/γ, the fitted
decay rate can be fairly regarded as the Liouvillian gap, which dominates the relaxation of the system in the long-time
limit. As described in the main text, the fitted value of δ1 is approximately equal to the energy dissipation rate, γ,
at either low or high driving strengths. However, it decreases over two orders of magnitude when approaching to the
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Supplementary Fig. 9: Power-delay sweep obtained by a reflection-type measurement. Shown are the raw data
(dots) for extracting the Liouvillian gap, and the exponential fitting results (solid curves). With the increase of the driving
strength in the 0 ≤ ξ/2π ≤ 1.5MHz regime, the relaxation process becomes increasingly slower. However, the relaxation
becomes increasingly faster if we increase further the driving strength, 1.5MHz ≤ ξ/2π ≤ 4.3MHz. In all the panels, the error
bars represent the standard deviation over 16 independent experiments. Source data are provided as a Source Data file.

critical driving strength, ξ∗/2π = 1.51MHz. This result explains the two-stage relaxation process of the system, as
shown in Fig. 2B of the main text.

C. Quantum state tomography of the phase transition process
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Supplementary Fig. 10: The first three orders of signal moments. The measured amplitude and phase of the signal
moments show an excellent fit to the theoretical prediction in Supplementary Eq. (4) with no fitting parameter, which provides
the opportunity for quantum state tomography. (a)-(f) correspond to the signal moments, ⟨a⟩, ⟨a†a⟩, ⟨a2⟩, ⟨aa†2⟩, ⟨a2a†⟩,
⟨a3⟩, respectively. The first two orders of moments, (a)-(c), are used for quantum state tomography. Source data are provided
as a Source Data file.
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Quantum state tomography in our experiment is achieved by combining Supplementary Eqs. (4) and (5). On the
one hand, the exact Wigner function can be fully determined by the two parameters, c and d, in Supplementary
Eq. (5). On the other hand, these two parameters are closely related to the signal moments in Supplementary Eq. (4).
We thus find the best fit of c and d from the first two orders of signal moments according to Supplementary Eq. (4),
and insert the fitted values to Supplementary Eq. (5) to get the Wigner function. Because c is a complex number and d
is real, one needs at least the information of the two moments, ⟨a⟩ and ⟨a†a⟩, to determine the two parameters. Here,
we take also the ⟨a2⟩ term into consideration, which makes the fitting problem overdetermined, and thus increases
the reliability of the tomography result.

To minimize the influence of the dephasing effect, we only perform quantum state tomography at ωA/2π = 7.15GHz.
Supplementary Fig. 10a-f compares the measured signal moments and the simulation results up to the third order,
which shows a good agreement between theory with no fitting parameter and experiment. The shown excellent fit
between theory and experiment thus justifies the feasibility of extracting the values of c and d from the measured
signal moments for quantum state tomography. In that process, we fine tune the power gain for each order of the
signal moments, as well as the global phase offset, according to the last data point. The tomography result, as shown
in Fig. 4 of the main text, is obtained from the first 2 orders of signal moments shown in Supplementary Fig. 10a-c.

We comment that the described procedure relies on the priori knowledge of the SS and thus lacks general objectivity.
Alternative methods, such as coupling a probe qubit to the resonator [32–35], may provide a more general tomography
result. However, we note that the model itself does not necessarily predict the non-classical feature of the SS in the
0.57MHz ≤ ξ0/2π ≤ 0.71MHz range, as shown in Fig. 4 of the main text. We see that we are able to reveal the
transition process with a simple physical model but no fitting parameter, and also to obtain a consistent understanding
between theory and experiment among independent experiments.

D. Squeezing levels in the two phases besides the phase transition
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Supplementary Fig. 11: The squeezing level as a function of the driving strength. (a) The critical point, ξ∗/2π =
2.76MHz, separates the system into two different phases with drastically different squeezing levels S. The value of S is
approximately zero before the transition, which indicates a coherent phase of the system. After the transition, the squeezing
level is approximately 3 dB, which corresponds to a squeezed phase. (b)-(c) The measured third-order cumulants, ⟨⟨a†3⟩⟩ and
⟨⟨a†2a⟩⟩, are close to zero except in the transition process. It demonstrates the feasibility of Gaussian-state approximation.
Here, the resonant frequency is set as ωA/2π = 7.15GHz, and the detuning frequency is ∆/2π = 2.28MHz. Source data are
provided as a Source Data file.

As shown in Fig. 4 of the main text, the SSs in the two phases are either a coherent or squeezed state
outside the hysteretic regime. We use a Gaussian function to describe them and calculate the corresponding
squeezing levels [36]. By definition, a Gaussian state is a rotated, squeezed, and displaced thermal state ρ =
D(α)S(ζ)R(ϕ)ρTR

†(ϕ)S†(ζ)D†(α), whereD(α), S(ζ), andR(ϕ) are the displacement, squeeze, and rotation operators.
The squeezing level can be defined as S = −20 |ζ| log10(e) where e is the exponential constant. On the other hand,
for Gaussian states we have

tanh (2 |ζ|) = ⟨a2⟩ − ⟨a⟩2

⟨a†a⟩+ 1/2− |⟨a⟩|2
. (17)
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One can thus calculate the squeezing level of the two phases according to the measured signal moments: ⟨a⟩, ⟨a†a⟩,
and ⟨a2⟩. Supplementary Fig. 11 a shows the squeezing level of the system as a function of the driving strength. The
critical point, ξ∗/2π = 2.76MHz, separates the system into two different phases with drastically different squeezing
levels. The value of S is approximately zero before the phase transition, but jumps to approximately 3 dB afterwards.
This observation reveals the two distinct phases of the DPT with respect to the different squeezing levels.

We note that the Gaussian-state approximation breaks down around the critical point, where the SS is a mixture
of the two phases [36]. This can be seen from the unexpected peak in the theory curve around ξ∗. To crosscheck the
Gaussianity of the SS, we calculate the third order cumulants [37]

⟨⟨a†3⟩⟩ = ⟨a†3⟩ − 3⟨a†2⟩⟨a†⟩+ 2⟨a†⟩3, (18)

⟨⟨a†2a⟩⟩ = ⟨a†2a⟩ − ⟨a†2⟩⟨a⟩ − 2⟨a†a⟩⟨a†⟩+ 2⟨a†⟩2⟨a⟩. (19)

These cumulants should be zero for Gaussian states. Supplementary Fig. 11 b-c shows the experimental result, where
we have normalized the cumulants by the corresponding moments, ⟨a†3⟩ and ⟨a†2a⟩, to compensate the relatively large
variance at high driving strength. We observe that the cumulants are close to zero outside the hysteretic regime, which
justifies the Gaussian-state approximation. The seeming large deviation at low driving strengths is mainly caused by
the small valued numerators, ⟨a†3⟩ and ⟨a†2a⟩, while the absolute mean of the cumulants, ⟨⟨a†3⟩⟩ and ⟨⟨a†2a⟩⟩, are
merely 0.07 and 0.19 with standard deviation 0.20 and 0.16, respectively.

E. The dephasing effect and possible two-photon processes
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Supplementary Fig. 12: Comparison between experimental and numerical results for the first two orders of
signal moments. The yellow dots represent the experimental results. The black solid curves show the analytical result
in Supplementary Eq. (4), where only energy dissipation is considered (Theory-1). The dashed black line shows the master
equation simulation with dephasing effect and a finite thermal photon number of the environment (Theory-2). It captures the
the slower transition rate observed in experiment but leads to a large discrepancy in ⟨a2⟩. We also consider a weak two-photon
drive and loss process in the model (Theory-3, purple solid), which provides a good agreement with all the three signal moments.
Source data are provided as a Source Data file.

So far, we have neglected dephasing effects in the discussion. This is feasible because the determined dephasing rate,
γϕ, is smaller than the energy dissipation rate, γ, in the frequency range of interest (See Supplementary Note 2D for
the characterization results). It is also justified by showing the excellent agreement between theory and experiment
for all the first three orders of signal moments, as shown in Supplementary Fig. 10. However, this agreement exists
only at high resonant frequencies. As can be seen in Fig. 3 of the main text, the experimentally observed transition
curve is less steep than that predicted by the model at lower frequencies. As discussed in Supplementary Note 1A,
we attribute the reduced steepness to the presence of finite dephasing, since the dephasing rate increases when going
to lower frequencies.

To achieve a quantitive understanding of the experimental data, we add the dephasing term by hand and move
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further to the Schrödinger picture. The master equation in the Lindblad form reads

∂tρ(t) = −i [Heff , ρ(t)] +
γ

2
(nT + 1)D [a] ρ(t) +

γ

2
nTD

[
a†
]
ρ(t) +

γϕ
2
D
[
a†a
]
ρ(t). (20)

Here, ρ(t) is the density operator, Heff is the effective Hamiltonian of the system, and D [a] and D
[
a†a
]
are the

Lindbladian superoperators. Besides, we consider also a finite temperature of the bath nT . The value of the energy
relaxation and the dephasing rates, γ and γϕ, have been determined in Supplementary Note 2D.
Supplementary Fig. 12 compares the measured signal moments with the simulation results. Compared with the

analytical result with γϕ = 0, a finite dephasing rate, γϕ, nicely captures the observed smaller steepness of the
transition. Here, we have also assumed a small thermal photon number of the environment, n̄T = 0.1. However, a
closer inspection of the second-order moment, |⟨a2⟩|, indicates that γϕ also leads to a significantly smaller saturation
value of this quantity. To achieve a better fitting between the simulation and the experiments, one may consider to
include the second-order processes into the simulation, which has been neglected for deriving Supplementary Eq. (2).
Here, we consider the two-photon drive, ξ2

(
a2 + a†2

)
, and correspondingly the two-photon loss, (γ2/2)D

[
a2
]
. These

higher-order processes should be weak, such that the parameters, ξ2 and γ2, are assumed to be smaller than ξ and γ,
respectively. We achieve a quantitive agreement between theory and experiment for ξ2 = 0.3ξ and γ2 = 0.1γ. These
results demonstrate that we are able to achieve a consistent interpretation of our experimental results by introducing
dephasing and two-photon process. Nevertheless, we emphasize that the conclusions drawn from our experiment are
either insensitive to the dephasing rate, such as the hysteretic behavior (Fig. 1 of the main text), two-stage relaxation
process (Fig. 2 of the main text), or based on the high-frequency measurements where the dephasing rate is much
smaller than the energy dissipation, such as the increasingly sharp transition step with scaling factor N (Fig. 3 of the
main text) and the quantum state tomography results (Fig. 4 of the main text).
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