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Supplementary Methods

General Information

All chemicals and anhydrous solvents were purchased from commercial suppliers and
used as received. Commercially unavailable substrates were synthesized according to
the literature. *H NMR, 3C NMR, *F NMR, 1B NMR, and #*Si NMR spectra were
recorded on a Bruker AV-111400 (400 MHZ) or AMX500 (500 MHz) spectrometer.
Chemical shifts were calibrated using residual undeuterated solvent as an internal
reference (CDCls: 7.26 ppm *H NMR, 77.16 ppm 3C NMR). Multiplicity was indicated
as follows: s (singlet), d (doublet), t (triplet), g (quartet), m (multiplet), dd (doublet of
doublet), brs (broad singlet). High-resolution mass spectra (HRMS) were obtained on
a Finnigan/MAT 95XL-T spectrometer. GC analysis was performed on Aglilent 7820A
& 5977E GC-MS. Cyclic voltammograms (CV) were collected using a VersaSTAT 3
Potentiostat Galvanostat from Princeton Applied Research. UV-vis absorption spectra
and emission spectra were taken at ambient temperature using an Edinburgh FS5
spectrofluorometer. IR spectra were recorded on a bruker alpha FT-IR. Absorption
maxima (vmax) are reported in wavenumbers (cm). All catalytic reactions were carried
out in a microwave tube (10 mL) under an argon atmosphere with magnetic stirring. 18
W blue LED strips (2-meter, maximum emission at around 470 nm) were purchased
from Inwares Pte Ltd (Singapore). 40 W 456 nm LED light was purchased from Kessil.
Spectral output can be found on: https://www.kessil.com/science/PR160L.php The
Asia Syringe Pump was purchased from Syrris Company (UK) for continuous flow
setup. The Tefzel shut-off valves, and HPFA micro tubings were purchased from IDEX
Health & Science (Oak Harbor, WA). Visualization was achieved by short wave (254
nm) ultraviolet light or by staining with iodine (I2).

Commercially available alkenyl or allyl boronates and silanes were purchased from

BLD Pharmatech Ltd., Oakwood Products Inc and Sigma-Aldrich Pty Ltd.
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Preparation of Starting Materials

Commercially unavailable alkenyl and allyl boronates were prepared according to
reported procedures’”’. The spectra data of these substrates are in accordance with the
literature.

Alkenyl boronates S1-S5 were synthesized according to the following known

procedure®.

HO ™~ gpin +R-COOH D([:)hj,c(; E)C';A:;F;l R\g/OW\Bpin
n=0,1
A tube equipped with a stirring bar was charged with alcohol (3.00 mmol, 1.00 equiv.),
acid (4.5 mmol, 1.5 equiv.), and DCM (30 mL). The mixture was cooled to 0<C and
DMAP (146.6 mg, 1.20 mmol, 0.20 equiv.) and N, N -dicyclohexylcarbodiimide (2.48
g, 12.0 mmol, 2.00 equiv.) were added sequentially. The reaction was allowed to warm
to room temperature and stirred for 12 hrs. The mixture was diluted with DCM (20 mL)
and washed with 10% citric acid solution (20 mL) and brine (20 mL). The organic layer

was dried (MgSOa4) and evaporated. Purification by flash column chromatography on

silica gel (eluent: n-hexane/EtOAc mixtures) gave the desired product.
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(E)-3-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)allyl isoxazole-5-carboxylate

(S1). Colorless oil (77%, 0.64 g, eluent: hexane/EA = 10:1, Rf = 0.2). *H NMR (500
MHz, CDCls) & 8.94 (s, 1H), 8.52 (s, 1H), 6.66 (dt, J = 18.1, 4.6 Hz, 1H), 5.74 (d, J =
18.2 Hz, 1H), 4.89 (dd, J = 4.7, 1.8 Hz, 2H), 1.26 (s, 12H). 3C NMR (126 MHz, CDCls)
0 160.69, 158.26, 149.14, 144.94, 129.40, 83.56, 66.44, 24.77. The carbon signal
attached to B was not observed. 1'B NMR (160 MHz, CDCl3) § 29.31. IR vmax (DCM):
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2979, 2933, 1721, 1647, 1513, 1349, 1256, 1099 cmt. HR-MS (APCI) calcd for
C13H19BNOs [M+H] ": 280.1351, found 280.1347.
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(E)-4-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)but-3-en-1-yl 2-(6-chloro-9H-
carbazol-2-yl)propanoate (S2). Sticky oil (73%, 0.99 g, eluent: hexane/EA = 5:1, R¢
=0.4). 'H NMR (400 MHz, CDCls) & 8.66 (s, 1H), 7.93 — 7.84 (m, 3H), 7.26 — 7.19 (m,
2H), 7.09 (dd, J = 8.1, 1.5 Hz, 1H), 6.53 (dt, J = 18.0, 6.5 Hz, 1H), 5.44 (dt, J = 18.0,
1.5 Hz, 1H), 4.19 — 4.11 (m, 2H), 3.80 (q, J = 7.9 Hz, 1H), 2.37 (qd, J = 6.4, 1.5 Hz,
2H), 1.50 (d, J = 7.1 Hz, 3H), 1.24 (s, 12H). 3C NMR (101 MHz, CDCls) & 174.65,
149.48, 140.46, 139.07, 138.24, 125.71, 124.72, 124.33, 121.60, 120.53, 119.97,
119.58, 111.55, 109.81, 83.50, 63.14, 46.02, 35.05, 24.84, 18.84. The carbon signal
attached to B was not observed. !B NMR (128 MHz, CDCl3) § 29.75. IR vmax (DCM):
2963, 1727, 1640, 1413, 1261, 1092, 1028 cm®. HR-MS (APCI) calcd for
C2sH30BCINO4 [M+H] *: 454.1951, found 454.1946.
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(E)-4-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)but-3-en-1-yl 5-(2,5-
dimethylphenoxy)-2,2-dimethylpentanoate (S3). Sticky oil (75%, 0.97 g, eluent:
hexane/EA = 10:1, Rf = 0.3). 'H NMR (400 MHz, CDCls) 6 6.99 (d, J = 7.5 Hz, 1H),
6.65 (d, J = 7.5 Hz, 1H), 6.63 — 6.50 (m, 2H), 5.53 (dt, J = 18.0, 1.5 Hz, 1H), 4.15 (t, J
= 6.7 Hz, 2H), 3.91 (t, J = 5.4 Hz, 2H), 2.48 (qd, J = 6.7, 1.6 Hz, 2H), 2.30 (s, 3H), 2.17
(s, 3H), 1.78 — 1.65 (m, 4H), 1.25 (s, 12H), 1.20 (s, 6H). 13C NMR (101 MHz, CDCl5)
0 177.71, 156.96, 149.02, 136.43, 130.28, 123.61, 120.65, 111.95, 83.19, 67.94, 62.79,
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42.09, 37.07, 35.00, 25.20, 24.75, 21.42, 15.79. The carbon signal attached to B was
not observed. !B NMR (128 MHz, CDCl3) § 29.89. IR vmax (DCM): 2975, 2931, 1745,
1641, 1321, 1261, 1031 cm™*. HR-MS (APCI) calcd for CasH10BOs [M+H] *: 431.2963,
found 431.2965.
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(E)-4-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)but-3-en-1-yl 2-(1-(4-
chlorobenzoyl)-5-methoxy-2-methyl-1H-indol-3-yl)acetate (S4). Sticky oil (68%,
1.10 g, eluent: hexane/EA = 10:1, Rf = 0.2). *H NMR (500 MHz, CDCl3) § 7.69 — 7.64
(m, 2H), 7.50 — 7.44 (m, 2H), 6.95 (d, J = 2.6 Hz, 1H), 6.86 (d, J = 9.0 Hz, 1H), 6.66
(dd, J=8.9, 2.6 Hz, 1H), 6.55 (dt, J = 18.0, 6.4 Hz, 1H), 5.51 (d, J = 18.0 Hz, 1H), 4.18
(t, J = 6.7 Hz, 2H), 3.84 (s, 3H), 3.65 (s, 2H), 2.50 — 2.46 (m, 2H), 2.37 (s, 3H), 1.25 (s,
12H).2C NMR (126 MHz, CDCls) § 170.79, 168.30, 156.07, 148.69, 139.23, 136.00,
133.97, 131.22, 130.67, 129.11, 114.97, 112.58, 111.78, 101.16, 83.24, 63.53, 55.74,
34.82,30.30, 24.77, 13.38. The carbon signal attached to B was not observed. 1B NMR
(128 MHz, CDCl3) 6 29.89. IR vmax (DCM): 2964, 2930, 2834, 1733, 1674, 1645, 1260
cm L. HR-MS (APCI) calcd for C2oH34BCINOg [M+H] *: 538.2162, found 538.2158.
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(E)-4-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)but-3-en-1-yl 2-(4-
isobutylphenyl)propanoate (S5). Sticky oil (81%, 0.94 g, eluent: hexane/EA = 10:1,
R =0.4). 'H NMR (400 MHz, CDCl3) § 7.21 — 7.17 (m, 2H), 7.10 — 7.06 (m, 2H), 6.53
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(dt, J = 18.0, 6.5 Hz, 1H), 5.49 (dt, J = 18.0, 1.5 Hz, 1H), 4.22 — 4.05 (m, 2H), 3.68 (g,
J=7.2 Hz, 1H), 2.48 — 2.40 (m, 4H), 1.84 (h, J = 6.8 Hz, 1H), 1.47 (d, J = 7.2 Hz, 3H),
1.27 (s, 12H), 0.89 (d, J = 6.6 Hz, 6H). 3C NMR (101 MHz, CDCl3) § 174.68, 148.89,
140.47, 137.70, 129.29, 127.20, 83.19, 63.15, 45.11, 34.88, 30.18, 24.78, 22.42, 18.55.
The carbon signal attached to B was not observed. !B NMR (128 MHz, CDCl3) § 29.92.
IR vmax (DCM): 2970, 1740, 1360, 1322 1260, 1093, 1025 cm 1. HR-MS (APCI) calcd
for C23H3sBO4 [M+H] *: 387.2701, found 387.2702.
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Supplementary Figure 2. Reaction setup under blue LED (80 W) irradiation
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Optimization for Hydrosilylation of (E)-1-Pentenylboronic Acid Pinacol Ester

Supplementary Table 1. Screening of Thiols
4CzIPN (0.5 mol%)

PP g + PhSiHy Thiol (5 mol%) . THPR PthSim/a\Bpin
DIPEA (5 mol%) i @ Bpin nPr
MTBE (0.1 M), argon, r.t., 12 h '
blue LEDs 95 95
Entry Thiol Yield (%) Ratio of 95:95'

1 tBuSH 88 14:1
2 BnSH 54 14:1
3 EtO:CCH:SH 92(89)I0! 14:1
4 iPr;SiSH 91 14:1
5 Ph3;SiSH 90 13:1
6 PhSH Trace NA

0]

7 (j)xH 36 14:1

8 /Lwiwk\ 28 13:1

H H

[a] Reaction conditions: (E)-1-pentenylboronic acid pinacol ester (0.2 mmol), PhSiH3
(0.24 mmol), 4CzIPN (0.5 mol%), Thiol (5 mol%), DIPEA (5 mol%) in MTBE (tert-
butyl methyl ether) (0.1 M) under irradiation with 40 W, 456 nm LED light at room
temperature for 12 h under argon. Yield based analysis of crude *H NMR spectra using
CH:Br; as an internal standard. Regioselectivity was determined by GC analysis of the
crude reaction mixture. [b] Isolated yield. [c] NA = not applicable.
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Supplementary Table 2. Screening of Solvent

4CzIPN (0.5 mol%)

PP g + PhSiH; EtO,CCH,SH (5 mol%) . SiH,Ph . PthSim/o}Bpin
DIPEA (5 mol%) B G¢"Bpin nPr
Solvent (0.1 M), argon, r.t., 12 h 95 95"
blue LEDs
Entry Solvent Yield (%) Ratio of 95:95'
1 THF 86 13:1
2 1,4-Dioxane 80 13:1
3 MTBE 92 14:1
4 EtOAc 81 14:1
5 Acetone 12 14:1
6 Toluene 52 14:1
7 MeCN 0 NAP!
8 DMF 0 NA!
9 DMSO 0 NAP!

[a] Reaction conditions: (E)-1-pentenylboronic acid pinacol ester (0.2 mmol), PhSiH3
(0.24 mmol), 4CzIPN (0.5 mol%), EtO.CCH2SH (5 mol%), DIPEA (5 mol%) in
solvent (0.1 M) under irradiation with 40 W, 456 nm LED light at room temperature
for 12 h under argon. Yield based analysis of crude *H NMR spectra using CH2Br as
an internal standard. Regioselectivity was determined by GC analysis of the crude
reaction mixture. [b] NA = not applicable. THF = Tetrahydrofuran. MTBE = tert-butyl
methyl ether. DMF = dimethylformamide. DMSO = dimethyl sulfoxide.
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Supplementary Table 3. Control Experiments

4CzIPN (0.5 mol%)

”Pr\/\Bpin + PhSiH; EtO,CCH,SH (5 mol%) nPr el + PhHZSim/o?Bpin
DIPEA (5 mol%) B %"Bpin nPr
MTBE (0.1 M), argon, r.t.,, 12 h 95 95
blue LEDs
Entry Variation Yield (%) Ratio of 95:95'
1 None 92 14:1
2 without 4CzIPN 0 NA!
3 without light 0 NAD]
4 without thiol trace NALP]
5 without DIPEA 71 13:1
[Mes-Acr]"(ClO4) instead
6 trace NALP]
of 4CzIPN
Ir(ppy)2(dtbbpy)PFs
7 Y Y 85 11:1
instead of 4CzIPN
Ir(dFCF3 »(dtbbpy)PF¢
g ( ppy)2(dtbbpy) 3 o1
instead of 4CzIPN
gle] Without DIPEA 54 13:1
10l None 92 14:1

[a] Reaction conditions: (E)-1-pentenylboronic acid pinacol ester (0.2 mmol), PhSiH3
(0.24 mmol), 4CzIPN (0.5 mol%), EtO2CCH2SH (5 mol%), DIPEA (5 mol%) in MTBE
(0.1 M) under irradiation with 40 W, 456 nm LED light at room temperature for 12 h
under argon. Yield based analysis of crude *H NMR spectra using CH2Br; as an internal
standard. Regioselectivity was determined by GC analysis of the crude reaction mixture.
[b] NA = not applicable. [c] reaction for 4 h

N )
4CzIPN Mes-Acr*ClO, Ir(ppy),(dtbbpy)PFg Ir(dFCF3ppy),(dtbbpy)PFg
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Optimization for Hydrosilylation of (E)-Styrylboronic Acid Pinacol Ester

Supplementary Table 4. Screening of Reaction Conditions

4CzIPN (1 mol%)

P Thiol (20 mol%) SiH,Ph

Bpin  + PhSiH, a:p>20:1
DIPEA (20 mol%) o Bpin

MTBE (0.1 M), argon, r.t., 24 h p
blue LEDs 33

F
FsC SH
~_O O SH SH SH F. SH °
NSH SO Ay )<SH SH  /PrSisH ©/ /©/
0 o O O MeO FaC F F CF
F 3
s-5 S-6 s-7 s-8 s-9

s 52 s s 510

Entry Thiol Solvent Yield (%)
1 S-1 MTBE 40
2 S-2 MTBE 10
3 S-3 MTBE 0
4 S-4 MTBE 0
5 S-5 MTBE 0
6 S-6 MTBE 26
7 S-7 MTBE 0
8 S-8 MTBE 27
9 S-9 MTBE 20
10 S-10 MTBE 30
11 S-1 THF 38
12 S-1 EtOAc 30
13 S-1 Et,O 38
14 S-1 2Me-THF 22
150! S-1 MTBE 53
160l S-1 MTBE 59
1701 S-1 MTBE 75

[a] Reaction conditions: (E)-styrylboronic acid pinacol ester (0.2 mmol), PhSiHz (0.24
mmol), 4CzIPN (1 mol%), Thiol (20 mol%), DIPEA (20 mol%) in MTBE (tert-butyl
methyl ether) (0.1 M) under irradiation with 40 W, 456 nm LED light at room
temperature for 24 h under argon. Yield based analysis of crude *H NMR spectra using
CH:2Br: as an internal standard. [b] under irradiation with 80 W, 456 nm LED light. [c]
with 2 mol% 4CzIPN for 48 h. [d] with 4CzIPN (1+1 mol%) for 48 h.
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Optimization for Hydrosilylation of Isopropenylboronic Acid Pinacol Ester

Supplementary Table 5. Screening of Reaction Conditions

4CzIPN (0.5 mol%)

Thiol (5 mol%) .
)\ +  PhSiH, )<S'H2Ph + PhHZSi\)\
Bpin DIPEA (5 mol%) i Bpin

MTBE (0.1 M), argon, r.t., 12 h

blue LEDs 29 29°
ND
o)
U sH )<SH iPrySiSH
o)
S-1 S-3 S-5
Entry Thiol Yield (%)
1 S-1 ND®]
2 S-3 ND®]
3 S-5 NDM!

[a] Reaction conditions: isopropenylboronic acid pinacol ester (0.2 mmol), PhSiH3
(0.24 mmol), 4CzIPN (0.5 mol%), Thiol (5 mol%), DIPEA (5 mol%) in MTBE (tert-
butyl methyl ether) (0.1 M) under irradiation with 40 W, 456 nm LED light at room
temperature for 12 h under argon. [b] ND = not detected.
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General Procedures for Photoinduced Divergent Synthesis of Borosilanes

General Procedure I: Synthesis of B-Alkyl Geminal Borosilanes

4CzIPN (0.5 mol%)

EtO,CCH,SH (5 mol% Si
R\/\Bpin + Si—H 2 2 ( 0) _ R
DIPEA (5 mol%) Bpin
_ MTBE (0.1 M), argon, r.t., 12 h
R =alkyl blue LEDs

A 10 mL microwave tube equipped with a magnetic stir bar was charged with 4CzIPN
(0.8 mg, 0.001 mmol, 0.5 mol%), alkenyl boronate (0.2 mmol), silane (0.24 mmol, 1.2
equiv.) and anhydrous MTBE (2 mL). The tube was capped with a Supelco aluminum
crimp seal with septum (PTFE/butyl). The resulting mixture was cooled to 0 € using
an ice-water bath and bubbled with an argon balloon for 10 min. DIPEA (1.8 uL, 0.01
mmol, 5 mol%) and EtO>CCH2SH (1.1 uL, 0.01 mmol, 5 mol%) were then added. After
that, the reactor was placed under a blue LED (Kessil light, 40 W, 456 nm) and
irradiated for 12 hrs at room temperature. The solvent was removed under vacuum.
Purification by flash column chromatography on silica gel (eluent: n-hexane/EtOAc

mixtures) gave the desired product.

General Procedure I1: Synthesis of p-Aryl Geminal Borosilanes

4CzIPN (1+1 mol%)

Z EtO,CCH,SH (20 mol%) = Si
R< | / + Si—H ~R— |
Bpin DIPEA (20 mol%) X Bpin
MTBE (0.1 M), argon, r.t.,, 48 h
blue LEDs

A 10 mL microwave tube equipped with a magnetic stir bar was charged with 4CzIPN
(1.6 mg, 0.002 mmol, 1 mol%), alkenyl boronate (0.2 mmol), silane (0.24 mmol, 1.2
equiv.) and anhydrous MTBE (2 mL). The tube was capped with a Supelco aluminum
crimp seal with septum (PTFE/butyl). The resulting mixture was cooled to 0 € using
an ice-water bath and bubbled with an argon balloon for 10 min. DIPEA (7.2 pL, 0.04
mmol, 20 mol%), and EtO.CCH2SH (4.4 uL, 0.04 mmol, 20 mol%) were then added.
After that, the reactor was placed under blue LED (Kessil light, 80 W, 456 nm) and

irradiated for 24 hrs at room temperature. And then, add 4CzIPN (1.6 mg, 0.002 mmol)
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into the microwave tube in the glovebox, and removed it from the dry box. The reaction
was irradiated for additional 24 hrs under the same conditions. The solvent was
removed under vacuum. Purification by flash column chromatography on silica gel

(eluent: n-hexane/EtOACc mixtures) gave the desired product.

General Procedure I11: Synthesis of Vicinal Borosilanes

4CzIPN (0.5 mol%)

Bpin
R(R, . sioh EtO,CCHpSH (5mol%) g \)\/&
\)<Bpin DIPEA (5 mol%)
MTBE (0.1 M), argon, r.t., 12 h R4
blue LEDs

A 10 mL microwave tube equipped with a magnetic stir bar was charged with 4CzIPN
(0.8 mg, 0.001 mmol, 0.5 mol%), allyl boronate (0.2 mmol), silane (0.24 mmol, 1.2
equiv.) and anhydrous MTBE (2 mL). The tube was capped with a Supelco aluminum
crimp seal with septum (PTFE/butyl). The resulting mixture was cooled to 0 € using
an ice-water bath and bubbled with an argon balloon for 10 min. DIPEA (1.8 uL, 0.01
mmol, 5 mol%) and EtO>CCH2SH (1.1 uL, 0.01 mmol, 5 mol%) were then added. After
that, the reactor was placed under a blue LED (Kessil light, 40 W, 456 nm) and
irradiated for 12 hrs at room temperature. The solvent was removed under vacuum.
Purification by flash column chromatography on silica gel (eluent: n-hexane/EtOAc

mixtures) gave the desired product.

General procedure 1V: Difunctionalization of Clodinafop-Propargyl

N o HBpin PhSiH; N N\ o i
/EI \©\ : 1o °C,neat  standard conditions ‘ : .
Pz 2 O\// ‘ ’ cl = F o (0] Bpin
Cl F (@) Jocti
0 hydroboronation a-selective o SiH,Ph

clodinafop-propargy! hydrosilylation

82, 65%, d.r. = 1:1
A 10 mL microwave tube equipped with a magnetic stir bar was charged with
Clodinafop-propargyl (70.0 mg, 0.2 mmol) and HBpin (32.0 uL, 0.22 mmol, 1.1 equiv.)
under argon, The tube was capped with a Supelco aluminum crimp seal with septum
(PTFE/butyl). The resulting mixture was stirred for 16 hrs at 110 °C. Then cooled to
room temperature, 4CzIPN (0.8 mg, 0.001 mmol, 0.5 mol%), PhSiHs (30 uL, 0.24

mmol, 1.2 equiv.) and anhydrous MTBE (2 mL) were added. The tube was capped with
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a Supelco aluminum crimp seal with septum (PTFE/butyl). The resulting mixture was
cooled to 0 <€ using an ice-water bath and bubbled with an argon balloon for 10 min.
DIPEA (1.8 uL, 0.01 mmol, 5 mol%) and EtO2CCH2SH (1.1 pL, 0.01 mmol, 5 mol%)
were then added. After that, the reactor was placed under a blue LED (Kessil light, 40
W, 456 nm) and irradiated for 12 hrs at room temperature. The solvent was removed
under vacuum. Purification by flash column chromatography on silica gel (eluent: n-
hexane/EtOAc mixtures = 10/1, Rf = 0.2) gave the desired product 82 as a colorless oil.
Yield: 65% (76.1 mg).
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Stepwise Synthesis of Multi-Borosilanes from PhSiHs

H Ph boryl alkene H Ph boryl alkene H\S:Ph
si. _Si. ol
H"H 15 hydrosilylation R H 219 hydrosilylation R™Re
H Ph Pry ph Bpin H Ph Bpin PrH Ph
Si Si Si Me Si
PN Bpin Si Me "Pr Bpin
Bpin Bpin Me Bpin Me Bpin
a-selective + a-selective y-selective + y-selective a-selective + y-selective y-selective + a-selective
83, 89%, 77% 84, 83%, 63% 85, 89%, 58% 86, 83%, 60%

Supplementary Figure 3. Stepwise synthesis of multi-borosilanes

15t hydrosilylation:

Step i SiH,Ph

PhS|H3 + /\/Bpln _— nPr

nPr Bpin

2" hydrosilylation: Step i

SiH,Ph = Bpin O4gélPNS(1 mol%) . Eh

+ Et H,SH (10 mol i

nPr\)\Bpin 2CCH,SH ( ) nPr/\/SI
DIPEA (10 mol%)

MTBE (0.1 M), argon, r.t., 12 h Bpin Bpin
blue LEDs 83

Phenyl(3-phenyl-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)propyl)(1-

(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pentyl)silane (83). Step i follow
General Procedure I, and step ii: A 10 mL microwave tube equipped with a magnetic
stir bar was charged with 4CzIPN (1.6 mg, 0.002 mmol, 1 mol%), alkenyl boronate
(48.8 mg, 0.2 mmol), silane (73.0 mg, 0.24 mmol, 1.2 equiv.) and anhydrous MTBE (2
mL). The tube was capped with a Supelco aluminum crimp seal with septum
(PTFE/butyl). The resulting mixture was cooled to 0 € using an ice-water bath and
bubbled with an argon balloon for 10 min. DIPEA (3.6 pL, 0.02 mmol, 10 mol%) and
iPr3SiSH (4.3 pL, 0.02 mmol, 10 mol%) were then added. After that, the reactor was
placed under a blue LED (Kessil light, 40 W, 456 nm) and irradiated for 12 hrs at room
temperature. The solvent was removed under vacuum. Purification by flash column
chromatography on silica gel (eluent: n-hexane/EtOAc mixtures = 50/1, R¢ = 0.25) gave

the desired product 83 as a colorless oil. Yield: 77% (84.5 mg).
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15t hydrosilylation:

Me Me Stepi Bpin
PhSiH; + \)QBpin — > PhH,Si Me
Me
2" hydrosilylation:
Step ii
4CzIPN (1 mol%) " Ph .
: Bpin Bpin
Bpin Me Me  Et0,CCH,SH (10 mol%) P PP
PhH,Si Me T s X Me Si Me
2 Bpin DIPEA (10 mol%)
Me MTBE (0.1 M), argon, r.t.,, 12 h Me 84 Me
blue LEDs

Bis(3-methyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)butyl)(phenyl)silane

(84). Step i follow the General Procedure 111, and step ii: A 10 mL microwave tube
equipped with a magnetic stir bar was charged with 4CzIPN (1.6 mg, 0.002 mmol, 1
mol%), allyl boronate (39.2 mg, 0.2 mmol), silane (73.0 mg, 0.24 mmol, 1.2 equiv.)
and anhydrous MTBE (2 mL). The tube was capped with a Supelco aluminum crimp
seal with septum (PTFE/butyl). The resulting mixture was cooled to 0 € using an ice-
water bath and bubbled with an argon balloon for 10 min. DIPEA (3.6 pL, 0.02 mmol,
10 mol%) and iPrsSiSH (4.3 uL, 0.02 mmol, 10 mol%) were then added. After that, the
reactor was placed under a blue LED (Kessil light, 40 W, 456 nm) and irradiated for 12
hrs at room temperature. The solvent was removed under vacuum. Purification by flash
column chromatography on silica gel (eluent: n-hexane/EtOAc mixtures = 50/1, Rf =

0.3) gave the desired product 84 as a colorless oil. Yield: 63% (63.1 mg).
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15t hydrosilylation:

PhSiH Boi Step i SiH,Ph
iHy + nPr/\/ pin. ——— b .
Bpin
2" hydrosilylation: Step ii
SiHoPh e 1 4CzIPN (1 mol%) Bpin Me
2 e Me EtO,CCH,SH (10 mol% P
nPr RN . 2CCH,SH ( ) n r\/\Si Me
Bpin Bpin DIPEA (10 mol%) H o Boin
MTBE (0.1 M), argon, r.t., 12 h Ph BP
blue LEDs 85

(3-Methyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)butyl)(phenyl)(1-
(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pentyl)silane (85). Step i follow the
General Procedure I, and step ii: A 10 mL microwave tube equipped with a magnetic
stir bar was charged with 4CzIPN (1.6 mg, 0.002 mmol, 1 mol%), allyl boronate (39.2
mg, 0.2 mmol), silane (73.0 mg, 0.24 mmol, 1.2 equiv.) and anhydrous MTBE (2 mL).
The tube was capped with a Supelco aluminum crimp seal with septum (PTFE/butyl).
The resulting mixture was cooled to 0 <€ using an ice-water bath and bubbled with an
argon balloon for 10 min. DIPEA (3.6 uL, 0.02 mmol, 10 mol%) and iPr3SiSH (4.4 uL,
0.02 mmol, 10 mol%) were then added. After that, the reactor was placed under a blue
LED (Kessil light, 40 W, 456 nm) and irradiated for 12 hrs at room temperature. The
solvent was removed under vacuum. Purification by flash column chromatography on
silica gel (eluent: n-hexane/EtOAc mixtures 50/1, Rs = 0.3) gave the desired product 85
as a colorless oil. Yield: 58% (58.1 mg).

S17



15t hydrosilylation:

Me Me Step i Bpin
PhSiH; + \)QBpin —»PhHZSi\)\rMe
Me
29 hydrosilylation:
Step ii

Bpin 4CzIPN (1 mol%) Bpin Eh

0,
PhHZSiWMe . EtO,CCH,SH (10 mol%) Mew/\/Si\’/\/©
X Bpin DIPEA (10 mol%)

Me MTBE (0.1 M), argon, r.t., 12 h Me Bpin
blue LEDs 86

(3-Methyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)butyl)(phenyl)(3-

phenyl-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)propyl)silane (86). Step i
follow the General Procedure 111, and step ii: A 10 mL microwave tube equipped with
a magnetic stir bar was charged with 4CzIPN (1.6 mg, 0.002 mmol, 1 mol%), alkenyl
boronate (48.8 mg, 0.2 mmol), silane (73.0 mg, 0.24 mmol, 1.2 equiv.) and anhydrous
MTBE (2 mL). The tube was capped with a Supelco aluminum crimp seal with septum
(PTFE/butyl). The resulting mixture was cooled to 0 €€ using an ice-water bath and
bubbled with an argon balloon for 10 min. DIPEA (3.6 uL, 0.02 mmol, 10 mol%) and
iPrsSiSH (4.3 pL, 0.02 mmol, 10 mol%) were then added. After that, the reactor was
placed under a blue LED (Kessil light, 40 W, 456 nm) and irradiated for 12 hrs at room
temperature. The solvent was removed under vacuum. Purification by flash column
chromatography on silica gel (eluent: n-hexane/EtOAc mixtures = 50/1, R¢ = 0.3) gave

the desired product 86 as a colorless oil. Yield: 60% (65.8 mg).
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Derivatization of the Borosilanes

SiH,Ph Si(OH),Ph
_0 Pd/C (20 Wt%) _0
B THF/H,O, rit. B
0 12h O
87
Phenyl(1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pentyl)silanediol (87).

Prepared according to a reported literature®. A tube equipped with a stirring bar was
charged with Pd/C (20 wt%), evacuated and refilled with argon (x 3). Then, geminal
borosilane 95 (60.8 mg, 0.2 mmol), THF (2 mL) and H20 (0.2 mL) were added. The
mixture was stirred overnight at room temperature, and filtered through a pad of silica
gel washed by Et:O (10 mL x 3). The combined filtrates were evaporated and
purification by flash column chromatography on silica gel (eluent: n-hexane/EtOAc

mixtures = 3/1, Rs = 0.45) gave the desired product 87 as a colorless oil. Yield: 85%

(57.2 mg).
\/\j\inPh Mn(OAc)3-2H,0 PhHSi/OH
o) 4,4'-diamino-2,2'-bipyridine
i H50,, Acetone, r.t. \/\)\El”/o
12 h o}
88
Phenyl(1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pentyl)silanol (88).

Prepared according to reported literature®. A tube equipped with a stirring bar was
charged with Mn(OAc)3 2H20 (2.7 mg, 5 mol%), 4,4'-diamino-2,2'-bipyridine (3.8 mg,
10 mol%) under air. Then, geminal borosilane 95 (60.8 mg, 0.2 mmol) and acetone (1.5
mL) were added. H>O> (30 wt%, 2.5 equiv.) was then added by dropwise the mixture
was stirred for 12 hrs at room temperature. Quenched with saturated Na>S>03 aqueous
solution. The mixture was extracted with Et,O (10 mL x 3). The organic layer was dried
over anhydrous Na»SOs, filtered and evaporated. Purification by flash column
chromatography on silica gel (eluent: n-hexane/EtOAc mixtures = 5/1, Rf = 0.4) gave

the desired product 88 as a colorless oil. Yield: 68% (43.4 mg).
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SiH,Ph Si(OMe),Ph
_0

\/\)\B/O KN(SiMe3), \/\)\B
\ MeOH/Toluene, r.t. \
075 12 h 075

89

Dimethoxy(phenyl)(1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pentyl)silane

(89). Prepared according to reported literature!®. A tube equipped with a stirring bar
was charged with KN(SiMez)2 (40.0 mg, 0.20 mmol, 1 equiv.), evacuated and refilled
with argon (x 3). Then, geminal borosilane 95 (60.8 mg, 0.2 mmol), MeOH (0.3 mL)
and toluene (2 mL) were added. The mixture was stirred for 12 hrs at room temperature,
quenched by addition of saturated aqueous NH4ClI (2.0 mL). The mixture was extracted
with Et.O (10 mL x 3). The organic layer was dried over anhydrous Na»SOs, filtered
and evaporated. Purification by flash column chromatography on silica gel (eluent: n-
hexane/EtOAc mixtures = 5/1, Rs = 0.4) gave the desired product 89 as a colorless oil.

Yield: 52% (37.9 mg).

SiH,Ph SiH(CI)Ph
\/\)\B/O B(C6F5)3 \/\)\B/O
1 Ph,CCI, rit. i
07<< 12 h 07<<
90

Chloro(phenyl)(1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pentyl)silane (90).
Prepared according to reported literature'!. A tube equipped with a stirring bar was
charged with B(CeFs)s (1.3 mg, 0.004 mmol, 2 mol%), PhsCCI (61.3 mg, 0.22 mmol,
1.1 equiv.), evacuated and refilled with argon (x 3). Then, geminal borosilane 95 (60.8
mg, 0.2 mmol), DCM (2 mL) were added. The mixture was stirred for 12 hrs at room
temperature. The solvent was removed under vacuum. Purification by flash column
chromatography on silica gel (eluent: n-hexane/EtOAc mixtures = 30/1, Rf = 0.25) gave

the desired product 90 as a colorless oil. Yield: 57% (38.5 mg).
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SiMeoPh SiMe,Ph

5-© 1. KOtBu, NH,0Me-HClI \/\)\
\/5 NHBoc

C‘) 2.Boc,0

91

tert-Butyl (1-(dimethyl(phenyl)silyl)pentyl)carbamate (91). Prepared according to
reported literature®. A tube equipped with a stirring bar was charged with KOtBu (67.3
mg, 0.6 mmol, 3 equiv.), NH2OMe HCI (25.1 mg, 0.3 mmol, 1.5 equiv.), evacuated and
refilled with argon (x 3). Then, geminal borosilane 49 (66.5 mg, 0.2 mmol) and toluene
(0.5 mL) were added. The mixture was stirred for 16 hrs at 80 °C. The reaction was
allowed to cool to room temperature, and di-tert-butyl dicarbonate (1.0 M in THF, 0.24
mL, 0.24 mmol, 1.50 equiv.) was added and allowed to stir at room temperature for 1.5
hours, filtered through a pad of silica gel washed by Et>O (10 mL x 3). The combined
filtrates were evaporated and purification by flash column chromatography on silica gel
(eluent: n-hexane/EtOACc mixtures = 3/1, Rf = 0.35) gave the desired product 91 as a
colorless oil. Yield: 83% (53.3 mg).

SiMe,Ph NaHCO;4 SiMe,Ph
\/\)\B,O H,0, \/\)\OH
o THF/H,0, r.t.
6h
92

1-(Dimethyl(phenyl)silyl)pentan-1-ol (92). Prepared according to reported literature®.
A tube equipped with a stirring bar was charged with NaHCO3z (84 mg, 1.0 mmol, 5
equiv.). Then, geminal borosilane 49 (66.5 mg, 0.2 mmol) and H2O (1 mL) were added.
H202 (30 wt%, 10 equiv.) was then added by dropwise the mixture was stirred for 3 hrs
at room temperature. Quenched with saturated Na>S>O3 aqueous solution. The mixture
was extracted with EtoO (10 x 3 mL). The organic layer was dried over anhydrous
Na>S0s, filtered and evaporated. Purification by flash column chromatography on silica
gel (eluent: n-hexane/EtOAC mixtures = 5/1, Rs = 0.35) gave the desired product 92 as
a colorless oil. Yield: 90% (40.0 mg).
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\}—P S
O\B/O thiophene
nBuLi SiPh
W)\/SiPh‘g NBS Fhs
93

(3-Methyl-2-(thiophen-2-yl)butyl)triphenylsilane (93). Prepared according to
reported literature!. A tube equipped with a stirring bar was charged with thiophene
(19 pL, 0.24 mmol, 1.2 equiv.) and THF (1 mL) under argon, cooled to -78 °C and
treated with n-BuLi (0.2 mL, 0.2 mmol, 1 M in THF). Then the mixture was allowed to
warm up to 0 <C and stirred for 30 minutes. After cooling to -78 °C again, a solution of
vicinal borosilane 75 (91 mg, 0.2 mmol) in THF (0.5 mL) was added dropwise. The
reaction mixture was allowed to stir at -78 °C for 1 hour. NBS (42.7 mg, 0.24 mmol,
1.2 equiv.) in THF (0.5 mL) was added dropwise and the mixture was stirred at -78 °C
for 1 hour. Quenched with saturated Na>S.03 aqueous solution (2.0 mL). The mixture
was extracted with Et.O (10 mL x 3). The organic layer was dried over anhydrous
Na2SOyg, filtered and evaporated. Purification by flash column chromatography on silica
gel (eluent: n-hexane/EtOAC mixtures = 5/1, Rs = 0.25) gave the desired product 93 as
a colorless sticky oil. Yield: 68% (59.3 mg).

Py

0,0 KHCO, OH

. H0, HO
PhHZS'VW/ MeOH/THF, rt.

12h
94

3-Methylbutane-1,2-diol (94). A tube equipped with a stirring bar was charged with
KHCO3 (100 mg, 1.0 mmol, 5 equiv.). Then, vicinal borosilane 63 (60.8 mg, 0.2 mmol),
MeOH (1.0 mL) and H20 (1 mL) were added. H20- (30 wt%, 10 equiv.) was then added
by dropwise the mixture was stirred for 12 hrs at room temperature. Quenched with
saturated Na>S»03 aqueous solution. The mixture was extracted with Et,O (10 x 3 mL).
The organic layer was dried over anhydrous Na»SOs, filtered and evaporated.
Purification by flash column chromatography on silica gel (eluent: n-hexane/EtOAc
mixtures = 1/1, R¢ = 0.35) gave the desired product 94 as a colorless oil. Yield: 61%
(12.7 mg).

S22



General Procedures for Scaling Up

General Procedure for Scaling Up in Batch Reactor

4CzIPN (0.5 mol%)

npr\/\Bpin . PhSiH, EtO;CCH,SH (5 mol%) . SiH,Ph
DIPEA (5 mol%) Bpin
THF (0.2 M), argon, r.t., 12 h
blue LEDs 95

Supplementary Figure 4. Batch reactor set-up with light irradiation

The synthesis of geminal borosilanes 95 in batch reactor:
A 50 mL round bottom flask equipped with a magnetic stir bar was charged with

4CzIPN (20 mg, 0.025 mmol, 0.5 mol%), alkenyl boronate (0.98 g, 5 mmol), PhSiH3
(0.65 g, 6 mmol, 1.2 equiv), DIPEA (45 pL, 0.25 mmol, 5 mol%) and EtO,CCH,SH
(28 pL, 0.25 mmol, 5 mol%). The reagents were dissolved in anhydrous THF and the
total volume of the solution was adjusted to 25 mL. The resulting mixture was cooled
to 0 °C using an ice-water bath, and bubbled with an argon balloon for 20 min. After
that, the reactor was placed under a blue LED (kessil light, 40 W, 456 nm) and irradiated
for 12 hrs at room temperature (Supplementary Figure 4). The solvent was removed
under vacuum. Silica gel chromatography (eluent: n-hexane/EtOAc = 50/1, R¢ = 0.4) of
the crude product afforded the desired compound 95 as a colorless oil in 78% yield
(1.19g).
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General Procedure for Scaling Up by Continuous-Flow Synthesis

NP ~p i O'D' = 1/16 inch, I'D' = 0.3 mm
. P coil 6.6 m, V =3 mL SiH,Ph

; 5 psi
PhSiH; p nPr\)\Bpin

4CzIPN (0.5 mol%) e
EtO,CCH,SH (5 mol%)|  Pump & BPR 95, 85%
DIPEA (5 mol%) 30-34 °C 7.44 g/ day
THF (0.2 M) Tg =30 min

Supplementary Figure 5. Flow set-up with light irradiation

The synthesis of geminal borosilanes 95 in flow reactor:

A 50 mL round bottom flask equipped with a magnetic stir bar was charged with
4CzIPN (0.025 mmol, 20 mg), alkenyl boronate (0.98 g, 5 mmol), PhSiHz (0.65 g, 6
mmol, 1.2 equiv), DIPEA (45 uL, 0.25 mmol, 5 mol%) and EtO.CCH>SH (28 uL, 0.25
mmol, 5 mol%). The reagents were dissolved in anhydrous THF (Solubility of 4CzIPN
in THF more than MTBE) and the total volume of the solution was adjusted to 25 mL.
The resulting mixture was cooled to 0 °C using an ice-water bath, and bubbled with an
argon balloon for 20 min. After that, the reaction solution was introduced to the flow
apparatus (Supplementary Figure 5). The flow apparatus was purged with degassed
argon to remove the air first. The Asia Syrris pump (Model No. 2200292) was then
connected to the reaction mixture and the tubing with a 5 psi back-pressure regulator
(BPR). The HPFA (high purity perfluoroalkoxyalkane) tubing (O.D. = 1/16 inch, I.D.
= 0.3 mm, length = 6.6 m, volume = 3 mL) was rounded on a glass cylinder (1.D. = 10

cm). The reaction was placed under a blue LED strips (18 w). The flow apparatus was
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cooled by two fans, keeping the ambient temperature around at 30-34 <C. The flow
apparatus itself was set up with residence time (Tr) = 30 min, flow rate = 100 uL/min.
After 90 min of equilibration, the product mixture was collected for 60 min. A crude
sample (6 mL) was taken from the collected solution and analyzed by H-NMR
spectroscopy using CH2Br» as an internal standard. Full conversion of alkenyl boronate
was observed and the *H-NMR vyield of product 95 was determined to be 88%. The
crude NMR sample was recovered and combined with the reaction mixture. The
combined crude was concentrated and purified by column chromatography (eluent: n-
hexane/EtOAc = 50/1, Rf = 0.4) of the crude product afforded the desired compound
95 in 85% yield (the productivity was 7.44 g/day).
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Supplementary Discussion

Radical Inhibition Experiments

4CzIPN (0.5 mol%)

nPr = . EtO,CCH,SH (5 mol%
A Bpin PhSiH, + TEMPO 2 2SH ( o) .
DIPEA (5 mol%) "

MTBE (0.1 M), argon, r.t., 12 h

0.2 mmol 0.24 mmol 2 eq. blue LEDs
Me Me 4CzIPN (0.5 mol%)
X EtO,CCH,SH (5 mol%)

Bpin  + PhSiH; + TEMPO
DIPEA (5 mol%)

MTBE (0.1 M), argon, r.t.,, 12 h
0.2 mmol 0.24 mmol 2 eq. blue LEDs

When TEMPO (2.0 equiv.) was introduced into the model reactions, no corresponding

products were observed. These results indicated that a free radical process was involved.
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Radical Clock Experiment

4CzIPN (05 mol%) SlePh

A/\ Et0,CCH,SH (5 mol%) L
_~a._._ +PhSiH ~ :
Bpin : DIPEA (5 mol%) "N “Bpin

MTBE (0.1 M), argon, r.t.,, 12 h
blue LEDs S6, 75% E/Z = 3/1

A 10 mL microwave tube equipped with a magnetic stir bar was charged with 4CzIPN
(0.8 mg, 0.001 mmol, 0.5 mol%), alkenyl boronate (38.8 mg, 0.2 mmol), PhSiHz (30
uL, 0.24 mmol, 1.2 equiv.) and anhydrous MTBE (2 mL). The tube was capped with a
Supelco aluminum crimp seal with septum (PTFE/butyl). The resulting mixture was
cooled to 0 <€ using an ice-water bath and bubbled with an argon balloon for 10 min.
DIPEA (1.8 uL, 0.01 mmol, 5 mol%) and EtO2CCH>SH (1.1 uL, 0.01 mmol, 5 mol%)
were then added. After that, the reactor was placed under a blue LED (Kessil light, 40
W, 456 nm) and irradiated for 12 hrs at room temperature. The solvent was removed
under vacuum. Purification by column chromatography on silica gel (eluent: n-
hexane/EtOAc mixtures = 100:1, Rs = 0.3) gave the desired product S6 as a colorless
oil. Yield: 75% (45.3 mg).
Phenyl(1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pent-2-en-1-yl)silane (S6).
IH NMR (400 MHz, CDCl3) 6 7.63 — 7.55 (m, 2H), 7.40 — 7.31 (m, 3H), 5.55 — 5.25
(m, 2H), 4.40 — 4.32 (m, 2H), 2.01 — 1.93 (m, 2H), 1.90 — 1.81 (m, 1H), 1.18 (d, J = 8.0
Hz, 12H), 0.90 (t, J = 7.4 Hz, 3H) (E-S6), 0.83 (t, J = 7.5 Hz, 3H) (Z-S6). 3C NMR
(126 MHz, CDCl3) 6 135.68, 135.63, 131.86, 129.62, 127.71, 124.39, 83.24, 25.93,
24.79, 24.69, 14.28.1'B NMR (128 MHz, CDCls) & 33.56. IR vmax (DCM): 2977, 2926,
2118, 1588, 1465, 1428, 1350, 1144 cm™ . HR-MS (EI) calcd for C17H26BO,Si [M-H]
*:301.1795, found 301.1789.
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'H NMR Spectra of DIPEA, Thiol, and Thiol/DIPEA Mixture

A) DIPEA A

B) Thiol O ‘

C) thiol/DIPEA mixture

[e]
o

—
0 25 2.0 15
1 (ppm)

2.04 4
2.01

w 200 4 =
3.07

= 11501

45 40 35

Supplementary Figure 6. tH NMR measurement

Procedure:
a) Toadry NMR tube, DIPEA (0.04 mmol) and 0.6 ml THF-d8 were added. The tube

was sealed with a rubber stopper and *H NMR spectrum was recorded.

b) To a dry NMR tube, EtO2CCH2SH (0.04 mmol) and 0.6 ml THF-d8 were added.
The tube was sealed with a rubber stopper and *H NMR spectrum was recorded.

c) Toadry NMR tube, DIPEA (0.04 mmol), EtO,CCH>SH (0.04 mmol) and 0.6 ml
THF-d8 were added. The tube was sealed with a rubber stopper and *H NMR

spectrum was recorded.
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Cyclic Voltammetry (CV) Measurements

Cyclic Voltammograms were collected using a VersaSTAT 3 Potentiostat Galvanostat
from Princeton Applied Research. The sample (0.01 M) and tetrabutylammonium
tetrafluoroborate (0.1 M) in acetonitrile was used for tests. Measurements were
performed using glassy carbon as working electrode, platinum wire as counter electrode,
and 3.5 M NaCl silver-silver chloride as reference electrode in a scan rate of 0.1 V/s.
Ferrocene (E12 = +0.42 V vs. SCE) was added at the end of the measurements as an
internal standard to determine the precise potential scale. Potential values are given

versus the saturated calomel electrode (SCE).
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0.00020 4
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0.0008 4 0.00015

o
DIPEA + ~oAust
0.0006 1 0.00010
0.0004 4

0.00005 -
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Current/ (A)
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-0.0002 4 -0.00005 -
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Ep2® (thiol/DIPEA mixture) = +0.68 V vs. SCE Ep2™ (sodium thiolate)=-0.74 V vs. SCE

Supplementary Figure 7. CV measurements.

The cyclic voltammetry (CV) results (Supplementary Fig. 7) showed that the CV
performance of the thiol/DIPEA mixture is completely different from that of DIPEA,
thiol or thiolate. In particular, a new reduction peak appeared for the thiol/DIPEA
mixture, which suggested formation of a new species. Since our calculation results
suggest that the complexation of thiyl radical with DIEPA is beneficial for the reaction
process, we speculate that the new reduction peak is associated with this thiyl radical-
DIPEA complex. Moreover, very little change of chemical shifts was observed in H

NMR studies (Supplementary Fig. 6). The complexation probably occurs after the

oxidation of thiol.
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Stern-Volmer Fluorescence Quenching Experiments

In a typical experiment, a solution of photocatalyst 4CzIPN in anhydrous MTBE (1.25
x10* M) was added with an appropriate amount of quencher in a quartz cuvette. Then
the emission of the sample was collected. The emission intensity at 520 nm was

collected with excited wavelength of 440 nm.

600000 254
—— 4CzIPN (1.25%10 M)
500000 —— 1a (1 equiv) added
1a (2 equiv) added 2.04
1a (4 equiv) added
—1a(8 /) added
400000 4 12 (16 equi added y = 5.76513* + 1.00819
1a (32 equiv) added 2 _
2 —— 1a (64 equiv) added 1.5+ R*=0.93087
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Supplementary Figure 8. Stern-Volmer fluorescence quenching studies.

Stern—Volmer fluorescence quenching studies indicated that the excited photocatalyst
can be reductively quenched by the mixture of thiol and DIPEA. Based on the
quenching studies, DIPEA is similarly effective as the thiol-DIPEA mixture as
quencher. We cannot rule out other mechanistic pathways. For instance, the excited
4CzIPN might oxidizes the DIPEA to afford an amine radical cation species, which
selectively abstract a hydrogen atom from Si-H bond to deliver the silyl radical.
Subsequently, the silyl radical adds to the a-position of the alkenyl boronate to deliver
an alkyl radical intermediate which undergoes polarity-matched HAT process with thiol
to give the thiyl radical and the borosilane product. The thiyl radical could oxidize the

reduced photocatalyst to close the photocatalytic cycle or engage in radical chain

processes.



Deuterium-labeling Experiments
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Supplementary Figure 9. *H NMR spectra of 95-d1

S33



J J I

40% D
Si(H/D),Ph
nPr Bpin
(H/D)
69% D

E)

| |
I
T &

j
et s

95 90 85 80 75 7.0 65 60 55 50 45 40 35 30 25 20 15 10 05 0
1 (ppm)

Supplementary Figure 10. 2H NMR spectra of 95-d1. CDCls (2.26 equiv.) was used

as an internal standard

A 10 mL microwave tube equipped with a magnetic stir bar was charged with 4CzIPN
(0.8 mg, 0.001 mmol, 0.5 mol%), alkenyl boronate (39.2 mg, 0.2 mmol), PhSiH3 (30
uL, 0.24 mmol, 1.2 equiv.), anhydrous THF (2 mL) and D20 (110 pL, 6 mmol, 30
equiv.). The tube was capped with a Supelco aluminum crimp seal with septum
(PTFE/butyl). The resulting mixture was cooled to 0 <€ using an ice-water bath and
bubbled with an argon balloon for 10 min. DIPEA (1.8 pL, 0.01 mmol, 5 mol%) and
EtO2CCH2SH (1.1 puL, 0.01 mmol, 5 mol%) were then added. After that, the reactor
was placed under a blue LED (Kessil light, 40 W, 456 nm) and irradiated for 12 hrs at
room temperature. The solvent was removed under vacuum. Purification by flash
column chromatography on silica gel (eluent: n-hexane/EtOAc mixtures = 100:1, R¢ =
0.35) gave the desired product as a colorless oil, *H NMR (d1 = 25 s) and 2H NMR

spectrum were recorded.
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The standard reaction was also conducted in deuterated THF, and no H/D exchange

occurred.
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Supplementary Figure 11. *H NMR spectra of 33-d1
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Supplementary Figure 12. 2H NMR spectra of 33-d1. CDCls (2.35 equiv.) was used

as an internal standard

A 10 mL microwave tube equipped with a magnetic stir bar was charged with 4CzIPN
(1.6 mg, 0.002 mmol, 1 mol%), alkenyl boronate (46 mg, 0.2 mmol), PhSiH3 (30 pL,
0.24 mmol, 1.2 equiv.), anhydrous THF (2 mL) and D,O (110 pL, 6 mmol, 30 eq.). The
tube was capped with a Supelco aluminum crimp seal with septum (PTFE/butyl). The
resulting mixture was cooled to 0 € using an ice-water bath and bubbled with an argon
balloon for 10 min. DIPEA (7.2 uL, 0.04 mmol, 20 mol%) and EtO>CCH2SH (4.4 puL,
0.04 mmol, 20 mol%) were then added. After that, the reactor was placed under blue
LED (Kessil light, 80 W, 456 nm) and irradiated for 24 hrs at room temperature. The
solvent was removed under vacuum. Purification by flash column chromatography on
silica gel (eluent: n-hexane/EtOAc mixtures = 100:1, R¢ = 0.3) gave the desired product
as a colorless oil, *H NMR (d1 = 25 s) and ?H NMR spectrum were recorded.

The standard reaction was also conducted in deuterated THF, and no H/D exchange

occurred.
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Supplementary Figure 13. *H NMR spectra of 63-d1
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Supplementary Figure 14. 2H NMR spectra of 63-d1. CDCls (2 equiv.) was used as

an internal standard

A 10 mL microwave tube equipped with a magnetic stir bar was charged with 4CzIPN
(0.8 mg, 0.001 mmol, 0.5 mol%), allyl boronate (39.2 mg, 0.2 mmol), PhSiH3 (30 puL,
0.24 mmol, 1.2 equiv.), anhydrous THF (2 mL). The tube was capped with a Supelco
aluminum crimp seal with septum (PTFE/butyl). The resulting mixture was cooled to 0
€ using an ice-water bath and bubbled with an argon balloon for 10 min. DIPEA (1.8
pL, 0.01 mmol, 5 mol%) and EtO,CCH2SH (1.1 pL, 0.01 mmol, 5 mol%) were then
added. After that, the reactor was placed under blue LED (Kessil light, 40 W, 456 nm)
and irradiated for 12 hrs at room temperature. The solvent was removed under vacuum.
Purification by flash column chromatography on silica gel (eluent: n-hexane/EtOAc
mixtures = 100:1, R = 0.35) gave the desired product as a colorless oil, *H NMR (d1 =
25 s) and ?H NMR spectrum were recorded.

The standard reaction was also conducted in deuterated THF, and no H/D exchange

occurred.
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Light On-off Experiments
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Supplementary Figure 15. Time profile of the hydrosilylation with the light ON/OFF
over time. Yields were determined by crude '"H NMR spectra using dibromomethane as

an internal standard.
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Supplementary Figure 16. Time profile of the hydrosilylation with the light ON/OFF
over time. Yields were determined by crude 'H NMR spectra using dibromomethane as

an internal standard.
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Determination of Photochemical Quantum Yields

Follow McMullen’s procedure for photon flux*®, the following solutions were prepared
ahead of time:
1. Ferrioxalate solution

A 0.15 M solution of potassium ferrioxolate was prepared by dissolving potassium
ferrioxolate (KsFe(C204)3*3H20) (1.842 g, 3.75 mmol) with the 0.05 M sulfuric acid
solution prepared in a 25 mL volumetric flask. Make every precaution to prepare and
store the solution in the dark.

2. Developer solution

67.8 g of sodium acetate was dissolved in 500 ml of 0.5 M sulfuric acid. 5 g of 1,10-
phenanthroline was added to this solution. Store in the dark.

To determine the photon flux of the Kessil lamp, 2.0 mL of the ferrioxalate solution
was placed in a 10 mL microwave tube and irradiated at A = 456 nm with an emission
slit width of 10.0 nm. After irradiation, 10 L aliquots of the solution were taken at
different time points between 0.5 and 3 minutes of irradiation. This aliquot is
immediately added to 5 mL of the developer solution and the flask is wrapped in
aluminum foil. A blank sample is prepared by adding 10 puL of the ferrioxalate solution
to 5 mL of developer solution. The solutions were left in the dark for one hour,
eventually becoming bright red. Solutions were transferred to a separate cuvette and the
absorbance spectrum of the Fe(phen)s?* complex was obtained. The absorbance at 510
nm (¢ = 11,100 M cm™*) was measured for each sample. The conversion was calculated

using eq 1.
_ V1-V3-AA

mol Fe?*
V2-l-¢

eql
AA = the difference between the absorbance between the sample and the blank as
measured at 510 nm.

| = the path length of the cuvette (1 cm)

& = the extinction coefficient of Fe(phen)s** complex at 510 nm (11,100 M cm™)

V1 = the total volume of the irradiated solution (2 mL; 2 x 103 L)

V2 = the volume of the aliquot removed from solution (10 uL; 1 x 10° L)

V3 = the volume that aliquots are diluted with (5 mL; 5 x 102 L)
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Supplementary Figure 17. Compiled linear fits for the photon flux

A plot of moles Fe?* as a function of time yields a linear equation with an intercept at
zero. The value of the slopes collected is 2.59 x 107" mol* s,

The photon flux can be calculated using eq 2.

mol Fe?*

Photon flux = v

eq 2
The documented quantum yield of the actinometer (® = 0.84 at 458 nm)®and f is

the fraction of light absorbed at A = 456 nm (0.95, vide infra)'’. The photon flux

in einsteins s,

Photon flux = 259 x 1077 =3.24 %1077
orontUX =582 x 095

4CzIPN (0.5 mol%)

SiH,Ph
AP - PhSiH EtO,CCH,SH (5 mol%) nPr
. + i .
7" Bpin : DIPEA (5 mol%) Bpin
MTBE (0.1 M), argon, r.t. 30 min
0.2 mmol 0.24 mmol blue LEDs 95, 32%

A 10 mL microwave tube equipped with a magnetic stir bar was charged with 4CzIPN
(0.8 mg, 0.001 mmol, 0.5 mol%), alkenyl boronate (39.2 mg, 0.2 mmol), PhSiH3z (30
pL, 0.24 mmol, 1.2 equiv.) and anhydrous MTBE (2 mL). The tube was capped with a
Supelco aluminum crimp seal with septum (PTFE/butyl). The resulting mixture was
cooled to 0 <€ using an ice-water bath and bubbled with an argon balloon for 10 min.
DIPEA (1.8 puL, 0.01 mmol, 5 mol%) and EtO2CCH>SH (1.1 pL, 0.01 mmol, 5 mol%)
were then added. After that, the reactor was placed under a blue LED (Kessil light, 40

W, 456 nm) and irradiated for 30 min at room temperature. The solvent was removed
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under vacuum. The yield of product formed was determined by crude *H NMR based
on a CH2Br standard. The quantum yield was determined using eq 3. Essentially, all
incident light (f = 1, vide infra) is absorbed by the 4CzIPN at the reaction conditions
described above.

0 = et a3
Experiment: alkenyl boronate (0.2 mmol), PhSiH3z (0.24 mmol), 4CzIPN (0.001 mmol),
EtO,CCH>SH (0.01 mmol) and DIPEA (0.01 mmol) in MTBE (2.0 mL) after 1800 s
yielded 32% of 95. ® = 0.109.

6.4 x 107°

® =354 %x 107 x 1800 x 1.00

= 0.109

4CzIPN (0.5 mol%) _
Me Me EtO,CCH,SH (5 mol%) Bpin

+ PhSiH, ,
\)<Bpin DIPEA (5 mol%) PhH,Si Me

MTBE (0.1 M), argon, r.t. 30 min Me
0.2 mmol 0.24 mmol blue LEDs 63. 16%

A 10 mL microwave tube equipped with a magnetic stir bar was charged with 4CzIPN
(0.8 mg, 0.001 mmol, 0.5 mol%), allyl boronate (39.2 mg, 0.2 mmol), PhSiH3 (30 uL,
0.24 mmol, 1.2 equiv.) and anhydrous MTBE (2 mL). The tube was capped with a
Supelco aluminum crimp seal with septum (PTFE/butyl). The resulting mixture was
cooled to 0 <€ using an ice-water bath and bubbled with an argon balloon for 10 min.
DIPEA (1.8 uL, 0.01 mmol, 5 mol%) and EtO,CCHSH (1.1 puL, 0.01 mmol, 5 mol%)
were then added. After that, the reactor was placed under a blue LED (Kessil light, 40
W, 456 nm) and irradiated for 30 min at room temperature. The solvent was removed
under vacuum. The yield of product formed was determined by crude *H NMR based
on a CH2Br standard. The quantum yield was determined using eq 3. Essentially, all
incident light (f = 1, vide infra) is absorbed by the 4CzIPN at the reaction conditions

described above.

mol product
flux-t-f

Experiment: allyl boronate (0.2 mmol), PhSiHsz (0.24 mmol), 4CzIPN (0.001 mmol),
EtO.CCH2SH (0.01 mmol) and DIPEA (0.01 mmol) in MTBE (2.0 mL) after 1800 s
yielded 16% of 63. ® = 0.055.

d = eq3

3.2x 1075

D= =0.
3.24 x 1077 x 1800 x 1.00 0.055
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Proposed Mechanisms

oa—Selective silylation of alkenyl boronates
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Supplementary Figure 18. Proposed mechanism for synthesis of geminal borosilanes
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y—Selective silylation of allyl boronates with concomitant 1,2-boron shift
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Supplementary Figure 19. Proposed mechanism for synthesis of vicinal borosilanes
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Computational Details

All quantum chemical calculations were performed by the Gaussian 16 program suite!®.
Geometry optimizations and frequency analyses were carried out using M06-2X
functional®® augmented with Grimme’s D3 dispersion correction?®. The 6-31G(d,p)
basis set?12® was used for all atoms. IEFPCM implicit solvation model?”?8 was used to
account for the solvation effects (static dielectric constant and dynamic dielectric
constant were manually set as 2.6 and 1.874 respectively). Possible conformations are
searched at all local minimum and transition states structure in reaction for the
corresponding minimum energetic pathway. All optimized geometries were confirmed
by the frequency analyses while transition states were further confirmed by the intrinsic
reaction coordinate (IRC) calculation. More accurate single point energies were
calculated by higher level basis set that may-cc-pVTZ?%3! for all atoms, without
changing any other conditions. Thermal corrections at 298.15 K were calculated by the
Shermo 2.3 program® with Grimme’s quasi- rigid-rotor harmonic oscillator model®.
Solvation free energies were corrected to concentration of 1 mol L. by adding +1.89
kcal mol to all species. The energy barrier of SET processes was calculated by Marcus
Theory®. External reorganization energies were obtained via non-equilibrium solvation
model. All electronic structure analyses were performed using the Multiwfn 3.8 (dev)

program®. Structures were visualized by VMD program®,

DFT Calculations of Photoredox Catalysis Cycle

The photoredox catalytic cycle wass divided into three sections: (i) a SET process
between the excited state of 4-CzIPN and ethyl thioglycolate, (ii) a HAT process
between the thiyl radical and silane, (iii) a SET process for the regeneration process of
4-CzIPN. The thermally-activated delayed fluorescence (TADF) molecules with a
small energy gap between S: and T1 state (AEST) have found broad applications in
photoredox catalysis and organic optoelectronic materials®’°. Previous research on

such excited TADF-type photocatalysts has indicated that the SET step mainly occurred
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in the T1 state since the population of T state is fast*’. Energetic barriers of the SET
step between 4-CzIPN and ethyl thioglycolate were calculated using Marcus theory34,
The results are consistent with the previous reports and are shown in Supplementary
Figures 20 and 21. The interaction between ethyl thioglycolate and DIPEA could
decrease the energy barrier for single electron oxidation by the excited photocatalyst
and also stabilize the formed radical cation intermediate (H vs. 1) (Supplementary
Figure 20). The energy barriers for accessing radical cation H or neutral radical P were
calculated to be +40.31 kcal mol? (I — B + H) and +5.01 kcal mol* (I — P + O),
respectively. Spin population analysis showed that spin density of the radical cations H
and 1 were localized on the sulfur atom (Supplementary Figure 22)*'. Next, it was
found that the energy barrier for hydrogen atom abstraction from phenylsilane by the
radical cation species 1 is significantly lower than by radical P (AAG = 6.81 kcal-mol
(G + L/G + K). Finally, the SET event between the reduced photocatalyst and thiy!
radical I for photocatalyst regeneration was also found to benefit from the complexation
between thiyl radical and DIPEA. Overall, these results indicate that the complexation

could promote both SET and HAT processes.
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Supplementary Figure 20. Free energy diagram for steps in photocatalysis circle

S48



| Hydrogen-atom abstraction
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Supplementary Figure 21. Free energy diagram for hydrogen-atom transfer process
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Supplementary Figure 22. Isosurface of spin density at 0.01 a.u. for S radicals H/I
and transition states of hydrogen-atom abstraction K/L. Numbers are spin population

from Hirshfeld atomic spaces analysis*.
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DFT Calculations of Radical Silylation of 1-Pentenylboronic Acid Pinacol Ester

The regioselectivity in the hydrosilylation of alkenyl boronates is studied by
calculations. The addition of silyl radical and subsequent hydrogen atom transfer with
thiols are calculated with (E)-1-pentenylboronic acid pinacol ester and phenylsilane as
the model substates (Supplementary Figure 23). The calculated energy diagram
illustrates that the addition of silyl radical to alkenyl boronic esters determines the
regioselectivity because the transition states (S1 or S2) have the highest energy in the
reaction pathways. This also explains why similar regioselectivity was observed with
different thiols (Supplementary Table 1). The energy barrier of silyl radical adding to
a-position of R1 is 1.64 kcal mol-1 lower than that to B-position (S1 vs S2), which
means the a-addition rate is approximately 16 times faster than f-addition. This is very
close to the observed selectivity in the crude reaction mixture (o/f = 14:1). Despite
higher stability of the generated intermediate T2 after f-addition, there are two reasons
for the kinetic-controlled a-selectivity. The radical addition processes are nearly
irreversible at room temperature, thus the equilibrium between a- and B-addition
products cannot be reached. Besides, HAT from thiol N to the radical intermediate T1
is both kinetically and thermodymically favored (AG” = 11.71 kcal mol-1, AG = -7.89
kcal mol-1) due to polarity-match. The higher HAT rate of T1 compared to T2 further
reduces the concentration of the radical T1. Overall, the Kinetically favored radical
addition and energetically favored back HAT process contribute to a-selective
silylation of alkenyl boronates. Similar elucidation is also found for cis-alkenyl

boronate R2 (Supplementary Figure 23).
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To examine whether different functionals give consistent results, we used 4 different
types of functionals with great performance in benchmark studies (MN15-D3(BJ),
PW6B95-D3, B3LYP-D3(BJ) and wB97XD) to study the a-selectivity in the silylation
of alkenyl boronates. Consistent results were obtained with very similar AAG values

(Supplementary Table 6).

Supplementary Table 6. Free Energy Under Different Methods

st 2 | AAG(S-9?) T! T2 AAG(T-T?)
M06-2X-D3 6.76 | 8.40 -1.64 -11.03 | -12.82 1.79
MN15-D3(BJ) 581 | 6.83 -1.02 -12.15 | -14.33 2.18
PW6B95-D3 6.22 | 814 -1.92 -9.83 | -11.57 1.74
B3LYP-D3(BJ) | 505 | 7.57 -2.52 -9.18 | -10.96 1.78
wB97XD 657 | 8.97 -2.40 13.30 | -14.47 1.17
Ut U2 [ AAG(U-U?) V1 V2 AAG(VE-V?)
M06-2X-D3 068 | 1.79 111 -18.92 | -16.57 -2.35
MN15-D3(BJ) 118 | 250 -1.32 -18.34 | -16.24 -2.10
PW6B95-D3 074 | 253 -1.79 -16.70 | -14.08 -2.62
B3LYP-D3(BJ) | -0.35 | 0.95 -1.30 -16.19 | -13.72 -2.47
wB97XD -3.60 | -1.62 -1.98 2085 | -18.26 -2.59
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DFT Calculations of Radical Silylation of 1,1-Dimethyl-2-Propen-1-Boronic Acid
Pinacol Ester

1,1-Dimethyl-2-propen-1-boronic acid pinacol ester and phenylsilane were chosen as
the model substrates. Based on the free-energy diagram, the rate determining step is
also the addition of silyl radical to allylboronic esters (Supplementary Figure 24).
Free energy barrier for the addition of silyl radical to B-position of the allyl boronate is
slightly higher than to y-position of the allyl boronate (S° vs. S°, AAG = 1.83 kcal-mol
1), probably due to steric effect. Besides, the radical intermediate T resulting from y-
addition is more stable than T®. At this stage, a 1,2-boron migration process influenced
by the a-substituents on the allyl boronates took place. The migration was steered by
thermodynamic effects to generate a more stable carbon radical T7 which undergoes
polarity-matched HAT process with thiol N to give vicinal borosilanes. DFT
calculations indicate the migration energy barrier for a,a-dimethyl allyl boronate is low
(AG#=9.23 kcal-mol-1) and the rearranged radical intermediate T7 is more stable than
the non-migrated radical T5 (AG = -1.69 kcal mol-1). Moreover, the HAT reaction rate
of rearranged radical T7 with thiol is much faster compared to T5, thereby allowing
selective synthesis of vicinal borosilanes. The spin delocalization of the transition state

W is illustrated by spin population analysis (Supplementary Figure 25).
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Supplementary Figure 25. Sign(A2)p colored isosurfaces of 5g™®" = 0.005 a.u. of
transition state W corresponding to IGMH analyses*2. Isosurface of spin density at 0.01
a.u. for transition states W. Numbers are spin population from Hirshfeld atomic spaces

analysis®%4,
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Supplementary Note 1

Analytical Data of the Products

SiH,Ph

-

Phenyl(1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)propyl)silane (12).
Following the general procedure I, the title compound (53.0 mg) was obtained in 96%
yield. Colorless oil (eluent: hexane/EA = 100:1, Rf=0.35). 'H NMR (400 MHz, CDCls)
§7.62 —7.59 (m, 2H), 7.40 — 7.31 (m, 3H), 4.35 (qd, J = 6.4, 3.6 Hz, 2H), 1.74 — 1.62
(m, 1H), 1.62 — 1.49 (m, 1H), 1.19 (d, J = 11.3 Hz, 12H), 0.99 (t, J = 7.3 Hz, 3H), 0.75
(dg, J=8.2,4.0 Hz, 1H). 3C NMR (126 MHz, CDCl3) § 135.54, 132.41, 129.53, 127.84,
83.03, 24.98, 24.50, 20.44, 17.40. The carbon signal attached to B was not observed.
1B NMR (128 MHz, CDCl3) § 34.40. IR vmax (DCM): 2977, 2958, 2929, 2126, 1371,
1267, 1145, 1118 cm™t. HR-MS (EI) calcd for C1sH24BO2Si [M-H]* : 275.1633, found
275.1643.

SiH,Ph
O\/KE\,/;<<
o)

(2-Cyclopentyl-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-

yl)ethyl)(phenyl)silane (12). Following the general procedure I, the title compound
(40.3 mg) was obtained in 61% yield. Colorless oil (eluent: hexane/EA = 100:1, Rf =
0.35). 'H NMR (500 MHz, CDCl3) & 7.64 — 7.58 (m, 2H), 7.41 — 7.30 (m, 3H), 4.34
(qd, J=6.5, 3.6 Hz, 2H), 1.86 — 1.68 (m, 4H), 1.61 — 1.52 (M, 2H), 1.51 — 1.41 (m, 3H),
1.17 (d, J = 15.9 Hz, 12H), 1.11 — 0.99 (m, 2H), 0.91 — 0.86 (m, 1H). 3C NMR (126
MHz, CDCls) & 135.53, 132.40, 129.52, 127.83, 83.03, 42.80, 33.09, 32.68, 32.11,
25.19, 25.14, 24.91, 24.58. The carbon signal attached to B was not observed. 1B NMR
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(128 MHz, CDClz3) 6 34.48. IR vmax (DCM): 2977, 2948, 2866, 2129, 1350, 1311, 1144,
1117 cm™L. HR-MS (EI) calcd for C19H30BO2Si [M-H]* : 329.2103, found 329.2117.

B\/O
0]

(2-Cyclohexyl-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)ethyl)(phenyl)silane
(13). Following the general procedure 1, the title compound (43.4 mg) was obtained in
63% yield. Colorless oil (eluent: hexane/EA = 100:1, R¢ = 0.35). 'H NMR (400 MHz,
CDCl3) 6 7.54 — 7.52 (m, 2H), 7.32 — 7.24 (m, 3H), 4.26 (qd, J = 6.5, 3.6 Hz, 2H), 1.67
—1.51 (m, 6H), 1.30 — 1.24 (m, 1H), 1.19 — 1.00 (m, 16H), 0.86 — 0.81 (m, 1H), 0.78 —
0.68 (m, 2H). **C NMR (126 MHz, CDCls) & 135.52, 132.39, 129.52, 127.83, 83.02,
40.01, 34.35, 33.40, 32.55, 26.68, 26.38, 26.37, 24.91, 24.52. The carbon signal
attached to B was not observed. !B NMR (128 MHz, CDCl3) § 34.78. IR Vmax (DCM):
2977, 2921, 2850, 2126, 1448, 1370, 1310, 1144 cmt. HR-MS (EIl) calcd for
C2o0H32BO2Si [M-H]" : 343.2259, found 343.2267.

SiH,Ph
/O

@Mﬁ’ 7<<
o}
Phenyl(3-phenyl-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)propyl)silane
(14). Following the general procedure 1, the title compound (56.4 mg) was obtained in
80% yield. Colorless oil (eluent: hexane/EA = 100:1, R¢ = 0.3). *H NMR (400 MHz,
CDCl3) & 7.52 — 7.47 (m, 2H), 7.31 — 7.22 (m, 3H), 7.19 — 7.15 (m, 2H), 7.10 — 7.04
(m, 3H), 4.28 (qd, J = 6.4, 3.6 Hz, 2H), 2.68 — 2.46 (m, 2H), 1.97 — 1.87 (m, 1H), 1.75
—1.66 (m, 1H), 1.11 (d, J = 10.5 Hz, 12H), 0.83 — 0.77 (m, 1H). 3C NMR (126 MHz,
CDCI3) 0 142.31, 135.55,132.15,129.57, 128.53, 128.24, 127.85, 125.70, 83.13, 38.85,
29.06, 25.02, 24.57. The carbon signal attached to B was not observed. !B NMR (128
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MHz, CDClI3) 6 34.86. IR vmax (DCM): 2978, 2927, 2857, 2131, 1454, 1353, 1261, 1144
cm L. HR-MS (EI) calcd for C21H20BO,Si [M]* : 352.2024, found 352.2029.

SiH,Ph

MeO/\)\B\/;K
(0]

(3-Methoxy-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)propyl)(phenyl)silane
(15). Following the general procedure 1, the title compound (49.6 mg) was obtained in
81% yield. Colorless oil (eluent: hexane/EA = 50:1, R = 0.25). *H NMR (400 MHz,
CDCl3) 6 7.62 — 7.59 (m, 2H), 7.40 — 7.31 (m, 3H), 4.36 (qd, J = 6.5, 3.7 Hz, 2H), 3.35
(td, J = 6.5, 1.1 Hz, 2H), 3.28 (s, 3H), 1.97 — 1.87 (m, 1H), 1.78 — 1.69 (m, 1H), 1.18
(d, J = 10.5 Hz, 12H), 0.87 — 0.81 (m, 1H). 3C NMR (126 MHz, CDCls) § 135.55,
132.10, 129.61, 127.87, 83.08, 74.41, 58.38, 26.91, 24.88, 24.54. The carbon signal
attached to B was not observed. 1'B NMR (128 MHz, CDCl3) & 34.22. IR Vmax (DCM):
2974, 2927, 2855, 2126, 1651, 1351, 1261, 1144 cmt. HR-MS (EIl) calcd for
C16H26B0O3Si [M-H]" : 305.1739, found 305.1738.

SiH,Ph
TBSO\/\)\ e

=S

o]
tert-Butyldimethyl(4-(phenylsilyl)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-
yl)butoxy)silane (16). Following the general procedure I, the title compound (79.8 mg)
was obtained in 95% yield. Colorless oil (eluent: hexane/EA =50:1, R¢=0.2). *H NMR
(400 MHz, CDCl3) § 7.61 — 7.59 (m, 2H), 7.39 — 7.31 (m, 3H), 4.35 (qd, J = 6.4, 3.6
Hz, 2H), 3.57 (td, J = 6.3, 1.6 Hz, 2H), 1.70 — 1.48 (m, 4H), 1.18 (d, J = 11.1 Hz, 12H),
0.87 (s, 9H), 0.84 — 0.76 (m, 1H), 0.02 (s, 6H). 3C NMR (126 MHz, CDCl3) & 135.55,
132.25, 129.55, 127.85, 83.06, 62.96, 35.79, 25.99, 24.98, 24.53, 23.21, 18.36, -5.25.
The carbon signal attached to B was not observed. !B NMR (128 MHz, CDCls) § 34.03.
IR vmax (DCM): 2976, 2954, 2857, 2122, 1740, 1351, 1257, 1145 cm™ L. HR-MS (EI)

calcd for C22H4BOsSi [M-H]" : 419.2604, found 419.2613.
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SiH,Ph
Cl .0

S

0
(4-Chloro-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)butyl)(phenyl)silane
(17). Following the general procedure 1, the title compound (59.0 mg) was obtained in
91% yield. Colorless oil (eluent: hexane/EA = 50:1, R¢ = 0.35). *H NMR (400 MHz,
CDCl3) 6 7.61—7.57 (m, 2H), 7.41 — 7.32 (m, 3H), 4.35 (qd, J = 6.4, 3.6 Hz, 2H), 3.49
(t, J=6.7 Hz, 2H), 1.76 — 1.68 (m, 2H), 1.53 — 1.45 (m, 2H), 1.18 (d, J = 11.8 Hz, 12H),
0.85 — 0.77 (m, 1H). 13C NMR (126 MHz, CDCls) & 135.52, 132.10, 129.64, 127.90,
83.16, 44.99, 32.44, 29.92, 26.32, 24.99, 24.51. The carbon signal attached to B was
not observed. !B NMR (128 MHz, CDCl3) § 34.19. IR vmax (DCM): 2978, 2923, 2851,
2128, 1460, 1372, 1315, 1260, 1143 cm™. HR-MS (EI) calcd for C1H2sBCIO,Si [M-
H]" : 323.1400, found 323.1409.

SiH,Ph
O\/\)\B/;)K
|

@) o

4-(Phenylsilyl)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)butyl adamantane-
1-carboxylate (18). Following the general procedure I, the title compound (63.7 mg)
was obtained in 68% yield. Colorless oil (eluent: hexane/EA =50:1, R¢=0.2). *H NMR
(400 MHz, CDCl3) & 7.61 — 7.57 (m, 2H), 7.40 — 7.30 (m, 3H), 4.40 — 4.30 (m, 2H),
4.00 (t, J = 6.0 Hz, 2H), 2.01 — 1.96 (m, 3H), 1.87 — 1.80 (m, 6H), 1.74 — 1.62 (m, 9H),
1.60 — 1.51 (m, 1H), 1.18 (d, J = 10.2 Hz, 12H), 0.84 — 0.77 (m, 1H). 3C NMR (126
MHz, CDCls) & 177.67, 135.52, 132.01, 129.63, 127.95, 127.87, 83.15, 63.70, 40.67,
38.81, 36.54, 31.49, 27.99, 25.01, 24.51, 23.34. The carbon signal attached to B was
not observed. !B NMR (128 MHz, CDCls) 6 33.66. IR vmax (DCM): 2977, 2907, 2852,
2131, 1726, 1429, 1353, 1236, 1144 cm ™. HR-MS (EI) calcd for C27Ha0BO4Si [M-H]* :
467.2783, found 467.2787.
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tert-Butyl (3-(phenylsilyl)-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-
yDpropyl)carbamate (19). Following the general procedure I, the title compound (49.3
mg) was obtained in 63% yield. Colorless oil (eluent: hexane/EA = 10:1, R¢= 0.35). 'H
NMR (400 MHz, CDCl3) & 7.60 — 7.58 (m, 2H), 7.41 — 7.32 (m, 3H), 4.71 (brs, 1H),
4.39 — 4.32 (m, 2H), 3.21 — 3.10 (m, 2H), 1.85 — 1.75 (m, 1H), 1.71 — 1.64 (m, 1H),
1.42 (s, 9H), 1.19 (d, J = 1.4 Hz, 12H), 0.79 (dt, J = 11.1, 3.7 Hz, 1H). 3C NMR (126
MHz, CDCl3) & 155.89, 135.53, 131.71, 129.76, 127.95, 83.40, 78.94, 42.92, 28.43,
26.89, 24.85, 24.72. The carbon signal attached to B was not observed. !B NMR (128
MHz, CDCl3) 6 34.99. IR vmax (DCM): 3420, 2978, 2930, 2131, 1770, 1652, 1365, 1247,
1143 cm™’. HR-MS (APCI) calcd for CoHasBNO4Si [M+H]" : 392.2423, found
392.2414.

S|H2Ph
Neogasve

4-Cyano-N-(3-(phenylsilyl)-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-

yl)propyl)benzamide (20). Following the general procedure I, the title compound
(47.1 mg) was obtained in 56% vyield. Colorless oil (eluent: hexane/EA = 10:1, Rf =
0.3). 'H NMR (500 MHz, CDCl3) & 7.86 — 7.77 (m, 2H), 7.73 — 7.67 (m, 2H), 7.62 —
7.57 (m, 2H), 7.43 — 7.31 (m, 3H), 6.58 (t, J = 5.6 Hz, 1H), 4.45 — 4.34 (m, 2H), 3.57 —
3.37 (m, 2H), 1.97 — 1.79 (m, 2H), 1.15 (d, J = 2.1 Hz, 12H), 0.93 — 0.85 (m, 1H). 3C
NMR (126 MHz, CDCl3) & 165.64, 138.85, 135.53, 132.43, 132.35, 129.92, 128.05,
127.70, 118.08, 114.87, 83.63, 42.43, 26.43, 24.82, 24.67. The carbon signal attached
to B was not observed. 1B NMR (128 MHz, CDCls) & 35.08. IR vmax (DCM): 3440,
2131, 1652, 1312, 1261, 1142 cm™t. HR-MS (EI) calcd for Ca3H2sBN203Si [M-H]* :

419.1957, found 419.1951.
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Q SiH,Ph
o O/\)\Q /;2<
0

Phenyl(3-((tetrahydro-2H-pyran-2-yl)oxy)-1-(4,4,5,5-tetramethyl-1,3,2-
dioxaborolan-2-yl)propyl)silane (21). Following the general procedure I, the title
compound (64.0 mg) was obtained in 85% yield. d.r. = 1.2:1. Colorless oil (eluent:
hexane/EA = 50:1, R¢ = 0.3). *H NMR (400 MHz, CDCl3) & 7.63 — 7.59 (m, 2H), 7.39
—7.31(m, 3H), 4.56 — 4.53 (m, 1H), 4.37 (qd, J = 6.6, 3.6 Hz, 2H), 3.87 — 3.63 (M, 2H),
3.47 — 3.29 (m, 2H), 1.99 — 1.90 (m, 1H), 1.84 — 1.77 (m, 2H), 1.70 — 1.64 (m, 1H),
1.58 — 1.47 (m, 4H), 1.19 — 1.15 (m, 12H), 0.96 — 0.89 (m, 1H). 3C NMR (126 MHz,
CDCl3) 6 135.58, 132.10, 129.61, 127.87, 98.74, 98.43, 83.14, 69.03, 68.94, 62.05,
61.97, 30.69, 30.63, 27.03, 26.99, 25.52, 25.00, 24.88, 24.51, 19.44, 19.42. The carbon
signal attached to B was not observed. 1B NMR (128 MHz, CDCl3) & 34.81. IR Vmax
(DCM): 2976, 2941, 2870, 2129, 1653, 1353, 1262, 1144 cm™t. HR-MS (EI) calcd for
C20H32BO4Si [M-H]" : 375.2157, found 375.2166.

SiH,Ph

AR e

(3-(Oxiran-2-ylmethoxy)-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-

yl)propyl)(phenyl)silane (22). Following the general procedure I, the title compound
(31.3 mg) was obtained in 45% yield. d.r. = 1.1:1. Colorless oil (eluent: hexane/EA =
50:1, Rf=0.3). *H NMR (400 MHz, CDCl3) § 7.62 — 7.59 (m, 2H), 7.40 — 7.31 (m, 3H),
4.36 (qd, J = 6.5, 3.6 Hz, 2H), 3.65 — 3.61 (M, 1H), 3.51 — 3.42 (m, 2H), 3.36 (ddd, J =
11.6, 5.7, 2.2 Hz, 1H), 3.14 — 3.08 (m, 1H), 2.78 — 2.75 (m, 1H), 2.59 — 2.56 (m, 1H),
1.98 — 1.89 (m, 1H), 1.81 — 1.72 (m, 1H), 1.17 (d, J = 10.6 Hz, 12H), 0.88 — 0.84 (m,
1H). 3C NMR (126 MHz, CDCls) § 135.56, 132.03, 129.66, 127.89, 83.15, 73.12,
71.40, 71.37, 50.85, 44.42, 26.93, 24.94, 24.53. The carbon signal attached to B was

S62



not observed. !B NMR (128 MHz, CDCl3) § 34.65. IR vmax (DCM): 2977, 2926, 2867,
2126, 1640, 1352, 1308, 1144 cm™t. HR-MS (EI) calcd for CigH2sBO4Si [M-H]* :
347.1844, found 347.1836.

2-(4-(Phenylsilyl)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-
yl)butyl)isoindoline-1,3-dione (23). Following the general procedure I, the title
compound (58.3 mg) was obtained in 67% yield. Colorless oil (eluent: hexane/EA =
20:1, Rf=0.3). *H NMR (400 MHz, CDCls) & 7.83 — 7.80 (m, 2H), 7.72 — 7.67 (m, 2H),
7.59 — 7.56 (m, 2H), 7.36 — 7.28 (m, 3H), 4.33 (qd, J = 6.5, 3.6 Hz, 2H), 3.66 — 3.60
(m, 2H), 1.81—1.52 (m, 4H), 1.15 (d, J = 11.2 Hz, 12H), 0.88 — 0.82 (m, 1H). *C NMR
(126 MHz, CDCl3) 6 168.35, 135.53, 133.77, 132.23, 131.94, 129.61, 127.86, 123.13,
83.18, 37.85, 31.34, 24.97, 24.46, 24.26. The carbon signal attached to B was not
observed. !B NMR (128 MHz, CDCls3) § 34.48. IR vmax (DCM): 2977, 2931, 2859,
2132, 1774, 1713, 1395, 1355, 1143 cm ™. HR-MS (EI) calcd for C2sH30BNO4Si [M]* :
435.2032, found 435.2038.

O SiH,Ph
SRS
o""8
N, (e
Boc

1-(tert-Butyl) 2-(3-(phenylsilyl)-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-
yDpropyl) pyrrolidine-1,2-dicarboxylate (24). Following the general procedure |
with racemic starting material, the title compound (85.1 mg) was obtained in 87% vyield.
d.r. = 1.8:1. Colorless oil (eluent: hexane/EA = 10:1, Rf = 0.25). *H NMR (400 MHz,
CDCl3) § 7.54 — 7.49 (m, 2H), 7.36 — 7.23 (m, 3H), 4.35 — 4.25 (m, 2H), 4.25 — 3.91
(m, 3H), 3.52 — 3.23 (m, 2H), 2.18 — 2.00 (M, 1H), 1.96 — 1.69 (m, 5H), 1.38 — 1.31 (m,
9H), 1.11 (d, J = 6.4 Hz, 12H), 0.85 — 0.74 (m, 1H). 23C NMR (101 MHz, CDCls) &
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173.19, 153.85, 135.52, 135.50, 131.49, 129.83, 127.98, 83.38, 79.83, 79.68, 66.17,
59.18, 58.85, 46.53, 46.32, 30.92, 28.45, 28.33, 25.98, 24.97, 24.54, 24.51, 24.28, 23.63.
The carbon signal attached to B was not observed. !B NMR (128 MHz, CDCls) § 35.45.
IR vmax (DCM): 2977, 2932, 2881, 2134, 1746, 1670, 1394, 1260, 1143 cm™t. HR-MS
(EI) calcd for CosH3sBNO6Si [M-H]* : 488.2634, found 488.2640.

—0
SiH,Ph
O\/\)\B/O
|
HN Lo sz<

4-(Phenylsilyl)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)butyl 2-(5-
methoxy-2-methyl-1H-indol-3-yl)acetate (25). Following the general procedure I, the
title compound (65.9 mg) was obtained in 65% yield. Colorless oil (eluent: hexane/EA
= 10:1, Rf = 0.25). 'H NMR (500 MHz, CDCl3) & 7.69 (s, 1H), 7.59 — 7.56 (m, 2H),
7.41 — 7.32 (m, 3H), 7.14 — 7.12 (m, 1H), 7.00 — 6.97 (m, 1H), 6.78 — 6.75 (M, 1H),
4.34 — 4.29 (m, 2H), 4.02 (t, J = 6.2 Hz, 2H), 3.84 (s, 3H), 3.61 (d, J = 1.2 Hz, 2H),
2.36 (s, 3H), 1.77 — 1.62 (m, 3H), 1.55 — 1.49 (m, 1H), 1.16 (d, J = 16.3 Hz, 12H), 0.81
—0.73 (M, 1H). 3C NMR (126 MHz, CDCl3) § 171.99, 154.17, 135.54, 133.40, 132.01,
130.09, 129.66, 128.99, 127.90, 111.05, 110.87, 104.66, 100.36, 83.17, 64.52, 55.90,
31.45, 30.51, 24.97, 24.50, 23.41, 11.88. The carbon signal attached to B was not
observed. !B NMR (160 MHz, CDCl3) & 33.78. IR vmax (DCM): 2973, 2929, 2852,
2132, 1730, 1653, 1355, 1224, 1142 cm ™. HR-MS (EI) calcd for C2sH3sBNO4Si [M]* :
507.2607, found 507.2603.

o) SiH,Ph
O /\)\ o)

. 0 B
= “’7<<
3-(Phenyilsilyl)-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)propyl isoxazole-5-
carboxylate (26). Following the general procedure 1, the title compound (51.1 mg) was

obtained in 66% yield. Colorless oil (eluent: hexane/EA = 20:1, R = 0.3). 'H NMR
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(400 MHz, CDCl3) & 8.92 (d, J = 0.7 Hz, 1H), 8.47 (d, J = 0.7 Hz, 1H), 7.65 — 7.57 (m,
2H), 7.42 — 7.32 (m, 3H), 4.40 (qd, J = 6.6, 3.5 Hz, 2H), 4.35 — 4.25 (m, 2H), 2.13 —
2.03 (m, 1H), 1.98 — 1.89 (m, 1H), 1.18 (d, J = 5.7 Hz, 12H), 0.98 — 0.90 (m, 1H). 3C
NMR (101 MHz, CDClz) & 161.15, 157.94, 148.84, 135.51, 131.46, 129.88, 128.02,
83.46, 67.02, 25.94, 24.96, 24.54. The carbon signal attached to B was not observed.
1B NMR (128 MHz, CDCl3) § 34.45. IR vmax (DCM): 2978, 2931, 2136, 1717, 1645,
1513, 1354, 1259, 1143 cm™*. HR-MS (EI) calcd for C19H2sBNOsSi [M-H]* : 386.1590,
found 386.1591.

SiH,Ph
_0

B
L
(2-Methyl-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)propyl)(phenyl)silane
(27). Following the general procedure 1, the title compound (52.8 mg) was obtained in
91% vyield. Colorless oil (eluent: hexane/EA = 100:1, Rf = 0.35). 'H NMR (400 MHz,
CDCl3) 6 7.65—7.62 (m, 2H), 7.37 — 7.31 (m, 3H), 4.37 (qd, J = 6.1, 3.6 Hz, 2H), 2.05
—1.97 (m, 1H), 1.16 (d, J = 18.7 Hz, 12H), 1.03 (dd, J = 13.4, 6.7 Hz, 6H), 0.78 — 0.75
(m, 1H). 3C NMR (126 MHz, CDCls) & 135.63, 132.75, 129.44, 127.80, 82.96, 27.37,
25.16, 24.99, 24.52. The carbon signal attached to B was not observed. !B NMR (128
MHz, CDClI3) 4 33.89. IR vmax (DCM): 2977, 2956, 2867, 2132, 1371, 1346, 1269, 1144
cm L. HR-MS (EI) calcd for C16H26BO,Si [M-H]* : 289.1790, found 289.1797.

SiH,Ph

PhH,Si
)\B/O 2SI\/\B\/O
+
i @)
S

minor major

Phenyl(1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)ethyl)silane (28) and Phenyl(2-
(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)ethyl)silane (28"). Following the general

procedure 1, the title compound (39.3 mg) was obtained in 75% vyield. Colorless oil
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(eluent: hexane/EA = 100:1, R¢ = 0.35). *H NMR (400 MHz, CDCl3) § 7.63 — 7.59 (m,
2H), 7.59 — 7.55 (m, 2H), 7.41 — 7.31 (m, 3H), 4.40 — 4.28 (m, 2H) (28), 4.27 (1, ] = 3.6
Hz, 2H) (28"), 1.23 (s, 12H) (28"), 1.19 (d, J = 3.7 Hz, 12H) (28), 1.15 (d, J = 7.3 Hz,
3H) (28), 1.03 - 0.97 (m, 2H) (28), 0.92 — 0.88 (m, 2H) (28"), 0.79 (dt, J = 7.3, 3.6 Hz,
1H) (28). C NMR (126 MHz, CDCls) & 135.54, 135.32, 132.31, 129.56, 129.45,
127.90, 127.84, 83.08, 24.87, 24.82, 24.66, 10.52, 3.28. 1'B NMR (128 MHz, CDCls)
8 34.51. The carbon signal attached to B was not observed. IR vmax (DCM): 2978, 2931,
2875, 2124, 1644, 1342, 1220, 1145 cm™ 1. HR-MS (EI) calcd for C14H2,BO,Si [M-H]" :
261.1477, found 261.1481.

O  SiH.Ph

/\O)J\)\B\/\O/K
O

Ethyl 3-(phenylsilyl)-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)propanoate
(30). Following the general procedure 1, the title compound (36.8 mg) was obtained in
55% yield. Colorless oil (eluent: hexane/EA = 50:1, R = 0.2). *H NMR (500 MHz,
CDCl3) § 7.61 — 7.59 (m, 2H), 7.42 — 7.33 (m, 3H), 4.42 — 4.32 (m, 2H), 4.14 — 4.01
(m, 2H), 2.65 — 2.56 (m, 1H), 2.45 — 2.38 (m, 1H), 1.27 — 1.14 (m, 15H), 0.90 — 0.82
(m, 1H). C NMR (126 MHz, CDCl3) § 174.19, 135.56, 131.37, 129.82, 127.99, 83.34,
60.52, 31.62, 24.86, 24.51, 14.26. The carbon signal attached to B was not observed.
1B NMR (128 MHz, CDCls3) & 34.18. IR vmax (DCM): 2979, 2930, 2134, 1734, 1638,
1356, 1260, 1142 cm™1. HR-MS (EI) calcd for C17H26B04Si [M-H]* : 333.1688, found
333.1693.

(2-Ethoxy-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)ethyl)(phenyl)silane
(31). Following the general procedure I, the title compound (43.3 mg) was obtained in

71% yield. Colorless oil (eluent: hexane/EA = 50:1, Rf = 0.35). 'H NMR (400 MHz,
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CDCl3) § 7.64 — 7.59 (m, 2H), 7.42 — 7.29 (m, 3H), 4.39 — 4.34 (m, 2H), 3.73 (t, J = 9.2
Hz, 1H), 3.63 — 3.54 (m, 1H), 3.41 (qd, J = 7.0, 2.4 Hz, 2H), 1.41 — 1.35 (m, 1H), 1.18
(d, J = 12.5 Hz, 12H), 1.14 (t, J = 7.0 Hz, 3H). 3C NMR (126 MHz, CDCls) 5 135.64,
131.90, 129.57, 127.81, 83.19, 68.87, 65.69, 24.90, 24.47, 15.11. The carbon signal
attached to B was not observed. *'B NMR (128 MHz, CDCl3) & 33.75. IR Vmax (DCM):
2977, 2931, 2866, 2133, 1591, 1354, 1263, 1146 cmi. HR-MS (El) calcd for
C16H26BO3Si [M-H]* : 305.1739, found 305.1735.

/

= SiH,Ph

%ﬁaﬁB%ﬁé
o]

4-Methyl-8-(2-(phenylsilyl)-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-
yl)ethyl)dihydro-424,8)-[1,3,2]oxazaborolo[2,3-b][1,3,2]oxazaborole-2,6(3H,5H)-
dione (32). Following the general procedure I, the title compound (46.7 mg) was
obtained in 56% yield. Colorless oil (eluent: hexane/EA = 10:1, Rf = 0.35). 'H NMR
(400 MHz, CDCls) & 7.68 — 7.66 (m, 2H), 7.39 — 7.32 (m, 3H), 4.42 — 4.31 (m, 2H),
3.75 (d, J = 1.2 Hz, 2H), 3.69 (d, J = 16.5 Hz, 1H), 3.52 (d, J = 16.5 Hz, 1H), 2.87 (s,
3H), 1.20 (d, J = 3.2 Hz, 12H), 0.99 — 0.93 (m, 2H), 0.71 — 0.66 (m, 1H). 2*C NMR (126
MHz, CDCl3) & 166.59, 135.90, 133.06, 129.55, 127.93, 83.47, 62.66, 46.01, 29.72,
25.28, 24.56. The carbon signal attached to B was not observed. !B NMR (128 MHz,
CDCI3) 6 34.49, 13.81. IR vmax (DCM): 2978, 2935, 2114, 1726, 1652, 1312, 1263,
1146 cm™’. HR-MS (APCI) calcd for CioH2sB2NOeSi [M-H]* : 416.1877, found
416.1879.

I%/O
)
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Phenyl(2-phenyl-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)ethyl)silane (33).
Following the general procedure 11, the title compound (49.4 mg) was obtained in 73%
yield. Colorless oil (eluent: hexane/EA = 100:1, R¢ = 0.3). *H NMR (400 MHz, CDCls)
§7.63 —7.61 (m, 2H), 7.42 — 7.33 (m, 3H), 7.24 — 7.17 (m, 4H), 7.15 — 7.10 (m, 1H),
4.44 — 4.35 (m, 2H), 2.97 — 2.79 (m, 2H), 1.26 — 1.20 (m, 1H), 1.07 (d, J = 17.1 Hz,
12H). 13C NMR (126 MHz, CDCl3) & 143.91, 135.57, 131.86, 129.70, 128.24, 128.10,
127.93, 125.67, 83.20, 32.63, 24.83, 24.47. The carbon signal attached to B was not
observed. 1B NMR (128 MHz, CDCls) & 34.12. IR vmax (DCM): 2977, 2929, 2857,
2129, 1639, 1429, 1353, 1242, 1143 cm 1. HR-MS (EI) calcd for C20H27B0OSi [M]* :
338.1868, found 338.1879.

B‘/O
o

Phenyl(1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2-(p-tolyl)ethyl)silane (34).
Following the general procedure 11, the title compound (57.1 mg) was obtained in 81%
yield. Colorless oil (eluent: hexane/EA = 100:1, R¢ = 0.3). *H NMR (400 MHz, CDCl5)
§7.64 —7.61 (m, 2H), 7.42 — 7.33 (m, 3H), 7.10 — 7.03 (m, 4H), 4.42 — 4.38 (m, 2H),
2.97 — 2.77 (m, 2H), 2.30 (s, 3H), 1.24 — 1.18 (m, 1H), 1.10 (d, J = 15.8 Hz, 12H).3C
NMR (126 MHz, CDClz) 6 140.83, 135.59, 135.02, 131.96, 129.67, 128.78, 128.10,
127.92, 83.18, 32.20, 24.88, 24.50, 21.01. The carbon signal attached to B was not
observed. !B NMR (128 MHz, CDCls3) § 33.83. IR vmax (DCM): 2978, 2926, 2862,
2131, 1514, 1351, 1240, 1143 cm™. HR-MS (El) calcd for C21H20BO2Si [M]* :
352.2024, found 352.2015.

: O SiH,Ph
I?/o
0
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(2-([1,1'-Biphenyl]-4-yl)-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-
yl)ethyl)(phenyl)silane (35). Following the general procedure 11, the title compound
(58.0 mg) was obtained in 70% yield. Colorless oil (eluent: hexane/EA = 50:1, R =
0.35). *H NMR (400 MHz, CDCl3) & 7.64 — 7.62 (m, 2H), 7.58 — 7.55 (m, 2H), 7.48 —
7.25 (m, 10H), 4.44 — 4.40 (m, 2H), 3.02 — 2.84 (m, 2H), 1.28 — 1.23 (m, 1H), 1.09 (d,
J = 15.3 Hz, 12H). C NMR (126 MHz, CDCls) § 143.11, 141.22, 138.58, 135.58,
131.83, 129.71, 128.69, 128.67, 127.95, 126.97, 126.94, 126.83, 83.25, 32.30, 24.86,
24.49. The carbon signal attached to B was not observed. !B NMR (160 MHz, CDCls)
8 34.24. IR vmax (DCM): 2977, 2926, 2855, 2133, 1486, 1351, 1320, 1142 cm L.HR-
MS (EI) calcd for CasH31BO2Si [M]* : 414.2181, found 414.2184.

MeO
e \©\iH2Ph
B\/O
(@)

(3-(4-Methoxyphenyl)-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-

yl)ethyl)(phenyl)silane (36). Following the general procedure 11, the title compound
(58.2 mg) was obtained in 79% yield. Colorless oil (eluent: hexane/EA = 50:1, R =
0.2). 'H NMR (400 MHz, CDCl3) & 7.63 — 7.60 (m, 2H), 7.41 — 7.33 (m, 3H), 7.13 —
7.08 (m, 2H), 6.79 — 6.75 (M, 2H), 4.41 — 4.36 (m, 2H), 3.77 (s, 3H), 2.93 — 2.75 (m,
2H), 1.22 — 1.16 (m, 1H), 1.09 (d, J = 16.4 Hz, 12H). 3C NMR (126 MHz, CDCls) &
157.67, 136.12, 135.57, 131.95, 129.66, 129.15, 127.91, 113.49, 83.17, 55.27, 31.77,
24.88, 24.49. The carbon signal attached to B was not observed. !B NMR (128 MHz,
CDCl3) §35.91. IR vmax (DCM): 2978, 2931, 2131, 1611, 1511, 1351, 1246, 1142 cm™ L,
HR-MS (EI) calcd for Ca1H20BO3Si [M]* : 368.1974, found 368.1984.

F
\@\inPh
B\KO
O
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(2-(4-Fluorophenyl)-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-
yl)ethyl)(phenyl)silane (37). Following the general procedure 11, the title compound
(53.4 mg) was obtained in 75% yield. Colorless oil (eluent: hexane/EA = 50:1, R =
0.3). 'H NMR (400 MHz, CDCl3) & 7.63 — 7.60 (m, 2H), 7.43 — 7.33 (m, 3H), 7.17 —
7.11 (m, 2H), 6.93 — 6.87 (m, 2H), 4.41 — 4.37 (m, 2H), 2.94 — 2.76 (m, 2H), 1.23 —
1.16 (m, 1H), 1.08 (d, J = 18.5 Hz, 12H). 23C NMR (126 MHz, CDCl3) § 161.20 (d, J
=243.0 Hz),139.58, 135.55, 131.70, 129.76, 129.60 (d, J = 7.8 Hz), 127.97, 114.75 (d,
J = 20.9 Hz), 83.25, 31.88, 24.86, 24.47. The carbon signal attached to B was not
observed. °F NMR (377 MHz, CDCl3) § -118.05. !B NMR (128 MHz, CDCls) § 34.64.
IR vmax (DCM): 2979, 2930, 2133, 1601, 1509, 1429, 1351, 1220, 1146 cm*. HR-MS
(E1) calcd for C20H26BFO2Si [M]" : 356.1774, found 356.1780.

MeOOC ,
E\;/O
O

Methyl 4-(2-(phenylsilyl)-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-
ylethyl)benzoate (38). Following the general procedure Il, the title compound (44.4
mg) was obtained in 56% yield. Colorless oil (eluent: hexane/EA = 50:1, Rt = 0.2). 'H
NMR (400 MHz, CDCl3) & 7.92 — 7.89 (m, 2H), 7.63 — 7.61 (m, 2H), 7.42 — 7.34 (m,
3H), 7.28 — 7.24 (m, 2H), 4.43 — 4.38 (m, 2H), 3.89 (s, 3H), 3.01 — 2.83 (M, 2H), 1.25
—1.19 (m, 1H), 1.07 (d, J = 19.9 Hz, 12H). 3C NMR (126 MHz, CDCls) & 167.23,
149.53, 135.56, 131.53, 129.83, 129.52, 128.28, 128.00, 127.66, 83.33, 51.93, 32.72,
24.86, 24.46. The carbon signal attached to B was not observed. !B NMR (128 MHz,
CDCI3) 6 35.08. IR vmax (DCM): 2979, 2951, 2133, 1720, 1610, 1434, 1372, 1280, 1143
cm L. HR-MS (EI) calcd for C22H20BO4Si [M]* : 396.1923, found 396.1927.

Me,N
B\/O
O

S70



N,N-Dimethyl-4-(2-(phenylsilyl)-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-
yl)ethyl)aniline (39). Following the general procedure 11, the title compound (45.7 mg)
was obtained in 60% yield. Colorless oil (eluent: hexane/EA = 20:1, Rf=0.3). 'H NMR
(400 MHz, CDCls) & 7.64 — 7.61 (m, 2H), 7.42 — 7.32 (m, 3H), 7.10 — 7.06 (m, 2H),
6.68 — 6.64 (m, 2H), 4.41 — 4.36 (m, 2H), 2.93 — 2.72 (m, 8H), 1.22 — 1.16 (m, 1H),
1.11 (d, J = 14.2 Hz, 12H). 3C NMR (126 MHz, CDCls) § 149.07, 135.60, 132.44,
132.16, 129.59, 128.81, 127.87, 113.00, 83.12, 41.07, 31.63, 24.91, 24.53. The carbon
signal attached to B was not observed. !B NMR (128 MHz, CDCl3) § 35.03. IR vmax
(DCM): 2978, 2930, 2129, 1614, 1520, 1350, 1241, 1142 cm™ 1. HR-MS (EI) calcd for
C22H3:BNO,Si [M]" : 381.2290, found 381.2300.

F;CO
B\/O
O

Phenyl(1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2-(4-
(trifluoromethoxy)phenyl)ethyl)silane (40). Following the general procedure 11, the
title compound (63.3 mg) was obtained in 75% yield. Colorless oil (eluent: hexane/EA
=50:1, Rf = 0.25). *H NMR (400 MHz, CDCls) § 7.63 — 7.59 (m, 2H), 7.43 — 7.34 (m,
3H), 7.23 — 7.19 (m, 2H), 7.10 — 7.05 (m, 2H), 4.43 — 4.38 (m, 2H), 2.96 — 2.80 (m,
2H), 1.24 — 1.18 (m, 1H), 1.07 (d, J = 18.5 Hz, 12H). 3C NMR (126 MHz, CDCls) &
147.30, 142.75, 135.53, 131.57, 129.81, 129.53, 127.99, 120.70, 120.53 (g, J = 257.04
Hz), 83.30, 32.03, 24.78, 24.43. The carbon signal attached to B was not observed. *°F
NMR (377 MHz, CDCls) & -58.00. !B NMR (128 MHz, CDCls) & 34.79. IR Vmax
(DCM): 2980, 2932, 2132, 1508, 1352, 1263, 1165, 1142 cm™ L. HR-MS (EI) calcd for
C21H26BF305Si [M]* : 422.1691, found 422.1692.

Cl
B‘/O
o
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(2-(4-Chlorophenyl)-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-
yl)ethyl)(phenyl)silane (41). Following the general procedure 11, the title compound
(52.1 mg) was obtained in 70% yield. Colorless oil (eluent: hexane/EA = 50:1, R =
0.3). 'H NMR (400 MHz, CDCl3) & 7.63 — 7.59 (m, 2H), 7.43 — 7.33 (m, 3H), 7.20 —
7.16 (m, 2H), 7.14 — 7.10 (m, 2H), 4.42 — 4.36 (m, 2H), 2.93 — 2.75 (m, 2H), 1.21 —
1.15 (m, 1H), 1.09 (d, J = 18.9 Hz, 12H).13C NMR (126 MHz, CDCls) § 142.41, 135.55,
131.61, 131.34,129.79, 129.63, 128.16, 127.98, 83.30, 32.04, 24.89, 24.47. The carbon
signal attached to B was not observed. !B NMR (128 MHz, CDCl3) § 34.59. IR vmax
(DCM): 2978, 2930, 2863, 2134, 1591, 1490, 1429, 1351, 1240, 1146 cmt. HR-MS
(EI) calcd for CooH26BCIO2Si [M]" : 372.1478, found 372.1472.

FiC E?/O
0

Phenyl(1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2-(3-
(trifluoromethyl)phenyl)ethyl)silane (42). Following the general procedure Il, the
title compound (38.0 mg) was obtained in 47% yield. Colorless oil (eluent: hexane/EA
=50:1, Rf = 0.35). 'H NMR (400 MHz, CDCls) § 7.64 — 7.61 (m, 2H), 7.51 — 7.49 (m,
1H), 7.42 — 7.31 (m, 6H), 4.44 — 4.40 (m, 2H), 3.01 — 2.81 (m, 2H), 1.27 — 1.16 (m,
1H), 1.08 (d, J = 15.4 Hz, 12H).3C NMR (126 MHz, CDCls) § 144.92, 135.55, 131.74,
131.45, 130.33 (g, J = 31.7 Hz), 129.86, 128.51, 128.02, 126.38 (q, J = 246.3 Hz),
125.09 (g, J = 3.7 Hz), 122.57 (q, J = 3.8 Hz), 83.38, 32.54, 24.75, 24.48. The carbon
signal attached to B was not observed. *°F NMR (377 MHz, CDCls) § -62.55. B NMR
(128 MHz, CDCl3) 6 34.41. IR vmax (DCM): 2978, 2930, 2863, 2134, 1591, 1490, 1351,
1240, 1142 cm™. HR-MS (EI) calcd for Ca1H24BF30,Si [M]* : 404.1585, found
404.1599.
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(2-(3,5-Difluorophenyl)-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-
yl)ethyl)(phenyl)silane (43). Following the general procedure 11, the title compound
(31.4 mg) was obtained in 42% yield. Colorless oil (eluent: hexane/EA = 50:1, R =
0.35). 'H NMR (400 MHz, CDCls) & 7.63 — 7.59 (m, 2H), 7.43 — 7.34 (m, 3H), 6.75 —
6.68 (M, 2H), 6.60 — 6.54 (m, 1H), 4.42 — 4.37 (m, 2H), 2.93 — 2.74 (m, 2H), 1.19 —
1.14 (m, 1H), 1.10 (d, J = 17.6 Hz, 12H). 3C NMR (126 MHz, CDCls3) & 162.83 (dd, J
= 2475, 13.0 Hz), 148.01, 135.52, 131.31, 129.91, 128.04, 111.01 (dd, J = 18.9, 5.0
Hz), 101.07 (t, J = 25.4 Hz), 83.43, 32.54, 24.86, 24.46. °F NMR (377 MHz, CDCl3)
8 -111.07. The carbon signal attached to B was not observed. 1B NMR (128 MHz,
CDClIs) 6 34.65. IR vmax (DCM): 2979, 2932, 2133, 1626, 1594, 1460, 1352, 1250, 1140
cmL. HR-MS (EI) calcd for CaoH2sF2BO,Si [M]* : 374.1679, found 374.1666.

Br Bl/O
)

(2-(3-Bromophenyl)-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-

yl)ethyl)(phenyl)silane (44). Following the general procedure 11, the title compound
(33.9 mg) was obtained in 41% yield. Colorless oil (eluent: hexane/EA = 50:1, R =
0.3). 'H NMR (400 MHz, CDCls) & 7.63 — 7.60 (m, 2H), 7.43 — 7.34 (m, 4H), 7.27 —
7.25 (m, 1H), 7.12 — 7.06 (m, 2H), 4.42 — 4.37 (m, 2H), 2.92 — 2.74 (m, 2H), 1.20 —
1.14 (m, 1H), 1.10 (d, J = 14.6 Hz, 12H).*C NMR (126 MHz, CDCl3) § 146.40, 135.55,
131.52, 131.40, 129.83, 129.70, 128.75, 128.00, 126.92, 122.17, 83.36, 32.39, 24.88,
24.49. The carbon signal attached to B was not observed. !B NMR (128 MHz, CDCls)
5 34.49. IR vmax (DCM): 2978, 2928, 2131, 1630, 1593, 1351, 1237, 1142 cm . HR-

MS (EI) calcd for C20H26BBrO2Si [M]* : 416.0973, found 416.0970.
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(2-(Naphthalen-2-yl)-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-
yDethyl)(phenyl)silane (45). Following the general procedure Il, the title compound
(41.1 mg) was obtained in 53% yield. Colorless oil (eluent: hexane/EA = 50:1, R =
0.25). 'H NMR (400 MHz, CDCl3) § 7.78 — 7.76 (m, 1H), 7.74 — 7.70 (m, 2H), 7.66 —
7.63 (m, 3H), 7.44 — 7.33 (m, 6H), 4.46 — 4.42 (m, 2H), 3.16 — 2.96 (m, 2H), 1.37 —
1.28 (m, 1H), 1.06 (d, J = 17.1 Hz, 12H). 3C NMR (126 MHz, CDCl3) § 141.48, 135.60,
133.53, 131.98, 131.82, 129.74, 127.96, 127.69, 127.56, 127.46, 127.34, 126.04,
125.73, 124.97, 83.25, 32.82, 24.89, 24.46. The carbon signal attached to B was not
observed. !B NMR (128 MHz, CDCl3) & 34.64. IR vmax (DCM): 3051, 2977, 2928,
2132, 1634, 1507, 1348, 1257, 1142 cm™ . HR-MS (EI) calcd for C24H29B0O:Si [M]" :
388.2024, found 388.2029.

S SiH,Ph
B\/O
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(4-(4,4-Dimethylthiochroman-6-yl)-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-

yl)ethyl)(phenyl)silane (46). Following the general procedure 11, the title compound
(53.5 mg) was obtained in 46% yield. Colorless oil (eluent: hexane/EA = 20:1, R¢ =
0.3). 'H NMR (400 MHz, CDCl3) § 7.62 — 7.58 (m, 2H), 7.41 — 7.32 (m, 3H), 7.16 (d,
J=1.9 Hz, 1H), 6.96 — 6.86 (M, 2H), 4.41 — 4.36 (m, 2H), 3.02 — 2.97 (m, 2H), 2.91 —
2.73 (m, 2H), 1.95 — 1.89 (m, 2H), 1.29 (d, J = 4.6 Hz, 6H), 1.22 — 1.17 (m, 1H), 1.09
(d, J=17.6 Hz, 12H). *C NMR (101 MHz, CDCl3) & 141.59, 139.62, 135.58, 131.92,
129.66, 128.26, 127.91, 126.36, 126.32, 126.13, 83.19, 37.99, 32.98, 32.30, 30.29,
30.22, 24.87, 24.56, 23.08. The carbon signal attached to B was not observed. 1B NMR
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(128 MHz, CDCl3) § 34.47. IR vimax (DCM): 3048, 2975, 2934, 2133, 1652, 1477, 1350,
1254, 1143 cm™’. HR-MS (El) caled for CasHasBO.SSi [M]* : 438.2215, found
438.2210.

H28|
-0

=S
0]
Hexyl(1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pentyl)silane (47). Following
the general procedure I, the title compound (31.7 mg) was obtained in 51% yield.
Colorless oil (eluent: hexane/EA = 100:1, R = 0.4). *"H NMR (400 MHz, CDCls) 6 3.72
—3.65 (M, 2H), 1.67 — 1.58 (m, 1H), 1.46 — 1.24 (m, 13H), 1.23 (d, J = 5.0 Hz, 12H),
0.92 — 0.84 (m, 6H), 0.76 — 0.67 (m, 2H), 0.59 — 0.50 (m, 1H). 3C NMR (126 MHz,
CDCIs) & 82.85, 35.11, 32.56, 31.52, 26.88, 25.37, 25.02, 24.50, 22.57, 22.53, 14.12,
14.01, 9.32. The carbon signal attached to B was not observed. !B NMR (128 MHz,
CDCI3) 6 34.81. IR vmax (DCM): 2977, 2958, 2923, 2856, 2120, 1541, 1466, 1352, 1309,
1146 cm™t. HR-MS (EI) calcd for C17H3sBO2Si [M-H]* : 311.2572, found 311.2572.

SiHPh,
_0

S
o]

Diphenyl(1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pentyl)silane (48).
Following the general procedure I, the title compound (70.7 mg) was obtained in 93%
yield. Colorless oil (eluent: hexane/EA = 50:1, R¢ = 0.35). *H NMR (400 MHz, CDCls)
§ 7.64 — 7.59 (m, 4H), 7.39 — 7.31 (m, 6H), 4.88 (d, J = 4.0 Hz, 1H), 1.75 — 1.66 (m,
1H), 1.54 — 1.47 (m, 2H), 1.39 — 1.21 (m, 4H), 1.06 (d, J = 29.5 Hz, 12H), 0.86 — 0.76
(m, 3H). *C NMR (126 MHz, CDCl3) § 135.58, 135.43, 134.51, 134.48, 129.44, 129.41,
127.79, 127.75, 82.94, 35.33, 26.33, 24.91, 24.48, 22.42, 14.00. The carbon signal
attached to B was not observed. 1'B NMR (160 MHz, CDCls) & 34.19. IR vmax (DCM):
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2975, 2951, 2858, 2113, 1645, 1362, 1350, 1260, 1143. HR-MS (EI) calcd for
C23H32B0O.Si [M-H]* : 379.2259, found 379.2262.

SiMe,Ph
.0

S
o]
Dimethyl(phenyl)(1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pentyl)silane
(49). Following the general procedure 1, the title compound (63.8 mg) was obtained in
96% yield. Colorless oil (eluent: hexane/EA = 50:1, Rf = 0.3). 'H NMR (400 MHz,
CDCl3) & 7.55 — 7.51 (m, 2H), 7.35 — 7.31 (m, 3H), 1.57 — 1.51 (m, 1H), 1.37 — 1.22
(m, 5H), 1.18 (d, J = 16.2 Hz, 12H), 0.84 — 0.77 (m, 3H), 0.63 (dd, J = 12.0, 2.5 Hz,
1H), 0.31 (d, J = 2.5 Hz, 6H). 3C NMR (126 MHz, CDCls) 5 139.17, 133.85, 128.72,
127.56, 82.70, 35.51, 25.50, 25.09, 24.69, 22.43, 14.00, -2.34, -3.27. The carbon signal
attached to B was not observed. 1'B NMR (128 MHz, CDCl3) & 35.23. IR Vmax (DCM):
2978, 2926, 1652, 1461, 1355, 1310, 1250, 1143 cmt. HR-MS (EIl) calcd for
C19H33BO2Si [M]" : 332.2337, found 332.2340.

I?/O
o)

Diphenyl(2-phenyl-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)ethyl)silane

(50). Following the general procedure Il, the title compound (70.4 mg) was obtained in
85% vyield. Colorless oil (eluent: hexane/EA = 100:1, R = 0.2). *H NMR (500 MHz,
CDCl3) & 7.68 — 7.64 (m, 4H), 7.41 — 7.34 (m, 6H), 7.23 — 7.18 (m, 4H), 7.13 — 7.10
(m, 1H), 4.97 (d, J = 4.0 Hz, 1H), 2.98 — 2.85 (m, 2H), 1.50 (dt, J = 12.0, 4.1 Hz, 1H),
0.93 (d, J = 37.0 Hz, 12H). 3C NMR (126 MHz, CDCl3) & 144.18, 135.62, 135.44,
134.01, 133.93, 129.64, 129.60, 128.22, 128.07, 127.92, 127.86, 125.59, 83.09, 32.30,
24.72, 24.47. The carbon signal attached to B was not observed. !B NMR (128 MHz,
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CDCl3) 6 34.72. IR vmax (DCM): 2977, 2929, 2856, 2120, 1653, 1429, 1352, 1241, 1143
cm L. HR-MS (El) calcd for C2sH31BOSi [M]* : 414.2181, found 414.2198.

@\iMezPh
B\/O
o)

Dimethyl(phenyl)(2-phenyl-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-
yDethyl)silane (51). Following the general procedure I, the title compound (69.6 mg)
was obtained in 95% yield. Colorless oil (eluent: hexane/EA =50:1, Rf=0.3). 'H NMR
(400 MHz, CDCls) & 7.62 — 7.57 (m, 2H), 7.38 — 7.35 (m, 3H), 7.22 — 7.07 (m, 5H),
2.83 — 2.66 (m, 2H), 1.10 — 1.06 (m, 7H), 1.03 (s, 6H), 0.38 (d, J = 8.9 Hz, 6H). *C
NMR (126 MHz, CDCl3) & 144.78, 138.60, 133.89, 128.95, 128.16, 127.96, 127.71,
125.36, 82.86, 31.53, 24.90, 24.70, -2.37, -3.39. The carbon signal attached to B was
not observed. !B NMR (128 MHz, CDCls3) § 34.87. IR vmax (DCM): 2975, 2929, 2857,
1633, 1592, 1349, 1251, 1143 cm™. HR-MS (EI) calcd for C21H28B0O,Si [M-CHs]* :
351.1946, found 351.1952.

©\)S\iMeZOTMS
El3/o
0

1,1,1,3,3-Pentamethyl-3-(2-phenyl-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-

yl)ethyl)disiloxane (52). Following the general procedure 11, the title compound (38.6
mg) was obtained in 51% yield. Colorless oil (eluent: hexane/EA = 20:1, Rf = 0.4). *H
NMR (500 MHz, CDCl3) & 7.23 — 7.18 (m, 4H), 7.14 — 7.08 (m, 1H), 2.83 — 2.76 (m,
2H), 1.33 — 1.28 (m, 1H), 1.09 (d, J = 10.2 Hz, 12H), 0.15 (s, 6H), 0.10 (s, 9H). 3C
NMR (126 MHz, CDCls) 6 145.03, 128.24, 127.97, 125.29, 82.72, 30.75, 24.88, 24.65,
2.03,0.70, 0.28. The carbon signal attached to B was not observed. !B NMR (128 MHz,
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CDCl3) & 34.47. IR vimax (DCM): 2978, 2958, 1652, 1454, 1378, 1353, 1253, 1145 cm .
HR-MS (EI) calcd for C1oHasBOsSiz [M]* : 378.2212, found 378.2211.

SiH,Ph

g0
A

Phenyl(1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hexyl)silane (53). Following
the general procedure I, the title compound (55.4 mg) was obtained in 87% yield.
Colorless oil (eluent: hexane/EA = 100:1, R = 0.35). *H NMR (400 MHz, CDCl3) §
7.62 — 7.59 (m, 2H), 7.40 — 7.31 (m, 3H), 4.37 — 4.31 (m, 2H), 1.72 — 1.62 (m, 1H),
1.52 — 1.44 (m, 1H), 1.39 — 1.24 (m, 6H), 1.18 (d, J = 13.4 Hz, 12H), 0.88 — 0.83 (m,
3H), 0.83 — 0.78 (m, 1H). 3C NMR (101 MHz, CDCls) § 135.53, 132.45, 129.51,
127.83, 83.01, 32.45, 31.62, 26.97, 24.97, 24.49, 22.51, 14.04. The carbon signal
attached to B was not observed. *'B NMR (128 MHz, CDCl3) & 34.00. IR Vmax (DCM):
2977, 2959, 2856, 2129, 1467, 1352, 1262, 1145 cmt. HR-MS (EIl) calcd for
C18H30BO2Si [M-H] *: 317.2103, found 317.2105.

Phenyl(1-((3aS,4S,6S,7aR)-3a,5,5-trimethylhexahydro-4,6-

methanobenzo[d][1,3,2]dioxaborol-2-yl)hexyl)silane (54). Following the general
procedure I, the title compound (67.4 mg) was obtained in 91% yield (eluent:
hexane/EA = 100:1, R¢ = 0.3). Colorless oil. d.r. = 1:1. *H NMR (400 MHz, CDCl3) §
7.62 — 7.59 (m, 2H), 7.40 — 7.32 (m, 3H), 4.40 — 4.34 (m, 2H), 4.24 — 4.21 (m, 1H),
2.36 — 2.27 (m, 1H), 2.20 — 2.10 (m, 1H), 2.04 — 2.01 (m, 1H), 1.91 — 1.84 (m, 1H),
1.83 — 1.64 (m, 2H), 1.56 — 1.46 (m, 1H), 1.44 — 1.32 (m, 2H), 1.30 — 1.24 (m, 10H),

1.08 (dd, J = 10.9, 4.6 Hz, 1H), 0.88 — 0.82 (m, 7H). 3C NMR (126 MHz, CDCls) &
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135.54, 135.51, 132.46, 132.44, 129.53, 127.86, 85.46, 85.44, 77.67, 77.64, 51.23,
39.59, 39.56, 38.15, 38.11, 35.68, 35.65, 32.45, 31.68, 31.64, 28.75, 28.60, 27.11, 27.04,
26.62, 26.46, 24.04, 22.53, 22.51, 14.06. The carbon signal attached to B was not
observed. 2B NMR (128 MHz, CDCl3) & 33.48. IR vmax (DCM): 2984, 2923, 2858,
2128, 1652, 1429, 1376, 1278, 1120 cm 1. HR-MS (EI) calcd for C22H3sBO2Si [M]* :
370.2494, found 370.2493.

(1-(5,5-Dimethyl-1,3,2-dioxaborinan-2-yl)hexyl)(phenyl)silane (55). Following the
general procedure I, the title compound (54.8 mg) was obtained in 90% vyield (eluent:
hexane/EA = 100:1, Rs = 0.3). Colorless oil. 'H NMR (400 MHz, CDCls3) 6 7.61 — 7.58
(m, 2H), 7.42 — 7.29 (m, 3H), 4.40 — 4.28 (m, 2H), 3.54 (s, 4H), 1.69 — 1.57 (m, 1H),
1.47 — 1.20 (m, 7H), 0.91 (s, 6H), 0.89 — 0.81 (m, 3H), 0.73 — 0.63 (m, 1H). 3C NMR
(126 MHz, CDCls) 6 135.45, 133.15, 129.32, 127.78, 72.09, 32.50, 31.79, 31.61, 26.93,
22.53, 21.87, 14.07. The carbon signal attached to B was not observed. 1B NMR (128
MHz, CDClI3) 6 31.19. IR vmax (DCM): 2959, 2924, 2855, 2126, 1652, 1475, 1411, 1263,
1118 cm™. HR-MS (EI) calcd for C17H2sBO,Si [M-H]* : 303.1946, found 303.1948.

Phenyl(1-(4,4,6-trimethyl-1,3,2-dioxaborinan-2-yl)hexyl)silane (56). Following the
general procedure I, the title compound (55.4 mg) was obtained in 87% yield. d.r. = 1:1.
Colorless oil (eluent: hexane/EA = 100:1, R¢ = 0.35). 'H NMR (400 MHz, CDCls) §
7.62 — 7.58 (m, 2H), 7.38 — 7.30 (m, 3H), 4.32 — 4.26 (m, 2H), 4.12 — 4.03 (m, 1H),
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1.69 — 1.60 (m, 2H), 1.44 — 1.24 (m, 8H), 1.19 — 1.13 (m, 9H), 0.88 — 0.84 (m, 3H),
0.64 — 0.58 (m, 1H). *C NMR (126 MHz, CDCls3) & 135.59, 133.53, 129.18, 127.64,
70.57,70.42,64.68, 64.53, 46.00, 45.91, 32.30, 32.27, 31.79, 31.18, 31.15, 28.05, 27.75,
26.98, 23.18, 23.16, 22.54, 14.10. The carbon signal attached to B was not observed.
1B NMR (128 MHz, CDCls) § 30.29. IR vmax (DCM): 2972, 2927, 2855, 2127, 1428,
1386, 1241, 1210, 1116 cm ™. HR-MS (EI) calcd for C1sH30BO,Si [M-H] *: 317.2103,
found 317.2104.

SiH,Ph

_OH
B

OH

(2-(Phenylsilyl)hexyl)boronic acid (57). Following the general procedure 1, the title
compound (24.1 mg) was obtained in 51% yield. Colorless oil (eluent: hexane/EA =
5:1, R = 0.25). 'H NMR (400 MHz, CDCl3)  7.54 — 7.50 (m, 2H), 7.39 — 7.29 (m, 3H),
4.32 — 4.28 (m, 2H), 1.71 — 1.61 (m, 1H), 1.43 — 1.38 (m, 1H), 1.31 — 1.17 (m, 7H),
0.89 — 0.82 (m, 4H). 13C NMR (126 MHz, CDCl3) § 135.27, 132.18, 129.63, 127.95,
32.65, 32.50, 31.84, 26.47, 22.51, 14.12. The carbon signal attached to B was not
observed. !B NMR (128 MHz, CDCl3) & 33.79. IR vmax (DCM): 2957, 2925, 2855,
2135, 1653, 1429, 1354, 1261, 1116 cm™. The mass result for 57 not found, it can
further convert to 53 (a:f > 20:1) in 90% NMR yield.

4-Methyl-8-(1-(phenylsilyl)propyl)dihydro-41*,8)*-[1,3,2]oxazaborolo[2,3-

b][1,3,2]oxazaborole-2,6(3H,5H)-dione (58). Following the general procedure I, the
title compound (50.7 mg) was obtained in 83% yield. Colorless oil (eluent: hexane/EA
=10:1, Rf = 0.3). 'H NMR (400 MHz, CDCl3) & 7.65 — 7.63 (m, 2H), 7.38 — 7.32 (m,
3H), 4.43 — 4.33 (m, 2H), 3.92 (t, J = 16.3 Hz, 2H), 3.65 (dd, J = 16.7, 7.5 Hz, 2H),
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2.87 (s, 3H), 1.53 (p, J = 7.2 Hz, 2H), 0.99 (t, J = 7.3 Hz, 3H), 0.40 — 0.35 (m, 1H). 3C
NMR (126 MHz, CDCl3) 6 167.71, 167.59, 135.73, 135.67, 132.98, 129.59, 128.03,
127.97, 62.77, 62.70, 46.00, 20.24, 15.96. The carbon signal attached to B was not
observed. 1B NMR (128 MHz, CDCl3) § 14.42. IR vmax (DCM): 2958, 2930, 2869,
2130, 1747, 1455, 1260, 1119 cm™*. HR-MS (APCI) calcd for C13H17BNO4Si [M-
CHa]" : 290.1025, found 290.1035.

(IO e

4-(Phenylsilyl)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)butyl  2-(6-chloro-
9H-carbazol-2-yl)propanoate (59). Following the general procedure I, the title
compound (68.5 mg) was obtained in 61% yield. d.r. = 1:1. Colorless oil (eluent:
hexane/EA = 10:1, R¢= 0.35). 'H NMR (400 MHz, CDCl3) 5 8.26 (d, J = 57.8 Hz, 1H),
8.00 — 7.97 (m, 1H), 7.92 (dd, J = 8.1, 1.7 Hz, 1H), 7.54 — 7.51 (m, 2H), 7.41 — 7.26
(m, 6H), 7.17 — 7.14 (m, 1H), 4.31 — 4.19 (m, 2H), 4.14 — 3.97 (m, 2H), 3.86 (q, J = 7.1
Hz, 1H), 1.80 — 1.60 (m, 3H), 1.56 (dd, J = 7.1, 0.7 Hz, 3H), 1.52 — 1.40 (m, 1H), 1.16
(dd, J=14.5,8.2 Hz, 12H), 0.80— 0.73 (m, 1H). 3C NMR (126 MHz, CDCls) § 174.69,
140.44, 140.37, 139.48, 139.30, 138.08, 135.49, 135.46, 131.91, 131.85, 129.71,
129.69, 127.91, 125.75, 124.88, 124.84, 124.39, 121.61, 121.56, 120.53, 119.99,
119.78, 119.62, 111.53, 111.51, 109.66, 109.59, 83.33, 83.24, 64.78, 64.69, 46.06,
45.93, 31.60, 31.39, 25.04, 24.98, 24.48, 24.45, 23.67, 23.50, 19.05, 18.68. The carbon
signal attached to B was not observed. !B NMR (128 MHz, CDCl3) § 35.20. IR vmax
(DCM): 3363, 2976, 2932, 2133, 1716, 1611, 1471, 1353, 1142 cm*. HR-MS (APCI)
calcd for C31H3sBCIlO4Si [M-H] *: 560.2190, found 560.2201.
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4-(Phenylsilyl)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)butyl 2-(4-
isobutylphenyl)propanoate (60). Following the general procedure | with racemic
starting material, the title compound (68.2 mg) was obtained in 69% yield. d.r. = 1.2:1.
Colorless oil (eluent: hexane/EA = 20:1, Rs = 0.3). *H NMR (500 MHz, CDCls) & 7.60
—7.58 (m, 2H), 7.40 — 7.32 (m, 3H), 7.18 (d, J = 8.1 Hz, 2H), 7.07 (d, J = 8.2 Hz, 2H),
4.36 — 4.30 (M, 2H), 4.06 — 3.97 (m, 2H), 3.66 (qd, J = 7.2, 2.1 Hz, 1H), 2.44 (d, J =
7.2 Hz, 2H), 1.88 — 1.80 (m, 1H), 1.72 — 1.48 (m, 4H), 1.46 (d, J = 7.2 Hz, 3H), 1.17
(d, J = 15.9 Hz, 12H), 0.90 (d, J = 6.7 Hz, 6H), 0.80 — 0.75 (m, 1H). 3C NMR (126
MHz, CDClz) 6 174.73, 140.40, 137.89, 137.86, 135.53, 132.02, 129.66, 129.27, 127.90,
127.19, 127.17, 83.16, 64.48, 64.45, 45.19, 45.16, 45.07, 31.37, 30.19, 24.98, 24.50,
23.34, 23.33, 22.43, 18.54, 18.49. The carbon signal attached to B was not observed.
1B NMR (128 MHz, CDCls) & 35.30. IR vmax (DCM): 2976, 2931, 2868, 2132, 1734,
1465, 1353, 1316, 1144 cm™ L. HR-MS (EI) calcd for C29H13BO4Si [M]* : 494.3018,
found 494.3021.

> OUS BN o<
oo

SiH,Ph
4-(Phenylsilyl)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)butyl 5-(2,5-
dimethylphenoxy)-2,2-dimethylpentanoate (61). Following the general procedure I,
the title compound (92.6 mg) was obtained in 86% yield. Colorless oil (eluent:
hexane/EA = 20:1, R¢ = 0.25). *H NMR (400 MHz, CDCls) § 7.62 — 7.58 (m, 2H), 7.40
—7.32 (m, 3H), 7.01 (d, J = 7.5 Hz, 1H), 6.66 (d, J = 7.5 Hz, 1H), 6.61 (s, 1H), 4.42 —
4.32 (m, 2H), 4.04 (t, J = 6.3 Hz, 2H), 3.89 (d, J = 5.5 Hz, 2H), 2.31 (s, 3H), 2.18 (s,
3H), 1.80 — 1.55 (m, 8H), 1.19 (d, J = 2.8 Hz, 12H), 1.17 (s, 6H), 0.85 — 0.79 (m, 1H).
13C NMR (126 MHz, CDCl3) § 177.78, 157.00, 136.43, 135.52, 131.98, 130.29, 129.68,
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127.92, 123.60, 120.66, 111.95, 83.18, 67.98, 64.12, 42.08, 37.11, 31.51, 25.20, 24.99,
24,51, 23.45, 21.44, 15.81. The carbon signal attached to B was not observed. 1B NMR
(128 MHz, CDCl3) 6 34.96. IR vmax (DCM): 2976, 2867, 2131, 1726, 1586, 1509, 1353,
1143 cm™. HR-MS (EI) calcd for C31H47BOsSi [M]* : 538.3280, found 538.3270.

Cl

(0]
- o o
O/\/\(B\O

SiH,Ph
—0

4-(Phenylsilyl)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)butyl 2-(1-(4-
chlorobenzoyl)-5-methoxy-2-methyl-1H-indol-3-yl)acetate (62). Following the
general procedure I, the title compound (67.1 mg) was obtained in 52% yield. Colorless
oil (eluent: hexane/EA = 10:1, Rf = 0.4). *H NMR (500 MHz, CDCl3) § 7.66 — 7.63 (m,
2H), 7.60 — 7.54 (m, 2H), 7.49 — 7.43 (m, 2H), 7.41 — 7.29 (m, 3H), 6.95 (d, J = 2.6 Hz,
1H), 6.86 (d, J = 8.9 Hz, 1H), 6.66 (dd, J = 9.0, 2.6 Hz, 1H), 4.36 — 4.27 (m, 2H), 4.05
(t,J = 6.2 Hz, 2H), 3.82 (s, 3H), 3.62 (s, 2H), 2.36 (s, 3H), 1.79 — 1.61 (m, 3H), 1.55 (s,
1H), 1.16 (d, J = 16.1 Hz, 12H), 0.80 — 0.77 (m, 1H). 3C NMR (126 MHz, CDCls) &
170.87, 168.30, 156.06, 139.22, 135.92, 135.51, 133.98, 131.89, 131.19, 130.80,
130.71, 129.71, 129.12, 127.92, 114.96, 112.74, 111.72, 101.24, 83.20, 64.89, 55.70,
31.38, 30.36, 24.97, 24.50, 23.42, 13.37. The carbon signal attached to B was not
observed. !B NMR (128 MHz, CDCl3) & 35.92. IR vmax (DCM): 2976, 2929, 2132,
1728, 1486, 1353, 1310, 1217, 1142 cm™t. HR-MS (APCI) calcd for C3sH42BCINOsSi
[M+H] " : 646.2557, found 646.2564.
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(3-Methyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)butyl)(phenyl)silane
(63). Following the general procedure 1, the title compound (50.5 mg) was obtained in
83% yield. Colorless oil (eluent: hexane/EA = 100:1, R = 0.3). *H NMR (400 MHz,
CDCl3) § 7.59 — 7.57 (m, 2H), 7.40 — 7.32 (m, 3H), 4.33 — 4.24 (m, 2H), 1.80 — 1.72
(m, 1H), 1.24 (d, J = 1.7 Hz, 12H), 1.10 — 1.05 (m, 2H), 1.00 — 0.95 (m, 1H), 0.93 (d, J
= 6.7 Hz, 6H). *C NMR (101 MHz, CDCls3) § 135.28, 133.25, 129.38, 127.89, 83.11,
31.97, 25.03, 24.92, 21.72, 21.03, 8.53. The carbon signal attached to B was not
observed. !B NMR (128 MHz, CDCls) § 34.51. 2°Si NMR (99 MHz, CDCls) § -30.18.
IR vmax (DCM): 2972, 2956, 2870, 2131, 1733, 1371, 1319, 1271, 1143 cm*. HR-MS
(EI) calcd for C17H28BOSi [M-H]" : 303.1946, found 303.1948.

o. O
B

PhH2Si\)\/Me

Et
(3-Methyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pentyl)(phenyl)silane
(64). Following the general procedure 1, the title compound (51.6 mg) was obtained in
81% yield. d.r. = 1.3:1. Colorless oil (eluent: hexane/EA = 100:1, Rf = 0.3). *H NMR
(400 MHz, CDCls) & 7.59 — 7.57 (m, 2H), 7.40 — 7.31 (m, 3H), 4.32 — 4.23 (m, 2H),
1.49 — 1.38 (m, 2H), 1.28 — 1.21 (m, 13H), 1.18 — 1.10 (m, 2H), 0.95 — 0.81 (m, 7H).
13C NMR (126 MHz, CDCl3) & 135.28, 133.27, 129.37, 127.88, 83.10, 39.10, 38.12,
28.69, 27.72, 25.03, 24.89, 24.81, 17.79, 17.51, 12.20, 11.96, 9.05, 6.70. The carbon
signal attached to B was not observed. 1B NMR (128 MHz, CDCl3) & 34.63. IR Vmax
(DCM): 2975, 2953, 2877, 2127, 1740, 1372, 1320, 1275, 1144 cm™t. HR-MS (EI)
calcd for C1gH30BO,Si [M-H] *: 317.2103, found 317.2112.
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N7

PhHZSi\)\(Me

Cy

(3-Cyclohexyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-
yl)butyl)(phenyl)silane (65). Following the general procedure I, the title compound
(62.5 mg) was obtained in 84% yield. d.r. = 1.2:1. Colorless oil (eluent: hexane/EA =
100:1, Rf = 0.3). 'H NMR (400 MHz, CDCl3) & 7.52 — 7.49 (m, 2H), 7.32 — 7.24 (m,
3H), 4.27 — 4.15 (m, 2H), 1.64 — 1.48 (m, 8H), 1.23 — 1.14 (m, 15H), 1.08 — 1.00 (m,
2H), 0.93 — 0.85 (m, 2H), 0.80 — 0.76 (m, 3H). 3C NMR (126 MHz, CDCls) & 135.27,
133.25, 129.38, 127.89, 83.10, 42.22, 41.28, 40.97, 40.66, 31.78, 29.18, 28.48, 26.91,
26.82, 26.78, 26.71, 25.09, 25.03, 24.94, 24.80, 15.01, 14.40, 9.57, 5.96. The carbon
signal attached to B was not observed. 1B NMR (128 MHz, CDCl3) & 34.87. IR Vmax
(DCM): 2978, 2923, 2851, 2125, 1653, 1370, 1316, 1261, 1144 cm™L. HR-MS (EI)
calcd for C22H3sBO2Si [M-H] *: 371.2572, found 371.2584.

ey

o. 0
B

PhH,Si Me

(3-Methyl-4-phenyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-

yl)butyl)(phenyl)silane (66). Following the general procedure I, the title compound
(40.3 mg) was obtained in 53% vyield. d.r. = 1.5:1. Colorless oil (eluent: hexane/EA =
100:1, Rf = 0.25). 'H NMR (400 MHz, CDCl3) & 7.57 — 7.54 (m, 2H), 7.38 — 7.30 (m,
3H), 7.26 — 7.22 (m, 2H), 7.18 — 7.12 (m, 3H), 4.32 — 4.22 (m, 2H), 2.66 — 2.44 (m,
2H), 1.74 — 1.59 (m, 2H), 1.52 — 1.39 (m, 1H), 1.22 (d, J = 3.5 Hz, 12H), 1.15 — 1.05
(m, 1H), 0.98 — 0.95 (m, 3H). *C NMR (126 MHz, CDCls) § 143.13, 135.32, 133.17,
129.44, 128.43, 128.39, 128.26, 127.93, 125.53, 83.15, 38.16, 37.15, 36.91, 36.21,
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34.15, 33.84, 25.09, 24.93, 18.25, 17.98, 9.00, 6.85. The carbon signal attached to B
was not observed. 1B NMR (128 MHz, CDCls3) § 34.54. IR vmax (DCM): 2977, 2928,
2870, 2125, 1652, 1407, 1379, 1316, 1144 cm™. HR-MS (EI) calcd for C23H32.BO:Si
[M-H] *: 379.2259, found 379.2266.

-

Oo. .0
B

PhH,Si Me

(3-Methyl-5-phenyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-
yDpentyl)(phenyl)silane (67). Following the general procedure I, the title compound
(43.4 mg) was obtained in 55% yield. d.r. = 1.4:1. Colorless oil (eluent: hexane/EA =
100:1, R¢ = 0.25). *H NMR (400 MHz, CDCl3) & 7.65 — 7.52 (m, 2H), 7.38 — 7.32 (m,
3H), 7.25—7.21 (m, 2H), 7.18 — 7.07 (m, 3H), 4.41 — 4.21 (m, 2H), 2.80 (ddd, J = 13.2,
5.2, 2.0 Hz, 1H), 2.69 — 2.50 (m, 1H), 2.39 — 2.26 (m, 1H), 2.00 — 1.78 (m, 2H), 1.30 —
1.22 (m, 14H), 1.09 — 1.00 (m, 2H), 0.86 (dd, J = 11.6, 6.8 Hz, 3H).13C NMR (126
MHz, CDClz) 6 141.83, 135.77,135.29, 133.23, 129.44, 129.41, 129.23, 129.20, 128.34,
128.23, 128.11, 128.08, 127.94, 127.91, 125.59, 125.56, 83.22, 42.52, 41.66, 39.58,
38.71, 35.52, 33.57, 25.16, 25.05, 24.93, 24.89, 17.79, 17.50, 13.60, 9.17, 7.20. The
carbon signal attached to B was not observed. !B NMR (128 MHz, CDCls) § 34.98. IR
vmax (DCM): 2978, 2928, 2127, 1645, 1454, 1378, 1316, 1260, 1117 cm™ 1. HR-MS (EI)
calcd for C24H34BO,Si [M-H] *: 393.2416, found 393.24009.
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o. O
B

PhH,Si Me

OTBS
tert-Butyldimethyl((3-methyl-5-(phenylsilyl)-4-(4,4,5,5-tetramethyl-1,3,2-
dioxaborolan-2-yl)pentyl)oxy)silane (68). Following the general procedure I, the title
compound (68.1 mg) was obtained in 76% yield. d.r. = 1.2:1. Colorless oil (eluent:
hexane/EA = 50:1, R¢ = 0.2). 'H NMR (400 MHz, CDCls3) § 7.59 — 7.56 (m, 2H), 7.39
—7.31(m, 3H), 4.33 — 4.24 (m, 2H), 3.62 — 3.52 (m, 2H), 1.57 — 1.35 (m, 4H), 1.23 (d,
J =25 Hz, 12H), 1.18 — 1.07 (m, 2H), 0.92 (d, J = 6.9 Hz, 3H), 0.89 (s, 9H), 0.04 (s,
6H). 13C NMR (126 MHz, CDCls) § 135.29, 133.23, 129.39, 127.89, 83.08, 63.68,
37.17, 36.32, 32.20, 31.18, 30.90, 26.02, 25.05, 24.90, 24.83, 18.33, 17.97, 9.01, 6.89,
-5.22. The carbon signal attached to B was not observed. !B NMR (128 MHz, CDCls)
5 35.24. IR vmax (DCM): 2956, 2925, 2857, 2126, 1652, 1471, 1379, 1257, 1119 cm™L,
HR-MS (EI) calcd for CasHa4BO3Si [M-H] * : 447.2917, found 447.2912.

N7

PhH,Si Et
Me Et
(4-Ethyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hexan-2-yl)(phenyl)silane

(69). Following the general procedure 1, the title compound (36.0 mg) was obtained in
52% yield. d.r. = 1:1. Colorless oil (eluent: hexane/EA = 100:1, R¢ = 0.3). *H NMR (400
MHz, CDCl3) § 7.59 — 7.57 (m, 2H), 7.39 — 7.31 (m, 3H), 4.30 — 4.21 (m, 2H), 1.53 —
1.39 (m, 4H), 1.28 — 1.16 (m, 15H), 1.08 (d, J = 7.5 Hz, 3H), 0.80 (q, J = 7.3 Hz, 6H).
13C NMR (126 MHz, CDCls) § 135.72, 132.71, 129.32, 127.81, 82.98, 41.60, 25.24,
25.00, 24.97, 23.97, 15.91, 15.69, 11.94, 10.94. The carbon signal attached to B was
not observed. !B NMR (128 MHz, CDCl3) § 34.45. IR vmax (DCM): 2962, 2932, 2874,
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2130, 1652, 1459, 1371, 1261, 1142 cm™ 1. HR-MS (EI) calcd for C20H34BO2Si [M-H]" :
345.2416, found 345.2426.

s

0. .0
B
PhHZSi\/K/Q

Phenyl(3-phenyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)propyl)silane
(70). Following the general procedure 1, the title compound (52.1 mg) was obtained in
74% yield. Colorless oil (eluent: hexane/EA = 100:1, Rf = 0.3). 'H NMR (400 MHz,
CDCl3) & 7.59 — 7.55 (m, 2H), 7.37 — 7.31 (m, 3H), 7.26 — 7.21 (m, 2H), 7.18 — 7.12
(m, 3H), 4.40 — 4.29 (m, 2H), 2.74 — 2.53 (m, 2H), 2.05 — 1.94 (m, 1H), 1.82 — 1.74 (m,
1H), 1.19 (d, J = 10.6 Hz, 12H), 0.90 — 0.84 (m, 1H). 3C NMR (126 MHz, CDCls) 5
135.55, 132.08, 129.60, 128.99, 128.54, 128.25, 127.87, 125.71, 83.15, 38.88, 29.08,
25.04, 24.54. The carbon signal attached to B was not observed. !B NMR (128 MHz,
CDCI3) 6 34.65. IR vmax (DCM): 2976, 2929, 2857, 2128, 1652, 1428, 1354, 1261, 1143
cmL. HR-MS (EI) calcd for C21H20BO2Si [M] * : 352.2024, found 352.2032.

B + B
PhH;Sis A Pr Pthsi/\)\iPr
minor major

(4-Methyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pentyl)(phenyl)silane

(71) and (4-Methyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-
yDpentyl)(phenyl)silane (71"). Following the general procedure I, the title compound
(47.7 mg) was obtained in 75% yield. Colorless oil (eluent: hexane/EA = 100:1, R =
0.35). 'H NMR (400 MHz, CDCl3) & 7.59 — 7.55 (m, 2H), 7.40 — 7.32 (m, 3H), 4.32 —
4.30 (m, 2 H) (71),4.28 (t, J = 3.6 Hz, 2H) (71"), 1.77 — 1.68 (m, 1H), 1.64 — 1.58 (m,
1H), 1.56 — 1.45 (m, 1H) , 1.25 (d, J = 1.5 Hz, 12H) (71"), 1.23 (s, 12H) (71), 1.00 —

0.89 (m, 9H) , 0.86 — 0.83 (M, 6H) (71). 3C NMR (126 MHz, CDCls) § 135.23, 132.79,
588



129.43, 127.93, 82.89, 43.28, 29.36, 26.96, 25.02, 24.86, 24.45, 22.77, 22.57, 22.32,
21.72, 11.39, 9.79. The carbon signal attached to B was not observed. !B NMR (128
MHz, CDCl3) 6 34.99. IR vmax (DCM): 2977, 2928, 2869, 2124, 1652, 1464, 1379, 1262,
1144 cm™. HR-MS (EI) calcd for C1sH30BO,Si [M-H] *: 317.2103, found 317.2099.

o. O
B

PhHZSi/\)\Me
Phenyl(3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)butyl)silane (72). Following
the general procedure I, the title compound (47.0 mg) was obtained in 81% yield.
Colorless oil (eluent: hexane/EA = 100:1, Rs = 0.4). *H NMR (400 MHz, CDCls) § 7.59
—7.56 (M, 2H), 7.40 — 7.32 (m, 3H), 4.28 (t, J = 3.7 Hz, 2H), 1.67 — 1.57 (m, 2H), 1.50
—1.39 (M, 1H), 1.23 (s, 12H), 1.09 — 1.03 (m, 1H), 1.00 — 0.93 (M, 4H).3C NMR (126
MHz, CDCl3) 6 135.24, 132.80, 129.43, 127.93, 82.88, 28.52, 24.80, 24.75, 15.13, 9.27.
The carbon signal attached to B was not observed. !B NMR (128 MHz, CDCls3) & 34.82.
IR vmax (DCM): 2977, 2926, 2871, 2123, 1643, 1463, 1371, 1261, 1144 cm™*. HR-MS
(E) calcd for C16H26BO2Si [M-H] *: 289.1790, found 289.1779.

IRy

o. O
B

Ph2HSi\)\(Me

Me
(3-Methyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)butyl)diphenylsilane

(73). Following the general procedure I, the title compound (49.4 mg) was obtained in
65% yield. Colorless oil (eluent: hexane/EA = 100:1, R = 0.4). 'H NMR (400 MHz,
CDCl3) & 7.58 — 7.56 (m, 4H), 7.38 — 7.31 (m, 6H), 4.86 — 4.84 (m, 1H), 1.82 — 1.73
(m, 1H), 1.23 — 1.09 (m, 15H), 0.93 (dd, J = 6.8, 3.5 Hz, 6H). 1*C NMR (126 MHz,
CDCI3) 6 135.31, 135.21, 134.81, 129.39, 129.34, 127.92, 127.85, 83.06, 32.20, 24.99,
24.97,21.72, 20.93, 10.59. The carbon signal attached to B was not observed. 1B NMR
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(128 MHz, CDCl3) § 34.68. IR vimax (DCM): 2977, 2957, 2870, 2119, 1589, 1464, 1379,
1214, 1144 cm™. HR-MS (EI) calcd for CosHaBO,Si [M-H] * @ 379.2259, found
379.2276.

PhMeHSi\)\(Me

Me
Methyl(3-methyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-

yl)butyl)(phenyl)silane (74). Following the general procedure I, the title compound
(45.2 mg) was obtained in 71% yield. d.r. = 1.2:1. Colorless oil (eluent: hexane/EA =
100:1, R¢ = 0.25). 'H NMR (400 MHz, CDCl3) 6 7.57 — 7.52 (m, 2H), 7.37 — 7.31 (m,
3H), 4.37 — 4.31 (m, 1H), 1.78 — 1.69 (m, 1H), 1.22 (s, 12H), 1.09 — 0.99 (m, 2H), 0.92
—0.89 (m, 6H), 0.84—0.77 (m, 1H), 0.33 (dd, J = 3.8, 1.1 Hz, 3H). 1*C NMR (126 MHz,
CDCl3) & 134.43, 134.38, 129.06, 127.77, 83.01, 82.99, 32.16, 32.05, 25.00, 24.97,
21.71, 21.05, 20.88, 11.81, 11.75, -4.85, -5.62. The carbon signal attached to B was not
observed. !B NMR (128 MHz, CDCl3) & 34.37. IR vmax (DCM): 2959, 2930, 2871,
2114,1652, 1371, 1318, 1261, 1144 cm™. HR-MS (EI) calcd for C1sH30BO2Si [M-H]* :
317.21083, found 317.2113.

N7

o. O
B

Ph3Si\)\(Me

Me
(3-Methyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)butyl)triphenylsilane

(75). Following the general procedure 1, the title compound (68.4 mg) was obtained in
75% yield. sticky oil (eluent: hexane/EA = 50:1, R = 0.2). *H NMR (400 MHz, CDCls)
§7.56 — 7.52 (m, 6H), 7.39 — 7.30 (m, 9H), 1.74 — 1.67 (m, 2H), 1.36 — 1.30 (m, 2H),
1.02 (d, J = 9.5 Hz, 12H), 0.89 (dd, J = 6.8, 5.7 Hz, 6H). 3C NMR (126 MHz, CDCl5)
8 135.98, 135.69, 129.18, 127.69, 82.93, 32.98, 24.92, 24.86, 21.74, 20.47, 11.23. The
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carbon signal attached to B was not observed. B NMR (128 MHz, CDCls) § 33.93.
IR vmax (DCM): 2963, 2929, 2870, 1652, 1464, 1372, 1261, 1108 cm 1. HR-MS (ESI)
calcd for Co9H37BNaOSi [M+Na] *: 479.2548, found 479.2554.

MGZPhSI\)\(Me

Me
Dimethyl(3-methyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-

yl)butyl)(phenyl)silane (76). Following the general procedure 1, the title compound
(47.2 mg) was obtained in 71% yield. Colorless oil (eluent: hexane/EA = 50:1, R =
0.25). 'H NMR (400 MHz, CDCl3) & 7.53 — 7.50 (m, 2H), 7.34 — 7.31 (m, 3H), 1.74 —
1.69 (m, 1H), 1.19 (s, 12H), 1.12 — 0.98 (m, 3H), 0.88 (dd, J = 6.8, 1.7 Hz, 6H), 0.26
(d,J=0.9 Hz, 6H).3C NMR (126 MHz, CDCl3) § 133.71, 128.63, 127.61, 82.89, 32.25,
25.09, 24.98, 21.43, 20.85, 13.12, -2.38, -2.76. The carbon signal attached to B was not
observed. 1'B NMR (128 MHz, CDCl3) & 34.03. IR vmax (DCM): 2956, 2870, 1645,
1464, 1371, 1316, 1249, 1144, 1112 cm™t. HR-MS (ESI) calcd for C1gH33BNaO-Si
[M+Na] " : 355.2235, found 355.2240.

Y

o. O
B

(TMS)3Si\)\(Me

Me
1,1,1,3,3,3-Hexamethyl-2-(3-methyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-

yDbutyl)-2-(trimethylsilyDtrisilane (77). Following the general procedure I, the title
compound (76.4 mg) was obtained in 86% yield. Colorless oil (eluent: hexane/EA =
100:1, Rf = 0.4). 'H NMR (400 MHz, CDCls) § 1.75 — 1.67 (m, 1H), 1.24 (d, J = 1.3
Hz, 12H), 1.09 — 1.03 (m, 2H), 0.94 (dd, J = 19.9, 6.8 Hz, 6H), 0.81 — 0.73 (M, 1H),
0.16 (s, 27H). 3C NMR (126 MHz, CDCls) § 82.87, 32.13, 25.18, 24.95, 22.84, 19.74,
5.69, 1.45. The carbon signal attached to B was not observed. !B NMR (128 MHz,
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CDCl3) § 34.79. IR vmax (DCM): 2952, 2894, 1651, 1371, 1312, 1244, 1215, 1144 cm ™.,
HR-MS (EI) calcd for C20Ha9BO,Sis [M]* : 444.2897, found 444.2892.

Oo. O

N7

M62
joges
Me
Me,HSi

(4-(Dimethylsilyl)phenyl)dimethyl(3-methyl-2-(4,4,5,5-tetramethyl-1,3,2-
dioxaborolan-2-yl)butyl)silane (78). Following the general procedure I, the title
compound (64.0 mg) was obtained in 82% yield. Colorless oil (eluent: hexane/EA =
50:1, R¢=0.3). 'H NMR (400 MHz, CDCls) & 7.53 — 7.49 (m, 4H), 4.43 - 4.38 (m, 1H),
1.76 — 1.68 (m, 1H), 1.17 (s, 12H), 1.06 — 0.94 (m, 2H), 0.89 (d, J = 6.8 Hz, 6H), 0.76
—0.67 (m, 1H), 0.33 (d, J = 3.7 Hz, 6H), 0.26 (d, J = 1.3 Hz, 6H). 3C NMR (126 MHz,
CDCIs) 6 141.17, 137.69, 133.17, 133.15, 82.89, 32.31, 25.10, 24.96, 21.42, 20.87,
13.09, -2.53, -2.76, -3.83. The carbon signal attached to B was not observed. !B NMR
(128 MHz, CDCl3) § 34.73. IR vmax (DCM): 2957, 2807, 2119, 1652, 1464, 1378, 13186,
1249, 1135 cm™. HR-MS (ESI) calcd for C21H3sBNaO2Si> [M+Na] *: 413.2474, found
413.2472.

-

>?L<\> e
O/B\/\/Sid\(Me
Me

(3-Methyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)butyl)(phenyl)(3-
(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)propyl)silane (79). Following the
general procedure I, the title compound (76.5 mg) was obtained in 81% yield. d.r. = 1:1.
Colorless oil (eluent: hexane/EA = 50:1, Rs = 0.2). *H NMR (400 MHz, CDCls) § 7.57
—7.51 (m, 2H), 7.35 — 7.29 (m, 3H), 4.28 — 4.21 (m, 1H), 1.77 — 1.66 (m, 1H), 1.56 —
1.47 (m, 2H), 1.27 — 1.15 (m, 24H), 1.05 — 0.96 (m, 2H), 0.93 — 0.80 (m, 11H). 3C

NMR (126 MHz, CDCls) 6 134.82, 134.79, 128.92, 127.70, 127.67, 82.95, 82.83, 32.14,
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25.03, 24.98, 24.84, 21.74, 20.98, 20.92, 19.25, 19.20, 15.80, 15.07, 10.39, 10.33. The
carbon signal attached to B was not observed. !B NMR (128 MHz, CDCls) § 34.59. IR
vmax (DCM): 2978, 2928, 2872, 2109, 1652, 1371, 1315, 1261, 1214, 1145 cm™*. HR-
MS (ESI) calcd for CosHasB2NaO4Si [M+Na] ™ : 495.3244, found 495.3242.

PaY

o._.0
Ph g’
Ph B

TMS\/\/Si\)\(Me

Me
Trimethyl(3-((3-methyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-

yDbutyl)(phenyl)silyl)propyl)silane (80). Following the general procedure I, the title
compound (72.8 mg) was obtained in 87% yield. d.r. = 1:1. Colorless oil (eluent:
hexane/EA = 50:1, R¢ = 0.3). 'H NMR (400 MHz, CDCls) 5 7.56 — 7.50 (m, 2H), 7.36
—7.30 (m, 3H), 4.28 — 4.23 (m, 1H), 1.78 — 1.67 (m, 1H), 1.49 — 1.34 (m, 2H), 1.27 —
1.17 (m, 12H), 1.07 — 0.97 (m, 2H), 0.95 — 0.82 (m, 9H), 0.60 — 0.55 (m, 2H), -0.06 (d,
J=2.0Hz, 9H).3C NMR (126 MHz, CDCl3) § 134.78, 134.74, 128.97, 127.73, 127.70,
82.97,32.15, 25.04, 24.98, 21.73, 21.70, 21.08, 20.96, 20.88, 19.18, 19.11, 17.05, 16.41,
10.31, 10.26, -1.57. The carbon signal attached to B was not observed. !B NMR (128
MHz, CDClI3) 6 34.77. IR vmax (DCM): 2977, 2954, 2872, 2110, 1647, 1372, 1317, 1247,
1214, 1144 cm™t. HR-MS (El) calcd for C23H42BO2Si, [M-H] * : 417.2811, found
417.2811.

EeY

ﬁho 5 e}
\/O\[(\/\/Sid\(Me
0] Me
Ethyl 5-((3-methyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-

yDbutyl)(phenyl)silyl)pentanoate (81). Following the general procedure I, the title
compound (76.1 mg) was obtained in 88% vyield. d.r. = 1:1. Colorless oil (eluent:

hexane/EA = 50:1, R = 0.2). *H NMR (400 MHz, CDCl3) § 7.53 — 7.49 (m, 2H), 7.37
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—7.29 (m, 3H), 4.28 —4.22 (m, 1H), 4.09 (qd, J = 7.1, 0.9 Hz, 2H), 2.28 — 2.24 (m, 2H),
1.76 — 1.62 (m, 3H), 1.46 — 1.33 (m, 2H), 1.26 — 1.17 (m, 15H), 1.05 — 0.94 (m, 2H),
0.96 — 0.79 (m, 9H). 3C NMR (126 MHz, CDCls) § 173.80, 136.04, 135.87, 134.74,
134.71, 129.09, 127.79, 127.76, 83.00, 60.15, 34.09, 32.14, 28.50, 28.46, 25.02, 24.97,
24.22,24.16, 21.71, 21.67, 21.01, 20.91, 14.24, 12.42, 11.70, 10.29, 10.13. The carbon
signal attached to B was not observed. !B NMR (128 MHz, CDCls) § 34.39. IR Vmax
(DCM): 2978, 2958, 2870, 2111, 1736, 1647, 1372, 1317, 1261, 1144 cm™*. HR-MS
(APCI) calcd for C24H40BO4Si [M-H]": 431.2783, found 431.2792.

Ny O _ Oj%

- \QO : \/\(Bl\o
o] SiH,Ph

3-(Phenylsilyl)-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)propyl  (2R)-2-(4-
((5-chloro-3-fluoropyridin-2-yl)oxy)phenoxy)propanoate (82). d.r. = 1:1. *H NMR
(400 MHz, CDCl3) § 7.86 (d, J = 2.2 Hz, 1H), 7.60 — 7.57 (m, 2H), 7.48 (dd, J = 9.1,
2.2 Hz, 1H), 7.39 — 7.32 (m, 3H), 7.07 — 7.03 (m, 2H), 6.91 — 6.86 (m, 2H), 4.69 (qd, J
= 6.8, 1.7 Hz, 1H), 4.40 — 4.34 (m, 2H), 4.23 — 4.11 (m, 2H), 2.01 — 1.91 (m, 1H), 1.87
—1.78 (m, 1H), 1.60 (dd, J = 6.8, 3.1 Hz, 3H), 1.21 — 1.11 (m, 12H), 0.89 — 0.81 (m,
1H). 3C NMR (126 MHz, CDCl3) § 172.02, 171.98, 154.99, 151.42, 151.33, 147.03 (d,
Jcr = 266.1 Hz), 147.04, 140.20, 140.15, 135.52, 131.51, 129.83, 127.98, 124.98,
124.83, 122.25, 116.17, 116.12, 83.40, 73.22, 73.18, 66.56, 66.54, 25.91, 25.86, 24.96,
24.53, 18.67, 18.63. The carbon signal attached to B was not observed. 1°F NMR (377
MHz, CDCls) § -134.35. 1B NMR (128 MHz, CDCls) § 33.99. IR vimax (DCM): 2978,
2931, 2135, 1754, 1504, 1450, 1354, 1208, 1142 cmt. HR-MS (El) calcd for

C29H34BCIFNOeSi [M] " : 585.1916, found 585.1910.
Ph
g.
nPr/\( 'Y\/@
Bpin Bpin
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Phenyl(3-phenyl-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)propyl)(1-
(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pentyl)silane (83). d.r. = 1:1:1:1. H
NMR (400 MHz, CDCls) § 7.61 — 7.53 (m, 2H), 7.32 — 7.09 (m, 8H), 4.36 — 4.29 (m,
1H), 2.78 — 2.66 (m, 1H), 2.60 — 2.45 (m, 1H), 1.99 — 1.84 (m, 1H), 1.61 — 1.53 (m,
1H), 1.31 - 0.98 (m, 30H), 0.90 — 0.78 (m, 5H). 23C NMR (126 MHz, CDCl3) 5 142.65,
142.52, 135.56, 135.43, 129.15, 129.12, 128.62, 128.59, 128.57, 128.22, 128.19,
128.16, 127.45, 127.38, 127.34, 125.62, 125.57, 125.54, 82.87, 82.82, 82.75, 82.68,
39.37, 39.28, 39.20, 39.05, 35.37, 35.30, 35.25, 29.14, 28.84, 28.18, 28.10, 26.56, 26.25,
25.80, 25.70, 25.21, 25.12, 25.08, 25.01, 24.98, 24.95, 24.92, 24.79, 24.70, 24.63, 24.59,
24.54, 24.52, 24.50, 22.54, 22.50, 22.47, 14.04. The carbon signal attached to B was
not observed. 1'B NMR (128 MHz, CDCl3) § 33.59. IR vmax (DCM): 2977, 2927, 2857,
2111, 1653, 1349, 1309, 1260, 1144 cm™t. HR-MS (APCI) calcd for Cs2HagB204Si [M-
H] *: 547.3581, found 547.3588.

Bpin ﬁh Bpin

Me\ﬁ\/SiJ\(Me

Me Me
Bis(3-methyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)butyl)(phenyl)silane
(84). 'H NMR (400 MHz, CDCl3) & 7.58 — 7.50 (m, 2H), 7.33 — 7.28 (m, 3H), 4.27 —
4.22 (m, 1H), 1.79 — 1.67 (m, 2H), 1.23 — 1.14 (m, 24H), 1.08 — 1.02 (m, 2H), 0.93 —
0.80 (m, 16H). C NMR (126 MHz, CDCls) § 136.49, 136.27, 134.97, 134.94, 128.85,
127.66, 127.62, 127.58, 82.86, 32.18, 32.05, 32.01, 25.00, 24.97, 24.92, 21.84, 21.74,
20.92, 20.84, 20.79, 10.92, 10.81, 10.74, 10.60. The carbon signal attached to B was
not observed. *'B NMR (128 MHz, CDCls) 6 33.61. IR vmax (DCM): 2977, 2956, 2871,
2111, 1643, 1465, 1372, 1262, 1145 cm™t. HR-MS (APCI) calcd for C2sHagB204Si [M-
H] *: 499.3581, found 499.3597.
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(3-Methyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)butyl)(phenyl)(1-
(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pentyl)silane (85). d.r. = 1:1:1:1. H
NMR (400 MHz, CDCls) § 7.63 — 7.50 (m, 2H), 7.32 — 7.27 (m, 3H), 4.37 — 4.22 (m,
1H), 1.68 — 1.51 (m, 2H), 1.34 — 1.00 (m, 32H), 0.96 — 0.79 (m, 9H), 0.75 — 0.65 (m,
1H). 3C NMR (126 MHz, CDCls) & 135.56, 135.26, 135.19, 135.07, 128.98, 128.96,
128.93, 127.59, 127.53, 127.48, 127.32, 127.28, 82.87, 82.84, 82.78, 82.73, 82.70,
82.67,35.36, 35.31, 35.28, 32.17, 32.15, 32.06, 26.27, 26.22, 26.19, 26.11, 25.15, 25.10,
25.04, 25.01, 24.99, 24.96, 24.94, 24.92, 24.87, 24.79, 24.68, 24.65, 24.62, 24.58, 24.55,
24.53,22.51, 22.45, 21.85, 21.78, 21.66, 21.64, 20.99, 20.95, 20.86, 14.03, 10.38, 10.31,
10.27, 10.19. The carbon signal attached to B was not observed. 1B NMR (128 MHz,
CDCl3) 6 33.71. IR vmax (DCM): 2977, 2927, 2872, 2111, 1653, 1456, 1371, 1261, 1144
cm 1. HR-MS (APCI) calcd for C2gHagB204Si [M-H] * : 499.3581, found 499.3599.

in Ph
Bpin b
MeWSi

Me Bpin
(3-Methyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)butyl)(phenyl)(3-
phenyl-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)propyl)silane (86). d.r. =
1:1:1:1. 'H NMR (400 MHz, CDCls)  7.58 — 7.47 (m, 2H), 7.34 — 7.27 (m, 3H), 7.25
—7.20 (M, 2H), 7.17 — 7.09 (m, 3H), 4.33 — 4.26 (m, 1H), 2.74 — 2.65 (M, 1H), 2.56 —
2.44 (m, 1H), 1.98 — 1.86 (m, 1H), 1.80 — 1.62 (m, 2H), 1.23 — 1.11 (m, 24H), 1.07 —
1.01 (m, 1H), 0.94 — 0.83 (m, 8H), 0.78 — 0.74 (m, 1H). 3C NMR (126 MHz, CDCl5)
o 142.59, 135.25, 135.20, 135.09, 129.01, 128.56, 128.18, 127.64, 127.60, 127.54,
125.58, 82.86, 39.29, 39.19, 32.14, 32.03, 28.77, 28.53, 25.23, 25.17, 25.13, 25.02,
24.98,24.91, 24.86, 24.72, 24.63, 21.84, 21.78, 21.63, 20.98, 20.83, 10.34, 10.24, 10.12,
10.04. The carbon signal attached to B was not observed. !B NMR (128 MHz, CDCls)
5 34.88. IR vmax (DCM): 2977, 2928, 2868, 2112, 1604, 1371, 1313, 1262, 1144 cm™ L.
HR-MS (APCI) calcd for Ca2Ha9B204Si [M-H]*: 547.3581, found 547.3593.
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Si(OH),Ph
.0

s
Phenyl(1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pentyl)silanediol (87). H
NMR (400 MHz, CDCl3) § 7.71 — 7.65 (m, 2H), 7.44 —7.30 (m, 3H), 3.64 (s, 2H), 1.67
—1.41 (m, 2H), 1.36 — 1.23 (M, 4H), 1.20 (d, J = 7.7 Hz, 12H), 0.81 (t, J = 7.1 Hz, 3H),
0.76 (dd, J=10.9, 4.2 Hz, 1H). ®*C NMR (101 MHz, CDCls) § 135.13, 134.15, 130.08,
127.74, 83.44, 35.12, 24.90, 24.48, 24.28, 22.49, 13.96. The carbon signal attached to
B was not observed. 1B NMR (128 MHz, CDCls) & 35.38. IR vmax (DCM): 2977, 2928,
2858, 2110, 1466, 1352, 1307, 1263, 1214, 1145 cmt. HR-MS (El) calcd for
C17H28B04Si [M-H] * : 335.1844, found 335.1850.

OH
PhHSi”

Br;z<
o)
Phenyl(1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pentyl)silanol (88). d.r. =
1:1. 'H NMR (400 MHz, CDCls) & 7.65 — 7.60 (m, 2H), 7.45 — 7.32 (m, 3H), 5.02 (d, J
=245 Hz, 1H), 2.45 (d, J = 5.0 Hz, 1H), 1.69 — 1.59 (m, 1H), 1.50 — 1.43 (m, 1H), 1.40
—1.23(m, 4H), 1.24 —1.18 (m, 12H), 0.86 — 0.81 (M, 4H). 3C NMR (126 MHz, CDCls)
0 133.95, 133.86, 130.06, 127.87, 127.84, 83.26, 35.02, 34.89, 24.97, 24.60, 24.58,
24.40, 24.06, 22.51, 13.97, 13.94. The carbon signal attached to B was not observed.
1B NMR (128 MHz, CDCls) § 34.55. IR vmax (DCM): 2963, 2928, 2858, 2123, 1615,
1351, 1307, 1261, 1145 cm™*. HR-MS (EI) calcd for C17H2sBO3Si [M-H] *: 319.1895,
found 319.1886.

Si(OMe),Ph
_0

B
0
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Dimethoxy(phenyl)(1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pentyl)silane
(89). 'H NMR (400 MHz, CDCl3) 5 7.67 — 7.64 (m, 2H), 7.40 — 7.32 (m, 3H), 3.58 (d,
J=7.6Hz, 6H), 1.25-1.16 (m, 18H), 0.85—0.80 (M, 4H). 3C NMR (126 MHz, CDCl5)
0 134.66, 132.91, 129.94, 127.70, 82.95, 50.75, 35.27,24.97, 24.56, 24.44, 22 .48, 13.99.
The carbon signal attached to B was not observed. !B NMR (128 MHz, CDCls) § 35.29.
IR vmax (DCM): 2958, 2930, 2870, 1653, 1349, 1307, 1260, 1145, 1120 cm*. HR-MS
(EI) calcd for C19H33BO4Si [M]" : 364.2236, found 364.2246.

SiH(CI)Ph
.0

L
Chloro(phenyl)(1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pentyl)silane (90).
d.r. = 1.3:1. 'H NMR (400 MHz, CDCls) & 7.63 — 7.58 (m, 2H), 7.37 — 7.28 (m, 3H),
5.12 — 5.07 (m, 1H), 1.36 — 1.16 (m, 6H), 1.17 — 1.00 (m, 12H), 0.86 — 0.76 (m, 4H).
13C NMR (126 MHz, CDCls) & 134.09, 132.60, 129.65, 127.55, 127.52, 82.79, 35.13,
25.00, 24.95, 24.55, 24.43, 22.50, 13.97. The carbon signal attached to B was not
observed. 1'B NMR (128 MHz, CDCl3) & 35.28. IR vmax (DCM): 2961, 2927, 2857,
2115, 1653, 1351, 1310, 1261, 1145 cm™*. HR-MS (EI) calcd for C17H27BCIO,Si [M-
H]" : 337.1556, found 337.1566.

SiMe,Ph
NHBoc
tert-Butyl (1-(dimethyl(phenyl)silyl)pentyl)carbamate (91). *H NMR (400 MHz,
CDCl3) § 7.55 — 7.48 (m, 2H), 7.42 — 7.32 (m, 3H), 4.14 (d, J = 10.4 Hz, 1H), 3.33 (td,
J=10.4, 4.0 Hz, 1H), 1.49 — 1.45 (m, 1H), 1.41 (s, 9H), 1.31 — 1.19 (m, 5H), 0.87 —
0.81 (m, 3H), 0.32 (d, J = 2.0 Hz, 6H). 3C NMR (126 MHz, CDCls) 5 156.23, 136.57,
134.05, 129.30, 127.89, 78.77, 40.39, 31.22, 29.34, 28.43, 22.46, 14.00, -4.57, -5.18.
IR vmax (DCM): 2959, 2929, 2858, 1695, 1495, 1365, 1259, 1214, 1111 cm™*. HR-MS
(APCI) calcd for C1H3NO2Si [M+H] * : 322.2197, found 322.2192.
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SiMe,Ph
OH
1-(Dimethyl(phenyl)silyl)pentan-1-ol (92). *H NMR (400 MHz, CDCl3) § 7.58 —7.55
(m, 2H), 7.40 — 7.36 (M, 3H), 3.53 — 3.49 (m, 1H), 1.56 — 1.50 (M, 3H), 1.36 — 1.23 (m,
3H), 1.06 (d, J = 1.1 Hz, 1H), 0.88 (t, J = 7.1 Hz, 3H), 0.34 (d, J = 4.0 Hz, 6H). 3C
NMR (126 MHz, CDCl3) 6 136.83, 134.15, 129.32, 127.91, 65.51, 33.09, 29.04, 22.55,
14.06, -5.33, -5.64. IR vmax (DCM): 2957, 2928, 2871, 2858, 1645, 1465, 1427, 1249,
1112 cm™. HR-MS (EI) calcd for C13H210Si [M-H] * : 221.1356, found 221.1354.

SiPh,

(3-Methyl-2-(thiophen-2-yl)butyl)triphenylsilane (93). *H NMR (400 MHz, CDCls)
§7.33 —7.30 (m, 6H), 7.28 — 7.24 (m, 3H), 7.21 — 7.17 (m, 6H), 6.88 — 6.86 (M, 1H),
6.61 — 6.59 (m, 1H), 6.36 — 6.35 (M, 1H), 3.00 — 2.94 (m, 1H), 1.88 — 1.65 (M, 3H),
0.73 (dd, J = 21.0, 6.7 Hz, 6H). 3C NMR (101 MHz, CDCls) & 148.59, 135.73, 135.15,
129.25, 127.74, 125.99, 124.89, 122.63, 43.06, 36.19, 20.69, 19.32, 19.02. IR Vmax
(DCM): 3068, 2958, 2925, 2871, 1821, 1656, 1427, 1384, 1263, 1109 cmt. HR-MS
(APCI) calcd for C27H20SSi [M+H] *: 413.1754, found 413.1760.

OH
HO

3-Methylbutane-1,2-diol (94). *H NMR (500 MHz, CDCls3) § 3.75 — 3.70 (m, 1H),
3.54 —3.50 (m, 1H), 3.46 — 3.42 (m, 1H), 2.04 (br, 2H), 1.71 (h, J = 6.8 Hz, 1H), 0.95
(dd, J = 28.9, 6.8 Hz, 6H). The NMR data were consistent with literature reports*.
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SiH,Ph

Phenyl(1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pentyl)silane (95).
Following the general procedure I, the title compound (54.1 mg) was obtained in 89%
yield. Colorless oil. *H NMR (400 MHz, CDCls) § 7.61 (dd, J = 7.7, 1.7 Hz, 2H), 7.41
—7.30(m, 3H),4.34 (qd, J = 6.4, 3.6 Hz, 2H), 1.72 — 1.62 (m, 1H), 1.53 — 1.43 (m, 1H),
1.40 — 1.24 (m, 4H), 1.18 (d, J = 13.1 Hz, 12H), 0.85 (t, J = 7.1 Hz, 3H), 0.82 — 0.77
(m, 1H). 3C NMR (126 MHz, CDCls) § 135.53, 132.43, 129.52, 127.83, 83.01, 35.02,
26.68, 24.96, 24.49, 22.47, 13.98. The carbon signal attached to B was not observed.
1B NMR (160 MHz, CDCl3) & 34.19. 2°Si NMR (99 MHz, CDCls) & -28.10. IR vmax
(DCM): 2977, 2927, 2858, 2128, 1465, 1351, 1310, 1261, 1144 cmt. HR-MS (EIl)
calcd for C17H28BO,Si [M-H]" : 303.1946, found 303.1960.
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Supplementary Figure 28. !B NMR spectra for S1
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Supplementary Figure 29. *H NMR spectra for S2
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Supplementary Figure 30. 3C NMR spectra for S2
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Supplementary Figure 32. *H NMR spectra for S3
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Supplementary Figure 36. 3C NMR spectra for S4
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