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Supplementary Note 1: A path integral approach to the asymmetric SK model

In this Supplementary Note, we compute the generating functional of the asymmetric kinetic Ising model averaged
over the quenched couplings with Gaussian distributions, known as the configurational average.

The probability density of a specific trajectory of the kinetic Ising model, s0:t = {s0, s1, . . . , st}, is defined as

p(s0:t) =

t∏
u=1

p(su | su−1)p(s0)

= exp

[
β
∑
i,u

si,uhi,u −
∑
i,u

log [2 cosh [βhi,u]]

]
p(s0), (S1.1)

where

hi,u =Hi,u +
∑
j

Jijsj,u−1. (S1.2)

Here the summation over u is taken for u = 1, . . . , t. For simplicity, we will assume that p(s0) only contains one
possible value, that is, the initial distribution is a Kronecker delta p0(s) =

∏
i δ [si, si,0]. Although this enables us to

ignore the term, the next steps are generalizable to any initial distributions.
The dynamics above straightforwardly describes a synchronous kinetic Ising model under time-dependent fields

Hi,u and asymmetric couplings Jij . In Supplementary Note 2, we will show how this model and its solution can be
generalized to cover both synchronous and asynchronous dynamics.

In equilibrium systems, the partition function provides the statistical moments of the equilibrium distribution.
Here, to find the statistical properties expected from ensemble trajectories of the asymmetric SK model as well as
its steady-state entropy production (Eq. 18), we introduce the following generating functional or dynamical partition
function:

Zt(g) =
∑
s0:t

p(s0:t) exp

[∑
i,u

gi,usi,u

+
∑
i,u

gSu (βsi,uhi,u − log [2 cosh [βhi,u]]) +
∑
i,u

gS
r

u

(
βsi,u−1h

r
i,u − log

[
2 cosh

[
βhri,u

]]) ]

=
∑
s0:t

exp

[∑
i,u

si,uβhi,u − log [2 cosh [βhi,u]] +
∑
i,u

gi,usi,u

+
∑
i,u

gSu (si,uβhi,u − log [2 cosh [βhi,u]]) +
∑
i,u

gS
r

u

(
si,u−1βh

r
i,u − log

[
2 cosh

[
βhri,u

]]) ]
, (S1.3)
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where hri,u = Hi,u +
∑
j Jijsj,u = hi,u+1 +Hi,u −Hi,u+1. Note that hi,u have to be defined up to t+ 1 to recover the

backwards trajectory. The terms gi,u are designed to obtain the moments and other statistics of the system, and gSu
and gS

r

u are for its conditional and reversed conditional entropy terms at time u.

We will use this generating functional to calculate the statistical moments of various random variables. We will
denote them using an average function described as:

〈f(·)〉g =
∑
s0:t

p(s0:t)f(·) exp

[∑
i,u

gi,usi,u

+
∑
i,u

gSu (βsi,uhi,u − log [2 cosh [βhi,u]]) +
∑
i,u

gS
r

u

(
βsi,u−1h

r
i,u − log

[
2 cosh

[
βhri,u

]]) ]
. (S1.4)

For simplicity, we will denote 〈f(·)〉0 simply as 〈f(·)〉, recovering the statistical moments of the original system.

The configurational average over Gaussian couplings (Eq. 38) of the generating functional is computed as

[Zt(g)]J =

∫ ∏
i,j

dJijp(Jij)Zt(g). (S1.5)

The configurational average can be solved using a path integral method. To obtain the path integral form, we first
insert an appropriate delta integral for the effective fields of each unit for the time steps u = 1, . . . , t+ 1 to the above
equation:

1 =

∫
dθ
∏
i,u

δ [θi,u − βhi,u]

=
1

(2π)
N(t+1)

∫
dθdθ̂ exp

∑
i,u

iθ̂i,u(θi,u − βHi,u − β
∑
j

Jijsj.u−1)

 , (S1.6)

where θ is the N(t+1)-dimensional vector composed of the effective fields θi,u (i = 1, . . . , N and u = 1, . . . , t+1). θ̂ is

the N(t+ 1)-dimensional conjugate effective field, and we used a Dirac delta function δ [x− a] = 1
2π

∫∞
−∞ eiζ(x−a) dζ.

Note that, from now on, all summations and products involving the conjugate effective field θ̂ (as well as the order
parameters we introduce later) will be performed over the range u = 1, . . . , t+ 1. Next, we replace βhi,u in Eq. S1.3
with the auxiliary variable θi,u as well as βhri,u of the reversed couplings at time u with an auxiliary variable ϑi,u =
θi,u+1 + β(Hi,u − Hi,u+1), and place them inside the integral with respect to θ (i.e., we perform the operation,
f(a) =

∫
f(x)δ [x− a] dx). The configurational average is written as

[Zt(g)]J =
1

(2π)
N(t+1)

∫
dθdθ̂

∏
i,j

dJijp(Jij)

·
∑
s1:t

exp

[∑
i,u

si,u(gi,u + θi,u)− log [2 cosh θi,u] +
∑
i,u

gSu (si,uθi,u −
∑
i,u

log [2 cosh θi,u])

+
∑
i,u

gS
r

u (si,u−1ϑi,u − log [2 coshϑi,u]) +
∑
i,u

iθ̂i,u(θi,u − βHi,u − β
∑
j

Jijsj,u−1)

]
. (S1.7)

Using the Gaussian integral formula
∫
dx 1√

2πb

r
exp

[
ax− (x−c)2

2b

]
= exp

[
ac+ a2

2 b
]
, the expectation of exp [aJij ] is

computed as

∫
dJijp(Jij) exp [aJij ] = exp

[
aJ0/N +

a2

2
∆J2/N

]
. (S1.8)
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Hence the integral related to Jij in Eq. S1.7 is computed as

∫ [∏
i,j

dJijp(Jij)

]
exp

[
−
∑
i,u

iθ̂i,uβ
∑
j

Jijsj,u−1

]

=
∏
i,j

[∫
dJijp(Jij) exp

[
− β

(∑
u

iθ̂i,usj,u−1

)
Jij

]

=
∏
i,j

exp

[
− β

(∑
u

iθ̂i,usj,u−1

)
J0

N
+ β2

(∑
u

iθ̂i,usj,u−1

)2
∆J2

2N

]

=
∏
i,j

exp

[
− βJ0

N

∑
u

iθ̂i,usj,u−1 +
β2∆J2

2N

∑
u,v

iθ̂i,usj,u−1iθ̂i,vsj,v−1

]
. (S1.9)

Using this result, the Gaussian integral form of the partition function is given as

[Zt(g)]J =
1

(2π)
N(t+1)

∫
dθdθ̂

∑
s1:t

exp

[∑
i,u

si,u(gi,u + θi,u)−
∑
i,u

log [2 cosh θi,u]

+
∑
i,u

gSu (si,uθi,u − log [2 cosh θi,u]) +
∑
i,u

gS
r

u (si,u−1ϑi,u − log [2 coshϑi,u])

+
∑
i,u

iθ̂i,u(θi,u − βHi,u)−
∑
u

NβJ0

( 1

N

∑
i

iθ̂i,u

)( 1

N

∑
j

sj,u−1

)

+
β2∆J2

2N

∑
i,u

(
iθ̂i,u

)2

+
∑
u>v

Nβ2∆J2
( 1

N

∑
i

iθ̂i,uiθ̂i,v

)( 1

N

∑
j

sj,u−1sj,v−1

)]
. (S1.10)

Note that, for the term of summation over u, v, we separated the u = v terms from the rest, resulting in elimination
of the spin variables because sj,u−1sj,u−1 = 1.

S1.1. Gaussian integral and saddle node approximation

We will evaluate the aforementioned expression with a Gaussian integral and a saddle node approximation, and
show that the saddle node solutions become order parameters. For this goal, we first give an outline of the derivation,
and then apply the steps to the above equation.

Let C be a real value, and x and y be complex values. Eq. S1.10 contains the term in the form of exp [Cxy]. We
can represent this term by a double Gaussian integral (a pair of the Gaussian integral formulas) with the form:

exp [Cxy] = exp

[
C

2

(
1

2
(x+ y)2 +

1

2
(i(x− y))2

)]
=
C

4π

∫
dzRdzI exp

[
C

2

(
−1

2
z2
R −

1

2
z2
I + (x+ y)zR + i(x− y)zI

)]
=
C

4π

∫
dzRdzI exp

[
C

2

(
−1

2
z2
R −

1

2
z2
I + x(zR + izI) + y(zR − izI)

)]
. (S1.11)

Because the integrand is an analytic function, we can change the contour of the path integral in the complex space so
that it includes the saddle-point solution. This contour integration produces the original value, exp [Cxy]. Therefore,
zR and zI are no longer real values but can be complex values.

When x and y are random variables, we can approximate the expectation of exp [Cxy] by the saddle node solutions
when the constant C is large:∫

p(x, y) exp [Cxy] dxdy ≈ exp

[
C

2

{
−1

2
z∗R

2 − 1

2
z∗I

2 + log

∫
p(x, y) exp [x(z∗R + iz∗I ) + y(z∗R − iz∗I )] dxdy

}]
, (S1.12)
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where z∗R and z∗I are the saddle-point solutions that extremize the contents of the braces {} in Eq. S1.12. These
solutions are given by the following self-consistent equations:

z∗R = 〈x+ y〉 , (S1.13)

z∗I =i 〈x− y〉 , (S1.14)

where the bracket 〈·〉 represents

〈f(x, y)〉 =

∫
p(x, y) exp [x(z∗R + iz∗I ) + y(z∗R − iz∗I )] f(x, y) dxdy∫

p(x, y) exp [x(z∗R + iz∗I ) + y(z∗R − iz∗I )] dxdy
(S1.15)

We reiterate that for the saddle-point solution z∗I is derived from substituting the exponent by its Taylor expansion
around the minimum, i.e., f(zI) = f(z∗I ) + 1

2f
′′(z∗I )(zI − i(x − y))2 + O((zI − i(x − y))3), which in this case has an

imaginary value.
To obtain a more intuitive saddle-point solution, we can perform a change of variables

z∗1 =
1

2
(z∗R + iz∗I ), z∗2 =

1

2
(z∗R − iz∗I ) (S1.16)

z∗R =z∗1 + z∗2 , z∗I =i(z∗1 − z∗2), (S1.17)

resulting in ∫
p(x, y) exp [Cxy] dxdy ≈ exp

[
C

2

{
−z∗1z∗2 + log

∫
p(x, y) exp [xz∗1 + yz∗2 ] dxdy

}]
, (S1.18)

and

z∗1 = 〈y〉 , (S1.19)

z∗2 = 〈x〉 (S1.20)

In summary, the process previously described consists of 1) introducing a pair of Gaussian integrals, 2) finding a
saddle-point solution, and 3) performing a change of variable to recover a solution in terms of expectations of the
original variables. We now repeat the process for the integral of the partition function.

(i) Gaussian integrals. First, we introduce Gaussian integrals by applying Eq. S1.11 to the quadratic terms

in the partition function. Using C = NβJ0, xu−1 = 1
N

∑
j sj,u−1 and yu = − 1

N

∑
i iθ̂i,u, we obtain

exp

∑
u

(−NβJ0)
( 1

N

∑
i

iθ̂i,u

)( 1

N

∑
j

sj,u−1

)
=
∏
u

exp [Cxu−1yu]

=

(
C

4π

)t ∫ ∏
u

dM+
u dM

−
u exp

[
C

2

(
−1

2
(M+

u )2 − 1

2
(M−u )2 + xu−1(M+

u + iM−u ) + yu(M+
u − iM−u )

)]
, (S1.21)

where M+
u and M−u are real-valued integral variables. Similarly, using C = 1

2Nβ
2∆J2, xu−1,v−1 = 1

N

∑
j sj,u−1sj,v−1,

yu,v = 1
N

∑
i θ̂i,uθ̂i,v, we have

exp

∑
u,v

N
β2∆J2

2

( 1

N

∑
i

iθ̂i,uiθ̂i,v

)( 1

N

∑
j

sj,u−1sj,v−1

)
=
∏
u>v

exp [Cxu−1,v−1yu,v]

=

(
C

4π

)t(t−1)/2 ∫ ∏
u>v

dQ+
u,vdQ

−
u,v exp

[
C

2

(
−1

2
(Q+

u,v)
2 − 1

2
(Q−u,v)

2 + xu−1,v−1(Q+
u,v + iQ−u,v) + yu,v(Q

+
u,v − iQ−u,v)

)]
,

(S1.22)

where Q+
u,v and Q−u,v are real values. Note that the products over u and v are performed over the range 1, . . . , t+ 1.
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With these double Gaussian integrals and defining dM =
∏
u dM

+
u dM

−
u and dQ =

∏
u,v dQ

+
u,vdQ

−
u,v we can rewrite

the partition function as

[Zt(g)]J =
(NβJ0)t(Nβ2∆J2)t(t−1)/2

(4π)t(t+1)/2

∫
dMdQ exp

[
−NβJ0

∑
u

(M+
u )2 + (M−u )2

4

−Nβ2∆J2
∑
u>v

(Q+
u,v)

2 + (Q−u,v)
2

4
+ log

∑
s1:t

∫
dθdθ̂eΦ(s0:t,θ,g)+Ω(θ̂,θ,g)

]
, (S1.23)

where the remaining terms related to the random variable s and θ, θ̂ from the Gaussian integral can be separated
into the terms

Φ(s0:t,θ,g) =
∑
i,u

(gi,u + θi,u) si,u −
∑
i,u

log [2 cosh [θi,u]]

+
∑
i,u

gSu (si,uθi,u − log [2 cosh θi,u]) +
∑
i,u

gS
r

u (si,u−1ϑi,u − log [2 coshϑi,u])

+
∑
i,u

βJ0
M+
u + iM−u

2
si,u−1 +

∑
i,u>v

β2∆J2
Q+
u,v + iQ−u,v

2
si,u−1si,v−1, (S1.24)

Ω(θ̂,θ,g) =
∑
i,u

(θi,u − βHi,u − βJ0
M+
u − iM−u

2
)iθ̂i,u

+
β2∆J2

2

∑
i,u

(
iθ̂i,u

)2

+ β2∆J2
∑
i,u>v

Q+
u,v − iQ−u,v

2
iθ̂i,uiθ̂i,v −N(t+ 1) log [2π] . (S1.25)

Now, the next two steps for solving the integral is to find a saddle-point solution and perform a change of variables.
In the next section, we find that the solutions result in the order parameters of the system.

(ii) saddle-point integral solution. The exponent of the integrand above is proportional to N , making it
possible to evaluate the integral by steepest descent, giving the saddle-point solution as

[Zt(g)]J = exp

[{
−NβJ0

∑
u

(M+
u (g))2 + (M−u (g))2

4
−Nβ2∆J2

∑
u>v

(Q+
u,v(g))2 + (Q−u,v(g))2

4

+ log
∑
s1:t

∫
dθdθ̂eΦ(s0:t,θ,g)+Ω(θ̂,θ,g)

}]
, (S1.26)

where the optimal values M(g),Q(g) are chosen to extremize (maximize or minimize) the quantity between the braces
{}. We introduced the dependence with g to denote the optimal values as the solution of M,Q will be different for
different values of g. As in the solutions in Eqs. S1.13 and S1.14, the solutions M+

u (g), Q+
u,v(g) and M−u (g), Q−u,v(g)

are combinations of the average statistics of the variables of interest (multiplied by the imaginary unit for the latter).
(iii) Change of the variables. Having order parameters in this form can be cumbersome. We simplify them

to directly capture the average statistics of the system by performing a change of variables at the saddle-point solution
as exemplified in Eq. S1.16, resulting in:

µu(g) =
M+
u (g) + iM−u (g)

2
, mu−1(g) =

M+
u (g)− iM−u (g)

2
, (S1.27)

ρu,v(g) =
Q+
u,v(g) + iQ−u,v(g)

2
, qu−1,v−1(g) =

Q+
u,v(g)− iQ−u,v(g)

2
, (S1.28)

or equivalently

M+
u (g) =mu−1(g) + µu(g), M−u (g) =i(mu−1(g)− µu(g)), (S1.29)

Q+
u,v(g) =qu−1,v−1(g) + ρu,v(g), Q−u,v(g) =i(qu−1,v−1(g)− ρu,v(g)), (S1.30)

where now we expect all m(g),µ(g),q(g),ρ(g) to be real-valued.
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This results in

[Zt(g)]J = exp

[{
−NβJ0

∑
u

µu(g)mu−1(g)−Nβ2∆J2
∑
u>v

ρu,v(g)qu−1,v−1(g)

+ log
∑
s1:t

∫
dθdθ̂eΦ(s0:t,θ,g)+Ω(θ̂,θ,g)

}]
, (S1.31)

where now m(g),µ(g),q(g),ρ(g) are chosen to extremize the quantity between the braces. Also, we define the terms

Φ(s0:t,θ,g) =
∑
i,u

(gi,u + θi,u) si,u −
∑
i,u

log [2 cosh θi,u] +
∑
i,u

gSu (si,uθi,u − log [2 cosh θi,u])

+
∑
i,u

gS
r

u (si,u−1ϑi,u − log [2 coshϑi,u]) +
∑
i,u

βJ0µu(g)si,u−1 +
∑
i,u>v

β2∆J2ρu,v(g)si,u−1si,v−1,

(S1.32)

Ω(θ̂,θ,g) =
∑
i,u

(θi,u − βHi,u − βJ0mu−1(g))iθ̂i,u

+
β2∆J2

2

∑
i,u

(
iθ̂i,u

)2

+ β2∆J2
∑
i,u>v

qu−1,v−1(g)iθ̂i,uiθ̂i,v −N(t+ 1) log [2π] . (S1.33)

Note that the summation of u or v related to the order parameters are performed over the range 1, . . . , t + 1. Also
note that integration over disordered connections has removed couplings between units and replaced them with same-
unit temporal couplings ρ(g) and varying effective fields, which are also independent between units, resulting in a
mean-field solution where the activity of different spins is independent.

In the next section, we specify the conditions of the extrema, from which we find that some of the extrema are the
order parameters.

S1.2. Introduction of the order parameters

To obtain the values of the order parameters, we extremize the contents of the braces, finding

∂ log [Zt(g)]J
∂µu+1(g)

=βJ0

(∑
i

〈si,u〉∗,g −Nmu(g)

)
= 0; mu(g) =

1

N

∑
i

〈si,u〉∗,g , (S1.34)

∂ log [Zt(g)]J
∂mu−1(g)

=βJ0

(
−
∑
i

〈
iθ̂i,u

〉
∗,g
−Nµu(g)

)
= 0; µu(g) = − 1

N

∑
i

〈
iθ̂i,u

〉
∗,g

, (S1.35)

∂ log [Zt(g)]J
∂ρu+1,v+1(g)

=β2∆J2

(∑
i

〈si,usi,v〉∗,g −Nqu,v(g)

)
= 0; qu,v(g) =

1

N

∑
i

〈si,usi,v〉∗,g , (S1.36)

∂ log [Zt(g)]J
∂qu−1,v−1(g)

=β2∆J2

(∑
i

〈
iθ̂i,uiθ̂i,v

〉
∗,g
−Nρu,v(g)

)
= 0; ρu,v(g) =

1

N

∑
i

〈
iθ̂i,uiθ̂i,v

〉
∗,g

, (S1.37)

where we define

〈f(·)〉∗,g =

∑
s1:t

∫
dθdθ̂f(·)eΦ(s0:t,θ,g)+Ω(θ̂,θ,g)∑

s1:t

∫
dθdθ̂eΦ(s0:t,θ,g)+Ω(θ̂,θ,g)

= [Zt(g)]
−1
J

∑
s1:t

∫
dθdθ̂f(·)eΦ(s0:t,θ,g)+Ω(θ̂,θ,g)−NβJ0

∑
u µu(g)mu−1(g)−Nβ2∆J2 ∑

u>v ρu,v(g)qu−1,v−1(g).

(S1.38)

These equations are in concordance with Eqs. S1.19, S1.20. Here, m(g), µ(g), q(g), and ρ(g) provide the saddle-point
solution of the configurational average integral.
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On the other hand, the configurational average of the generating functional holds relations similar to Eqs. 24, 25:

∂ [Zt(g)]J
∂gi,u

=
[
〈si,u〉g

]
J
, (S1.39)

∂2 [Zt(g)]J
∂gi,u∂gj,v

=
[
〈si,usj,v〉g

]
J
, (S1.40)

where

〈f(·)〉g =
∑
s0:t

f(·)p(s0:t) exp

[∑
i,u

gi,usi,u

+
∑
i,u

gSu (βsi,uhi,u − log [2 cosh [βhi,u]]) +
∑
i,u

gS
r

u

(
βsi,u−1h

r
i,u − log

[
2 cosh

[
βhri,u

]]) ]
. (S1.41)

In addition, we have the following identities that will be helpful in eliminating spurious solutions

∂ [Zt(g)]J
∂Hi,u

=β
([
〈si,u〉g

]
J
−
[
〈tanh [βhi,u]〉g

]
J

)
, (S1.42)

∂2 [Zt(g)]J
∂Hi,u∂Hj,v

=β

∂
[
〈si,u〉g

]
J

∂Hj,v
−
∂
[
〈tanh [βhi,u]〉g

]
J

∂Hj,v

 . (S1.43)

Note that the equations above are equal to zero for g = 0.

To derive the order parameters, we calculate the same partial derivatives using Eq. S1.31. The order parameter of
the system given by Eq. S1.39 is calculated directly as

∂ [Zt(g)]J
∂gi,u

=

 〈si,u〉∗,g + βJ0

∑
v

∂µv(g)

∂gi,u

Nmv−1(g)−
∑
j

〈sj,v−1〉∗,g


+ βJ0

∑
v

∂mv−1(g)

∂gi,u

Nµv(g)−
∑
j

〈θj,v〉∗,g


+ β2∆J2

∑
v

∂ρv,w(g)

∂gi,u

Nqv−1,w−1(g)−
∑
j

〈sj,v−1sj,w−1〉∗,g


+ β2∆J2

∑
v

∂qv−1,w−1(g)

∂gi,u

Nρv,w(g)−
∑
j

〈θj,vθj,w〉∗,g

 [Zt(g)]J

= 〈si,u〉∗,g [Zt(g)]J . (S1.44)

Similarly, we obtain

∂ [Zt(g)]J
∂Hi,u

=− β
〈

iθ̂i,u

〉
∗,g

[Zt(g)]J (S1.45)

∂2 [Zt(g)]J
∂gi,u∂gj,v

= 〈si,usj,v〉∗,g [Zt(g)]J (S1.46)

∂2 [Zt(g)]J
∂Hi,u∂Hj,v

=β2
〈

iθ̂i,uiθ̂j,v

〉
∗,g

[Zt(g)]J (S1.47)

Here we should note that, as there is no coupling between units, for i 6= j we have a factorized solution [〈si,usj,v〉] =
〈si,usj,v〉∗,g = 〈si,u〉∗,g 〈sj,v〉∗,g.
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Finally, by comparing the above derivatives with Eqs. S1.39, S1.40, S1.42, and S1.43 we obtain the order parameters:

mu(g) = [Zt(g)]
−1
J

∑
i

[
〈si,u〉g

]
J
, (S1.48)

qu,v(g) = [Zt(g)]
−1
J

∑
i

[
〈si,usi,v〉g

]
J
, (S1.49)

µu(g) = [Zt(g)]
−1
J

∑
i

([
〈si,u〉g

]
J
−
[
〈tanh [βhi,u]〉g

]
J

)
, (S1.50)

ρu,v(g) = [Zt(g)]
−1
J

∑
i

β−1

∂
[
〈si,u〉g

]
J

∂Hj,v
−
∂
[
〈tanh [βhi,u]〉g

]
J

∂Hj,v

 . (S1.51)

Note that, at g = 0, µu(0) = ρu(0) = 0. As well, notice that [Zt(0)]J = 1, retrieving activation rates and delayed
self-correlations as the order parameters of the system mu(0), qu,v(0). Below, we will drop the parenthesis for the
order parameters at g = 0, referring to these quantities as mu, qu,v.

Similarly, the forward and reverse entropy rates are calculated from the functions

∂ [Zt(g)]J
∂gSu

=
∑
i

〈si,uθi,u − log [2 cosh θi,u]〉∗,g [Zt(g)]J

=
∑
i

[
〈(si,uθi,u − log [2 cosh θi,u])〉g

]
J
, (S1.52)

∂ [Zt(g)]J
∂gSr

u

=
∑
i

〈(si,u−1ϑi,u − log [2 coshϑi,u])〉∗,g [Zt(g)]J

=
∑
i

[
〈(si,u−1ϑi,u − log [2 coshϑi,u])〉g

]
J
, (S1.53)

evaluated at g = 0.

S1.3. Mean-field solutions

After solving the saddle-point integral, we have the following expression for computing relevant quantities in the
system

[Zt(g)]J =
∑
s1:t

∫
dθdθ̂eΦ(s0:t,θ,g)+Ω(θ̂,θ,g). (S1.54)

At this point, we want to remove the effective fields θ and effective conjugate fields θ̂. For this goal, (i) we first

remove the effective conjugate fields θ̂ by recovering the delta functions from their integral forms. Then, (ii) we revert
the effective fields θ by removing the delta function. This results in the mean-field (factorized) generating functional,
from which we obtain the mean-field solutions of order parameters, conditional entropy, or entropy production.

(i) Removing effective conjugate fields We first remove the conjugate fields by recovering a delta function.
We rewrite

eΩ(θ̂,θ,g) =
∏
i

1

(2π)N(t+1)
exp

[∑
u

(θi,u − βHi,u − βJ0mu−1(g))iθ̂i,u +
β2∆J2

2

∑
u,v

qu−1,v−1(g)iθ̂i,uiθ̂i,v

]
, (S1.55)

defining qu−1,u−1 = 1 and qu−1,v−1 = qv−1,u−1 to obtain a symmetric matrix. Note that the saddle-node solution
Eq. S1.36 was defined only for u > v.

We can remove the quadratic terms of θ by applying N(t + 1)-dimensional multivariate Gaussian integrals of the
form

e
1
2

∑
u,v Ku,vxuxv =

1√
(2π)t|K−1|

∫
dze−

1
2

∑
u,v Ku,vzuzv+

∑
u,v Ku,vxuzv, (S1.56)
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for xu = −β∆J iθ̂i,u and Ku,v = qu−1,v−1(g). Similarly, we can remove the quadratic terms of ϑ̂ by applying N
univariate Gaussian integrals, obtaining∫

dθ̂eΩ(θ̂,θ,0) =
1

(2π)N(t+1)

∏
i

∫
dθ̂dzp(z)

· exp

[∑
u

iθ̂i,u(θi,u − βHi,u − βJ0mu−1)− β∆J
∑
u,v

qu−1,v−1(g)iθ̂i,uzv

]

=
∏
i

∫
dzp(z)

∏
u

δ
[
θi,u − βhi,u(z)

]
, (S1.57)

where z = (z1, . . . , zt+1), and the distribution p(z) = N (0,Σ) is a multivariate Gaussian with zero mean and inverse
covariance Σ−1 = q(g), and

hi,u(z) =Hi,u + J0mu−1(g) + ∆J
∑
v

zvqu−1,v−1(g), (S1.58)

We can simplify the expressions above into

hi,u(ξu) =Hi,u + J0mu−1(g) + ∆Jξu, (S1.59)

with ξu =
∑
v zvqu−1,v−1. Let ξ = (ξ1, . . . , ξt+1), then it follows p(ξ) = N (0,q). Similarly, we can derive

h
r

i,u(ξu+1) =hi,u(ξu) +Hi,u −Hi,u+1 = Hi,u + J0mu + ∆Jξu+1. (S1.60)

(ii) Removing effective fields We now revert the effective fields θi,u to βhi,u(z) by removing the delta function,
which replaces the original βhi,u with the mean-field equivalent.

Introducing the equivalences in the previous sections, we have

eΦ(s0:t,θ,g) =
∏
i

exp

[∑
u

si,u (gi,u + θi,u)−
∑
u

log [2 cosh θi,u] +
∑
u

βsi,u−1h̃i,u−1

+
∑
u

gSu (si,uθi,u − log [2 cosh θi,u]) +
∑
u

gS
r

u (si,u−1ϑi,u − log [2 coshϑi,u])

]
, (S1.61)

with

h̃i,u−1 =
∑
u

J0µu(g) +
∑
u>v

β∆J2ρu,v(g)si,v−1. (S1.62)

Note that for g = 0, h̃i,u−1 terms disappear.
This leads us to the mean-field solution of the configurational average of the generating functional

[Zt(g)]J =

∫
dθ
∑
s1:t

eΦ(s0:t,θ,g)
∏
i

∫
dξp(ξ)

∏
u

δ
[
θi,u − βhi,u(ξu)

]
=
∏
i

∑
si,1:t

∫
dξp(ξ) exp

[∑
u

si,u
(
gi,u + βhi,u(ξu)

)
−
∑
u

log 2 cosh
[
βhi,u(ξu)

]
+
∑
u

βsi,u−1h̃i,u−1 +
∑
u

β(gSu si,uhi,u(ξu) + gS
r

u si,u−1h
r

i,u(ξu+1))

−
∑
u

(
gSu log

[
2 cosh

[
βhi,t(ξt)

]]
− gSr

u log
[
2 cosh

[
βh

r

i,u(ξu+1)
]])]

. (S1.63)

The summation over u is taken for the range from 1 to t. With ξ defined in the range u = 1, . . . , t+ 1, we can recover
the values of hi,u and h

r

i,u for all time steps.
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Similarly, statistical moments are obtained as

〈f(·)〉∗,0 =
∏
i

∑
si,1:t

∫
dξp(ξ)f(·) exp

[∑
u

si,u
(
gi,u + βhi,u(ξu)

)
−
∑
u

log 2 cosh
[
βhi,u(ξu)

]
+
∑
u

βsi,u−1h̃i,u−1 +
∑
u

β(gSu si,uhi,u(ξu) + gS
r

u si,u−1h
r

i,u(ξu+1))

−
∑
u

(
gSu log

[
2 cosh

[
βhi,t(ξt)

]]
− gSr

u log
[
2 cosh

[
βh

r

i,u(ξu+1)
]])]

. (S1.64)

From this equation, we can derive the mean activation rate and the equal-time correlation of the ith unit. We note
that the diagonal of the covariance matrix of ξ is equal to 1, hence we arrive at

[〈si,u〉]J = 〈si,u〉∗,0 =

∫
Dz tanh

[
βhi,u(z)

]
, (S1.65)

[〈si,usi,v〉]J = 〈si,usi,v〉∗,0 =

∫
Dxy(qu−1,v−1) tanh

[
βhi,u(x)

]
tanh

[
βhi,v(y)

]
, (S1.66)

where

Dz =
1√
2π

e−
1
2 z

2

, (S1.67)

Dxy(q) =
1

2π
√

1− q2
e
− x2+y2−2qxy

2(1−q2) . (S1.68)

Finally, we obtain order parameters

mu =
1

N

∑
i

[〈si,u〉]J =
1

N

∑
i

∫
Dz tanh [β (Hi,u + J0mu−1 + ∆Jz)] , (S1.69)

qu,v =
1

N

∑
i

[〈si,usi,v〉]J =
1

N

∑
i

∫
Dxy(qu−1,v−1) tanh [β (Hi,u + J0mu−1 + ∆Jx)] tanh [β (Hi,v + J0mv−1 + ∆Jy)] .

(S1.70)

Note that magnetizations mu are independent of qu,v. This is consistent with findings of the asymmetric SK model
lacking a spin-glass phase [25].

The conditional entropy results in

[
Su|u−1

]
J

=
∑
i

〈si,uθi,u − log [2 cosh θi,u]〉∗,0

=
∑
i

∫
p(ξ)

(
tanh

[
βhi,u(ξu)

]
βhi,u(ξu)− log

[
2 cosh

[
βhi,u(ξu)

]] )
=−

∑
i

∫
p(ξ)

(
tanh [β (Hi,u + J0mu−1 + ∆Jξu)]β (Hi,u + J0mu−1 + ∆Jξu)

− log [2 cosh [β (Hi,u + J0mu−1 + ∆Jξu)]]
)

=−
∑
i

∫
Dz
(
β (Hi,u + J0mu−1) tanh [β (Hi,u + J0mu−1 + ∆Jz)])

+ β2∆J2(1− tanh2 [β (Hi,u + J0mu−1 + ∆Jz)])

− log [2 cosh [β (Hi,u + J0mu−1 + ∆Jz)]]
)
. (S1.71)
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Similarly, the reversed conditional entropy results in[
Sru|u−1

]
J

=
∑
i

〈(si,u−1ϑi,u − log [2 coshϑi,u])〉∗,0

=
∑
i

∫
p(ξ)

(
tanh

[
βhi,u−1(ξu)

]
βh

r

i,u(ξu+1))− log
[
2 cosh

[
βh

r

i,u(ξu+1)
]] )

=−
∑
i

∫
p(ξ)

(
tanh [β (Hi,u−1 + J0mu−2 + ∆Jξu−1)] (β (Hi,u + J0mu + ∆Jξu+1))

)
− log [2 cosh [β (Hi,u + J0mu + ∆Jξu+1)]]

)
=−

∑
i

∫
Dz
(

(βHi,u + βJ0mu) tanh [β (Hi,u−1 + J0mu−2 + ∆Jz)])

+ β2∆J2qu,u−2(1− tanh2 [β (Hi,u−1 + J0mu−2 + ∆Jz)])

− log [2 cosh [β (Hi,u + J0mu + ∆Jz)]]
)
. (S1.72)

where ξu+1 is decomposed as a conditional Gaussian distribution for a given ξu−1 as ξu+1 = qu,u−2ξu−1 +√
1− q2

u,u−2ζu+1 where ζu+1 is a normalized Gaussian independent of ξu−1 and the term qu,u−2 the covariance

between variables.
Note that if the fields are constant Hi,u = Θi, the system will converge to a steady state with mu = m and qu,v = q

the entropy production simplifies to

[σu]J =β2∆J2(1− q)
∑
i

∫
Dz(1− tanh2 [β (Θi + J0m+ ∆Jz)]), (S1.73)

where m and q are the steady-state solutions of Eqs. S1.69 and S1.70 respectively. Note that, since every qu,v depends
only on mu and mv, all qu,v converges to the same solution q under the steady state.
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Supplementary Note 2: Solution of the asynchronous asymmetric SK models

The kinetic Ising system is sometimes written in the form of a continuous-time master equation with an asyn-
chronous, stochastic update of spins [54]. Here we extend the discrete-time kinetic system with the synchronous
updates in Supplementary Note 1 to the continuous-time model with asynchronous updates. We find the dynami-
cal mean-field equation for the order parameters is effectively unchanged in the limit of long-term correlations, but
short-term correlations decay slowly and the steady-state entropy production rate requires slight modification from
the discrete counterpart.

First, we show that a system with (partially) asynchronous updates is equivalent to defining the time-dependent
fields as a doubly stochastic process using independent Bernoulli random variables, τi,u ∈ {0, 1}, which restrict updates
of each spin i only to the times in which τi,u = 1. Namely, we define a synchronous, discrete-time master equation

p(su) =
∑
su−1

p(su | su−1)p(su−1) (S2.1)

driven by the following transition probabilities with time-dependent stochastic fields:

p(su | su−1) =
∏
i

exp [βsi,uhi,u]

2 cosh [βhi,u]
, (S2.2)

hi,u =Hi,u +
∑
j

Jijsj,u−1, (S2.3)

Hi,u =Θi,u + (1− τi,u)Ksi,u−1. (S2.4)

where τi,u are binary random variables independently following a Bernoulli distribution with rate α, i.e., p(τi,u = 1) =
α. When τi,u = 1, the spin updates normally with the field Θi,u. When τi,u = 0, the field is Ksi,u−1, i.e., coupled to
the previous spin value with a strength K. If K is large, the current state is tightly coupled with the previous state.
This means that the spin state is unchanged from the previous state in the limit K →∞. In this limit, the transition
probability results in

p(si,u | su−1) =τi,uw(si,u | su−1) + (1− τi,u)δ [si,u, si,u−1] . (S2.5)

where w(si,u | su−1) is a transition rate given by

w(si,u | su−1) =
exp

[
βsi,uh

1
i,u

]
2 cosh

[
βh1

i,u

] . (S2.6)

h1
i,u =Θi,u +

∑
j

Jijsj,u−1. (S2.7)

We note that α = 1 recovers the synchronous update in Supplementary Note 1. However, for a small α (such that
Nα � 1), only one spin can update at a time and the system becomes equivalent to a single-spin update dynamics.
Thus, we can model both the synchronous and asynchronous updates by these doubly-stochastic time-dependent
fields.

Since only one spin can be updated at each time-step for a small probability α with the transfer rate w(si,u | su−1),
the master equation (equivalent to Eq. 7 in this condition) expected over τi,u is described as

p(su) =
∑
su−1

p(su | su−1)p(su−1)

=pu−1(su) +
∑
su−1

(p(su | su−1)p(su−1)− p(su−1 | su)pu−1(su))

=pu−1(su) + α
∑
i

(
w(si,u | s[i]

u )pu−1(s[i]
u )− w(−si,u | su)pu−1(su)

)
. (S2.8)

where the [i] operator flips the sign of the i-th spin (therefore, su−1 = s
[i]
u ), and the second term in the equation

stands for the system’s probability flow. We now represent the discrete time steps u = 1, 2, . . . on the real-valued line
of the continuous time. We set the Bernoulli probability α (τi,u being 1) to be identical to the time resolution of the
discrete-time step in the continuous time. The starting time of the u-th bin is given by t = (u− 1)α. This condition
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means that the time t is equivalent to the expected number of the spin updates up to the u-th bin. Note that t stands
for the continuous time and should not be taken as the last discrete-time step that we use in the subscript of the
variables. In the limit α→ 0, the system is equivalent to a continuous time description for the new time variable t:

dp(s, t)

dt
=
∑
i

(
w(si | s[i])p(s[i], t)− w(−si | s)p(s, t)

)
. (S2.9)

This formulation leads to the definition of the entropy change as

dσsys(t)

dt
=− d

dt

∑
s

p(s, t) log p(s, t)

=−
∑
s

dp(s, t)

dt
log p(s, t)−

∑
s

dp(s, t)

dt

=−
∑
s

dp(s, t)

dt
log p(s, t) (S2.10)

Using Eq. S2.9, the entropy change is further written as

dσsys(t)

dt
=−

∑
s

∑
i

(
w(si | s[i])p(s[i], t)− w(−si | s)p(s, t)

)
log p(s, t)

=− 1

2

∑
s

∑
i

(
w(si | s[i])p(s[i], t)− w(−si | s)p(s, t)

)
log p(s, t)

+
1

2

∑
s

∑
i

(
w(−si | s)p(s, t)− w(si | s[i])p(s[i], t)

)
log p(s, t)

=− 1

2

∑
s

∑
i

(
w(si | s[i])p(s[i], t)− w(−si | s)p(s, t)

)
log p(s, t)

+
1

2

∑
i

∑
s[i]

(
w(si | s[i])p(s[i], t)− w(−si | s)p(s, t)

)
log p(s[i], t)

=
1

2

∑
s

∑
i

(
w(si | s[i])p(s[i], t)− w(−si | s)p(s, t)

)
log

p(s[i], t)

p(s, t)
. (S2.11)

To obtain the third equality, we applied the change of variables from s to s[i] in the second term, which makes si into
−si. We then reverted the summation over i and s[i] to s and i since both sum all the states and flipping to obtain the
fourth equality. From this form, the entropy change can be decomposed into an entropy production rate and entropy
flow rate terms as follows [39]:

dσsys(t)

dt
=

1

2

∑
s

∑
i

(
w(si | s[i])p(s[i], t)− w(−si | s)p(s, t)

)
log

w(si | s[i])p(s[i], t)

w(−si | s)p(s, t)︸ ︷︷ ︸
Entropy production rate

+
1

2

∑
s

∑
i

(
w(si | s[i])p(s[i], t)− w(−si | s)p(s, t)

)
log

w(−si | s)

w(si | s[i])︸ ︷︷ ︸
Entropy flow

. (S2.12)

Thus, we define the continuous-time steady-state entropy production rate as:

dσ(t)

dt
=

1

2

∑
s

∑
i

(
w(si | s[i])p(s[i], t)− w(−si | s)p(s, t)

)
log

w(si | s[i])p(s[i], t)

w(−si | s)p(s, t)

=
∑
s

∑
i

w(si | s[i])p(s[i], t) log
w(si | s[i])p(s[i], t)

w(−si | s)p(s, t)
. (S2.13)
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S2.1. Generating functional

Knowing that we obtain the continuous-time asynchronous updates in the limit of α → 0 and K → ∞, in what
follows, we will derive the order parameters and entropy production rate with the asynchronous updates in continuous-
time by first augmenting the generating functional defined in the discrete-time steps using the doubly stochastic fields
and then applying these limits.

Given the augmented fields (Eq. S2.4), the effective field (Eq. S1.59) in the thermodynamic limit is decomposed as

hi,u(ξu) = τi,uh
(1)

i,u(ξu) + (1− τi,u)h
(0)

i,u(ξt), (S2.14)

where

h
(1)

i,u(ξu) =Θi,u + J0mu−1 + ∆Jξu, (S2.15)

h
(0)

i,u(ξu) =K

(
si,u−1 +

1

K
(Θi,u + J0mu−1 + ∆Jξu)

)
. (S2.16)

Given that K is large, we can approximate h
(0)
i,u(ξu) ≈ Ksi,u−1 because the remaining two terms become negligible

for calculating the spin update. Thus we have

hi,u(ξu) ≈ τi,uh
(1)

i,u(ξu) + (1− τi,u)Ksi,u−1. (S2.17)

for large K.

Using the aforementioned hi,u(ξu), the system averaged over variables τi,u is now described by the following con-
figurational average of a generating functional:

[Zt(g)]J,τ =
∏
i

∑
si,1:t

∑
τi,1:t

∫
dξp(τi,1:t) exp

[∑
u

si,u
(
gi,u + βhi,u(ξu)

)
−
∑
u

log 2 cosh
[
βhi,u(ξu)

]
+
∑
u

β(gSu si,uhi,u(ξu) + gS
r

u si,u−1h
r

i,u(ξu+1))

−
∑
u

(
gSu log

[
2 cosh

[
βhi,t(ξt)

]]
− gSr

u log
[
2 cosh

[
βh

r

i,u(ξu+1)
]])]

. (S2.18)

The order parameters will be obtained similarly as in the general solution with additional averaging over the
Bernoulli random variables. To simplify further steps, we will consider the configurational average of the mean and
delayed correlation of N individual spins:

mi,u = [〈si,u〉]J,τ = lim
g→0

∂[Zt(g)]J,τ
∂gi,u

=
∑
τi,1:t

p(τi,1:t)

∫
Dz tanh

[
βhi,u(z)

]
, (S2.19)

qi,u,v = [〈si,usi,v〉]J,τ = lim
g→0

∂2[Zt(g)]J,τ
∂gi,u∂gi,v

=
∑
τi,1:t

p(τi,1:t)

∫
Dxy(qu−1,v−1) tanh

[
βhi,u(x)

]
tanh

[
βhi,v(y)

]
, (S2.20)

which constitute the order parameters

mu =
1

N

∑
i

mi,u, (S2.21)

qu,v =
1

N

∑
i

qi,u,v. (S2.22)

More specifically, since the order parameters mu and qu,v are given by the expectations over the independent random
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variables τi,u ∼ Bernoulli(α), we further separate mi,u, qi,u,v into the cases where τi,u, τi,v are updated or not:

mi,u =
∑
τi,u

p(τi,u)m
τi,u
i,u

=
∑
τi,u

p(τi,u)

∫
Dz tanh

[
βh

(τi,u)

i,u (ξu)
]
, (S2.23)

qi,u,v =
∑

τi,u,τi,v

p(τi,u)p(τi,v)q
τi,u,τi,v
i,u,v

=
∑

τi,u,τi,v

p(τi,u)p(τi,v)

∫
Dxy(qu−1,v−1) tanh

[
βh

(τi,u)

i,u (x)
]

tanh
[
βh

(τi,v)

i,v (y)
]
, (S2.24)

where m0
i,u = mi,u−1 and q0,0

i,u,v = qi,u−1,v−1.

Mean activation rate order parameter

First, we look into the mean activation rate. Since p(τi,u = 1) = α, the expectation of this order parameter by τi
is given by

mu =α
1

N

∑
i

∫
Dz tanh [β (Θi,u + J0mu−1 + ∆Jz)] + (1− α)mu−1, (S2.25)

where we assumed K →∞ to obtain the second term. The above equation gives the dynamical mean-field equation in
the discrete time steps. We now represent the discrete time steps u = 1, 2, . . . on the real-valued line of the continuous
time using t = (u− 1)α. By representing the mean activation rate at the u− 1th bin by m(t), i.e., m(t) = mu−1, the
equation above is described as:

m(t+ α)−m(t)

α
=

1

N

∑
i

∫
Dz tanh [β (Θi(t(+J0m(t) + ∆Jz)]−m(t) (S2.26)

Hence, we obtain the following differential equation in the limit of α→ 0:

dm(t)

dt
=−m(t) +

1

N

∑
i

∫
Dz tanh [β (Θi(t) + J0m(t) + ∆Jz)] . (S2.27)

Note that Eqs. S2.25 converges to the same formula given by Eq. S1.69 when the magnetic fields are equal to Θi,u.

Delayed self-correlation order parameter

Next, we compute the order parameter of the delayed self-correlation. We can simplify the decomposition of qi,u,v
in two steps as:

qi,u,v =
∑
τi,v

q
τi,v
i,u,vp(τi,v), (S2.28)

q
τi,v
i,u,v =

∑
τi,u

q
τi,u,τi,v
i,u,v p(τi,u), (S2.29)

where the variable q
τi,v
i,u,v captures the marginal order parameter when we know τi,v , i.e., if the spin at time v has been

updated or not, regardless of whether the spin at time u has been updated or not. q
τi,u,τi,v
i,u,v is the order parameter

given that we know both the update occurred at u and v.
We can decompose qi,u,v into the two cases, where spin v is or is not updated:

qi,u,v =(1− α)q0
i,u,v + αq1

i,u,v,

=(1− α)qi,u,v−1 + αq1
i,u,v. (S2.30)
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Here we used the equivalence q0
i,u,v = qi,u,v−1 under K → ∞ because, if the spin at time v is not updated, it takes

the value of the spin at the previous time v − 1, at which we do not know if the spin is updated or not. We then
calculate the other variable q1

i,u,v in terms of the updates of u and v:

q1
i,u,v =(1− α)q0,1

i,u,v + αq1,1
i,u,v

=(1− α)q1
i,u−1,v + α

∫
Dxy(qu−1,v−1) tanh [β (Θi,u + J0mu−1 + ∆Jx)] tanh [β (Θi,v + J0mv−1 + ∆Jy)] .

(S2.31)

Here we used q0,1
i,u,v = q1

i,u−1,v for the same reason previously mentioned, applied at time u. q1,1
i,u,v is the self-delayed

correlation qi,u,v as in Eq. S2.20 with Hi,u = Θi,u and Hi,v = Θi,v because the spin was updated at these time steps
with correlation between effective fields qu−1,v−1, and there are no constraints from the previous spins.

Similarly to the mean activation rate, in the small α → 0 limit, with t′ ≡ α(u − 1), t ≡ α(v − 1), the previous
equations lead to

dqi(t
′, t)

dt
=− qi(t′, t) + q1

i (t′, t), (S2.32)

dq1
i (t′, t)

dt′
=− q1

i (t′, t) +

∫
Dxy(q(t′,t)) tanh [β (Θi(t

′) + J0m(t′) + ∆Jx)] tanh [β (Θi(t) + J0m(t) + ∆Jy)] , (S2.33)

The equations above are solved iteratively with boundary conditions:

qi(t, t) =q1
i (t, t),= 1,

qi(t
′, t) =qi(t, t

′),

q1
i (t′, t) =q1

i (t, t′),

t′ ≥ 0, t ≥ 0. (S2.34)

Similar boundary conditions apply for the discrete time description in u, v. The delayed self-correlation order param-
eter q(t′, t) is obtained as the average of qi(t

′, t) over the spins. Similarly to the mean activation rate, the delayed
self-correlation converges to Eq. S1.70 obtained under the synchronous update.

Long-range limit

Assuming a time-independent Θi,u(= Θi), we can calculate the convergence values of qi,u,v in two steps, separating
the dynamics in u and the dynamics in v. First, from Eq. S2.31, it is easy to see that, knowing qu−1,v−1 for all values
of u and a fixed v, the convergence point for u� v will be

q1
i,∞,v ≡ lim

u→∞
q1
i,u,v

= lim
u→∞

∫
Dxy(qu−1,v−1) tanh [β (Θi + J0mu−1 + ∆Jx)] tanh [β (Θi + J0mv−1 + ∆Jy)] , (S2.35)

or, in continuous time

q1
i (∞, t) ≡ lim

t′→∞

∫
Dxy(qt′,t) tanh [β (Θi + J0m(t′) + ∆Jx)] tanh [β (Θi + J0m(t) + ∆Jy)] . (S2.36)

Now we can solve the dynamics in v independently to u, writing Eq. S2.30 for u� v as

qi,∞,v =(1− α)qi,∞,v−1 + αq1
i,∞,v, (S2.37)

as well as its continuous-time equivalent

dqi(∞, t)
dt

=− qi(∞, t) + q1
i (∞, t). (S2.38)

If we assume a starting point qi,∞,v for a given v, then we find that qi,∞,v converges for a large v (still under u� v)
to

qi,∞,∞ ≡ lim
v→∞

qi,∞,v = lim
v→∞

q1
i,∞,v

= lim
v→∞

lim
u→∞

∫
Dxy(qi,u−1,v−1) tanh [β (Θi + J0mu−1 + ∆Jx)] tanh [β (Θi + J0mv−1 + ∆Jy)] . (S2.39)
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FIG. S1. Result of simulating Eq. S2.32,S2.33 to calculate q(t + d, t) (blue line) and q1(t + d, t) (purple line) for 0 ≤ d ≤ 10
with α = 0.01, β = 2, Θi,u = 0, J0 = 1, and ∆J = 0.5. We also calculated the long range limit using Eq. S2.40 (dashed orange
line). We observe that both variables converge for large d to the result given by Eq. S2.40. In addition, we find that while
q1(t+ d, t) decays smoothly, q(t+ d, t) has a discontinuity at d = 0 since q(t, t) = 1.

Similarly, we define the continuous-time equivalent function

qi(∞,∞) ≡ lim
t→∞

qi(∞, t) = lim
t→∞

q1
i (∞, t)

= lim
t→∞

lim
t′→∞

∫
Dxy(qi(t

′,t)) tanh [β (Θi + J0m(t′) + ∆Jx)] tanh [β (Θi + J0m(t) + ∆Jy)] . (S2.40)

Note that Eqs. S2.27, S2.40 converge to the same values as Eqs. S1.69, S1.70 when the magnetic fields are equal to
Θi, proving that the synchronous and asynchronous asymmetric SK models have identical solutions for their order
parameters.

In Fig. S1, we numerically confirmed our theoretical result by simulating an exemplary dynamics of the self-
correlation order parameters in the continuous-time domain. The procedure is as follows. We select an Euler step
of α = 0.01 and an initial values of qi(t

′, 0) = δ [d]. Given q1
i (0, 0) = 1, we computed a forward pass of the values of

q1
i (d, 0) for larger values of d (d ≥ 0), using Eq. S2.33. Then, given t′ = t+d we calculated one Euler step of Eq. S2.32

in t, updating the value of qi(t+d, t) for all values of d. We iterated the above procedure until the function qi(t+d, t)
and q1

i (t+ d, t) converge to fixed values. We confirmed that the convergence value of the process was the same one as
directly calculating qi(∞,∞).

Entropy production

Assume that time-constant fields Θi, i.e., the fields Hi,u = Θi + (1 − τi,u)Ksi,u−1 are stochastic processes driven
by time-independent τi,u. In this case the average difference of the forward and reverse entropy rates in Eqs. S1.71,
S1.72 converges to:

[σu]J,τ =
∑

τu,τu−1

p(τu)p(τu−1)
(
Su|u−1 − Sru|u−1

)

=
∑
τu

p(τu)

(
β2∆J2(1− qu,u−2)

∑
i

∫
Dz(1− tanh2 [β (Hi,u + J0mu−1 + ∆Jz)])

)
, (S2.41)

for the steady-state values of mu−1 and qu,u−2 (independent of u).
For asynchronous updates in a steady state, non-zero contributions to the entropy production at spin i only occur

during spin updates, i.e., τi,u = 1 occurring with a probability α (we can see this in the equation above where

the tanh2 [β (Hi,u + J0m+ ∆Jz)] term becomes equal to 1 when τi,u = 0). This leads to the steady-state entropy
production value of

[σu]J,τ =αβ2∆J2(1− qu,u−2)
∑
i

∫
Dz(1− tanh2 [β (Θi + J0mu + ∆Jz)]). (S2.42)
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In the continuous-time limit α → 0, with a change of variables t = (u − 1)α, we have the entropy production rate
defined in continuous time:[

dσ(t)

dt

]
J,τ

= lim
α→0

β2∆J2(1− q(t+ α, t− α))
∑
i

∫
Dz(1− tanh2 [β (Θi + J0m(t) + ∆Jz)]). (S2.43)

Note that due to the discontinuity of q(t + d, t) (or q(t + d, t − d) equivalently), the limit in d → 0 is different from
q(t, t) = 1 (see Fig. S1). This property, limd→0 q(t+ d, t− d) < 1, guarantees that the entropy production rate can be
non-zero for the adequate parameters.
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Supplementary Note 3: Ferromagnetic critical phase transition in the infinite kinetic Ising model with
Gaussian couplings and uniform weights

We define a kinetic Ising network of infinite size under synchronous updates (α = 1), with random fields Hi,u =
Hi, where Hi are uniformly distributed following U(−∆H,∆H), and couplings Jij follow a Gaussian distribution

N ( 1
N ,

∆J2

N ).
As we have found that the asymmetric SK model with arbitrary fields follows a mean-field solution, calculating the

effects of disorder in the fields becomes easier, as we can approximate the update equations of the order parameters
in the thermodynamic limit N →∞ as an integral with a large number of units:

mu =
1

N

∑
i

mi,u =
1

2∆H

∫ ∆H

−∆H

dh

∫
Dz tanh [β (h+ J0mu−1 + ∆Jz)]

=
1

2β∆H

∫
Dz log

cosh [β (∆H + J0mu−1 + ∆Jz)]

cosh [β (−∆H + J0mu−1 + ∆Jz)]
. (S3.1)

Similarly, the delayed self-correlation parameter:

qu,v =
1

N

∑
i

Rii,u,v =
1

2∆H

∫ ∆H

−∆H

dh

∫
Dxy(qu−1,v−1) tanh [β (h+ J0mu−1 + ∆Jx)] tanh [β (h+ J0mv−1 + ∆Jy)]

=1 +
1

2β∆H

∫
Dxy(qu−1,v−1)

(
e2Hv,yβ + e2βHu,x

)
(e2βHv,y − e2βHu,x)

log

[
e−2β∆H + e2βHu,x

e2β∆H + e2βHu,x

e2β∆H + e2βHv,y

e−2β∆H + e2βHv,y

]
,

(S3.2)

with Hu,x = J0mu−1 + ∆Jx and Hv,y = J0mv−1 + ∆Jy.
In the zero-temperature limit, β →∞, these expressions have the following forms:

mu =
1

2β∆H

∫
Dz (|∆H + J0mu−1 + ∆Jz| − |−∆H + J0mu−1 + ∆Jz|) , (S3.3)

qu,v =1 +
1

2β∆H

∫
Dxy(qu−1,v−1)sign [Hv,y −Hu,x]β

(
|∆H +Hu,x| − |∆H −Hu,x| − |∆H +Hv,y|+ |∆H −Hv,y|

)
.

(S3.4)

Finally, the normalized conditional entropy in the thermodynamic limit and normalized reversed conditional entropy
are given as[

1

N
Su|u−1

]
J

=
1

2∆H

∫ ∆H

−∆H

dh

∫
Dz
(
β2∆J2(1− tanh2 [β (h+ J0mu−1 + ∆Jz)])

+ βh tanh [β (h+ J0mu−1 + ∆Jz)]− log [2 cosh [β (h+ J0mu−1 + ∆Jz)]]
)

+ βJ0mumu−1

=
1

2β∆H

∫
Dz
(
β2∆J2 tanh [β (∆H + J0mu−1 + ∆Jz)]− tanh [β (−∆H + J0mu−1 + ∆Jz)])

+
1

2β∆H
(ϕ (β∆H,βJ0mu−1 + β∆Jz))− ϕ (−β∆H,βJ0mu−1 + β∆Jz))

)
+ βJ0mumu−1, (S3.5)

and

1

N

[
Sru|u−1

]
J

=
1

2∆H

∫ ∆H

−∆H

dh

∫
Dz
(
qu,u−2β

2∆J2(1− tanh2 [β (h+ J0mu−2 + ∆Jz)])

− log [2 cosh [β (h+ J0mu + ∆Jz)]]
))

+ βJ0mu−1mu+1

=
1

2β∆H

∫
Dz
(
β2∆J2qu,u−2(tanh [β (∆H + J0mu−2 + ∆Jz)]− tanh [β (−∆H + J0mu−2 + ∆Jz)])

+
1

2β∆H
(ϕ (β∆H,βJ0mu + β∆Jz))− ϕ (−β∆H,βJ0mu + β∆Jz))

)
+ βJ0mu−1mu+1, (S3.6)
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where we define

ϕ (h,w) = h log [1 + exp [2h+ 2w]] + Li2 [− exp [2h+ 2w]] + hw (S3.7)

with Lis [x] being the polylogarithm function.

S3.1. Critical points

Assuming a nonequilibrium steady state in which mu = mu−1 = m, we obtain the critical point of the system by
computing the non-zero solutions of the first order Taylor expansion around m = 0 of the right-hand part of Eq. S3.1,

m ≈ 1

2β∆H

∫
Dz log

cosh [β (∆H + ∆Jz)]

cosh [β (−∆H + ∆Jz)]

+
1

2β∆H

∫
Dz (tanh [β (∆H + ∆Jz)]− tanh [β (−∆H + ∆Jz)])βJ0m

=
1

∆H

∫
Dz tanh [β (∆H + ∆Jz)] J0m. (S3.8)

This equation yields the self-consistent equation whose solution gives the critical inverse temperature, βc:

∆H

J0
=

∫
Dz tanh [β (∆H + ∆Jz)] . (S3.9)

In the special case where ∆H = 0, the expansion around m = 0 results in

m ≈
∫

Dz tanh [β (∆Jz)] +

∫
Dz
(
1− tanh2 [β (∆Jz)]

)
βJ0m

=

∫
Dz
(
1− tanh2 [β (∆Jz)]

)
βJ0m. (S3.10)

The critical value βc is given by the solution of the equation,

1

βJ0
=

∫
Dz
(
1− tanh2 [β (∆Jz)]

)
. (S3.11)

Similarly, we can find the critical value of ∆J at the limit of zero temperature by solving the equation in the β →∞
limit:

1

∆H

∫
Dz sign [(∆H + ∆Jz)] J0 = 1. (S3.12)

S3.2. Critical exponents

We can characterize critical exponents of the system using the normalized inverse temperature τ = −β−βc

βc
. We

first note that the first order Taylor expansion of the following term around the critical βc yields

1

∆H

∫
Dz tanh [β (∆H + ∆Jz)] J0 ≈1 +

1

∆H

∫
Dz
(
1− tanh2 (βc (∆H + ∆Jz))

)
(∆H + ∆Jz) J0 (β − βc)

=1−K ′ (β − βc) . (S3.13)

We also note that the value of m around β = βc with the third order Taylor expansion is given as

m ≈ 1

∆H

∫
Dz tanh [β (∆H + ∆Jz)] J0m

− 1

3β∆H

∫
Dz tanh [β (∆H + ∆Jz)]

{
1− tanh2 [β (∆H + ∆Jz)]

}
(βJ0m)

3

=(1−K ′ (β − βc))m−K ′′m3, (S3.14)
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from which we obtain

m ∝ (β − βc)
1
2 . (S3.15)

Thus we have a critical exponent 1
2 , which is consistent with the scaling exponent of the order parameter of the

mean-field universality class typically denoted by the symbol ‘β’ in the literature.
Similarly, we can compute the susceptibility to a uniform magnetic field B added on top of Hi, having that

∂m

∂B

∣∣∣
B=0

=
1

2β∆H

∫
Dz {tanh [β (∆H + ∆Jz)]− tanh [β (−∆H + ∆Jz)]}

(
β + βJ0

∂m

∂B

∣∣∣
B=0

)
=

1

∆H

∫
Dz {tanh [β (∆H + ∆Jz)]}

(
1 + J0

∂m

∂B

∣∣∣
B=0

)
, (S3.16)

which evaluated at the limit τ → 0 results in

∂m

∂B

∣∣∣
B=0

= (1−K ′τ)

(
1

J0
+
∂m

∂B

)
, (S3.17)

∂m

∂B

∣∣∣
B=0
∝1−K ′τ

τ
≈ (−τ)

−1
, (S3.18)

retrieving the γ = 1 exponent that is consistent with the mean-field universality class.
Note that these critical exponents, corresponding to the mean-field universality class, are also the same found in

the order-disorder phase transition of the equilibrium SK model [12]. Note that the spin-glass phase, not present for
asymmetric couplings, has different exponents and does not correspond to this universality class [52]).
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Supplementary Note 4: Comparison with the equilibrium SK model

To illustrate distinct behaviors between the symmetric and asymmetric SK models, we compare the order parameters
of the asymmetric SK model with those of its equilibrium counterparts. We use the replica-symmetric solution of
the model [12], which becomes unstable for the spin-glass phase but still yields an approximate phase diagram of the
system. Figure S2 displays the phase diagram of the order parameters of an equilibrium SK model, which is equivalent
to that of the nonequilibrium SK model in the main text shown in Fig. 2.
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FIG. S2. Order parameters of the equilibrium SK model with zero fields. An approximate solution of the model with
symmetric couplings is calculated under the replica-symmetry assumption [12]. The average magnetization m and the average
delayed self-coupling q are shown for a model with fixed parameters J0 = 1, ∆H = 0 and variable ∆J and β. The dashed line
represents the critical line separating disordered (left), ordered (bottom-right) and spin-glass (top-right) phases.
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Supplementary Note 5: Convergence times

Spin glasses show a particular slow decay functions, which converge non-exponentially following a non-trivial slow
function [65]. This finding is replicated in models like the equilibrium SK model [54, 66]. To refute the existence of a
spin-glass phase with such slow non-exponential decay, we simulated the convergence of the average magnetization as
the dynamics reaches a nonequilibrium steady state. Using the critical inverse temperature βc for ∆J = 0.2,∆H = 0,
we use 11 values of ∆J uniformly distributed in the interval [0.19, 0.21]. In Fig. S3, we observe, at the critical value
(∆J = 0.2, black line), the convergence of magnetization follows a power law, as expected. Conversely, both the
ordered and disordered phases (∆J < 0.2, dotted line, ∆J > 0.2, dashed line) converge as exponential functions. The
figure is calculated for α = 1, but the behavior is similar for all α. These results confirm that the disordered phase is
not a spin-glass phase, as spin glasses show a non-exponential slow decay characterized by a non-trivial function.
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FIG. S3. Convergence time. Convergence times of the average-rate order parameter mu to its stationary state value m at
the critical point (black), ordered phase (dotted line) and disordered phase (dashed line) for a semilog (a) and log-log scales
(b). All lines show an exponential decay, except for the system at criticality, which shows a power-law decay. We can know
that the disordered phase is not a spin-glass phase due to the exponential decay.
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Supplementary Note 6: Numerical simulations

To verify our theoretical solutions of the order parameters and entropy production obtained under the configurational
average, we ran numerical simulations of the kinetic Ising systems with synchronous and asynchronous updates for
many random realizations of the model parameters. Here we explain how we performed the numerical simulations
and calculated the statistics from the sample trajectories.

First, we constructed a fully asymmetric kinetic Ising system of size N with random couplings. The elements Jij
of the coupling matrix J were randomly sampled from independent Gaussian distributions, Jij ∼ N

(
J0
N ,

∆J
N

)
. We

simulated trajectories of t = 27 steps for synchronous updates and T = 27N steps for asynchronous updates (see in
the following) for 101 values of the inverse temperature β in the range [0, 4]. For each system with size N , we run
the simulations using R = 400, 000 random configurations of the matrix J, and we further repeated the process for
different system sizes.

In the simulation, we updated each spin in accordance to the transition probability:

p(si,u | su−1) =
exp [βsi,uhi,u]

2 cosh [βhi,u]
, (S6.1)

hi,u =Θi +
∑
j

Jijsj,u−1. (S6.2)

For the Ising systems with synchronous updates, we simultaneously updated all spins at each time step, which is
equivalent to setting α = 1 in Eq. 34. For asynchronous updates, we randomly selected a single spin at each time
step and updated the selected spin using the above equation to capture the behavior of the system in the continuous
time limit with α → 0 and K → ∞. In this time limit, updates will be infrequent and only one spin is updated at
a time. That is, most of the time τi,u = 0. However, for computational efficiency we only simulated the steps where
a spin is updated with τi,u = 1 (a random event happening with probability Nα). Thus, t steps of the system with
synchronous updates in Eq. 34 with α→ 0 corresponds to T steps in our simulation, where T is a stochastic variable
corresponding to a Binomial distribution B(Nt, α) (which in the limit α → 0 is equivalent to a Poisson distribution
Pois(Ntα)). To make the behavior of the synchronous and asynchronous system have equivalent speeds, we choose
to use t = 27 for the synchronous system, and T = 27N for the asynchronous systems, approximately corresponding
to t = 27/α. This guarantees that we have a total of 27N individual spin updates for both systems.

Next, we computed the order parameters and entropy production at a steady state from the sample trajectories as
follows. We calculated the steady-state average activation rate from the last time step t of the sample trajectories as:

m̂ =
1

N

∑
i

[〈si,t〉]J,τ , (S6.3)

where 〈·〉J is an average over the R configurations of J. The last time step t is t = 27 for the synchronous updates
and 1

α27 for asynchronous updates (corresponding to 27N updates in our simulation) and large enough to make the
systems reach the steady state.

We computed the steady-state delayed self-correlation from the samples in a similar way. For the synchronous Ising
systems, it was computed as:

q̂ =
1

N

∑
i

〈si,tsi,t−1〉J , (S6.4)

with α = 1 whereas in the asynchronous Ising model we used

q̂ =
1

N

∑
i

[〈si,tsi,t−d〉]J,τ (S6.5)

with d = 10/α (with t − d corresponding to the point T − 10N in our simulation) to obtain the delayed correlation
of the spin states between two distant time points (i.e., a long-range correlation).
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FIG. S4. Verification of the exact mean-field solutions by simulating the kinetic Ising systems. We repeated the
simulations for systems of size N = 32, 64, 128, 256, 512, 1024 with synchronous (top) and asynchronous (bottom) updates with
Θi,u = 0 and ∆J = 1. (a,d) Sampling estimation of the mean activation rate m̂ compared with the theoretical order parameterm
(black lines). (b,e) Sampling estimation of the average delayed self-correlations q̂ compared with the theoretical order parameter
q (black lines). (c,f) Sampling estimation of the entropy production and entropy production rate σ̂, limα→0

1
α
σ̂ computed from

the sample trajectories (Eq. S6.6, S6.7) compared with its mean-field value at the thermodynamic limit 1
N

[σ]J ,
1
N

[
dσ
dt

]
J,τ

(black lines, Eqs. 54,58).

Finally, we calculated the steady-state entropy production from the samples using

σ̂t =α

[〈∑
i

log
p(si,t | st−1)

p(si,t−1 | st)

〉]
J,τ

=α

〈∑
i

Θi(si,t − si,t−1) +
∑
ij

Jij(si,tsj,t−1 − si,t−1sj,t)

− log(2 cosh(Θi +
∑
j

Jijsj,t−1)) + log(2 cosh(Θi +
∑
j

Jijsj,t))

〉
J,τ

. (S6.6)

The steady-state entropy production of the synchronous update is obtained by setting α = 1 and effectively removing
the average over τ . Note in our results we normalize this entropy production by the number of spins N to make it
independent of the system size.

The steady-state entropy rate for the asynchronous updates is given by limα→0 σ̂t/α, to make it independent of the
update rate α:

lim
α→0

1

α
σ̂t =

〈∑
i

Θi(si,t − si,t−1) +
∑
ij

Jij(si,tsj,t−1 − si,t−1sj,t)

− log(2 cosh(Θi +
∑
j

Jijsj,t−1)) + log(2 cosh(Θi +
∑
j

Jijsj,t))

〉
J,τ

. (S6.7)

Similarly to the synchronous case, we normalize this entropy production rate by the number of spins N to make it
independent of the system size.

To verify our exact mean-field solutions, we simulated networks of different sizes with synchronous and asynchronous
updates for the parameters Θi,u = 0 and ∆J = 0.5 (Fig. 4) or ∆J = 1 (Fig. S4). These results corroborate our
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theoretical predictions and confirm that the steady-state entropy production peaks at the phase transitions and
increases when the significantly heterogeneous system approaches the quasi-deterministic regimes.
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Supplementary Note 7: Dynamic patterns

To characterize the complexity of the spin kinetics, we count the number of states that returns to themselves after
a number of transition steps with different lengths for a large but finite size system under steady state. We describe
this probability as

Ω(n) = p(su = su+n, su 6= su+n−1, su 6= su+n−2, . . . ). (S7.1)

We will assume the synchronous Ising system with any n, or the asynchronous Ising system with large n, so the order
parameters converge to their long-range values m, q.

Given this probability distribution, we can calculate the average transition length as∑
n

nΩ(n). (S7.2)

A transition length of 1 results in a static pattern, where the same pattern appears consecutively. A transition length
longer than 1 indicates that the dynamics exhibits a cyclic pattern on average. For simplicity, we assume that there
are no fields Θi,u = 0. Also, under steady state for the configurational average, the self-correlations are uniform across
elements, having [〈si,usi,v〉] = q.

S7.1. The proportion of patterns with length n

The proportion for the patterns with an arbitrary length n is obtained as follows. First, we note that by using a
Kronecker delta δ[su, su−k], it can be written as

Ω(n) =
∑
s0:t

p(s0:t)δ[su, su−n]

n−1∏
k=1

(1− δ[su, su−k])

=Ψ(n−1) −Ψ(n), (S7.3)

Ψ(n) =
∑
s0:t

p(s0:t)

n∏
k=1

(1− δ[su, su−k]). (S7.4)

Here, Ω(n) is the probability of observing n−1 patterns different from su during consecutive state updates and finally
observing su at the n-th step. In turn, Ψ(n) is the probability of just observing n patterns different from su during n
state updates. Both Ω(n) and Ψ(n) are probability distributions that meet

∑∞
n=1 Ω(n) = 1 and

∑∞
n=1 Ψ(n) = 1. This

is guaranteed by defining Ω(1) = 1 −Ψ(1), so that
∑∞
n=1 Ω(n) = 1 −Ψ(∞) = 1 (as the probability Ψ(∞) converges to

zero).

We can expand Ψ(n) as:

Ψ(n) =1−
∑
k

∆k +
∑
k<l

∆k,l −
∑

k<l<m

∆k,l,m + . . . ,

∆k,l,m,... =
∑
s0:t

p(s0:t)δ[su, su−k]δ[su, su−l]δ[su, su−m] · · · . (S7.5)

In steady state, the product of δ[su, su−k]δ[su, su−l]δ[su, su−m] · · · for any set of k 6= l 6= m · · · results in the same
value. This simplifies the previous equation to

Ψ(n) =

n∑
k=0

(
n

k

)
(−1)k∆(k), (S7.6)

∆(k) =

k∏
k′=1

δ[su, su−k′ ]. (S7.7)
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Using δ[su, su−k] =
∏
i

1+si,usi,u−k

2 , the configurational average of ∆(n) becomes

[
∆(n)

]
J,τ

=

[∑
s0:t

p(s0:t)

n∏
k=1

N∏
i=1

1 + si,usi,u−k
2

]
J,τ

=
1

2nN

[〈
N∏
i=1

n∏
k=1

(1 + si,usi,u−k)

〉]
J,τ

=
1

2nN

[〈
N∏
i=1

(1 + si,usi,u−1)(1 + si,usi,u−2) · · · (1 + si,usi,u−n)

〉]
J,τ

=
1

2nN

[〈
N∏
i=1

n∑
k=0

(
n

k

)
(si,u)ksi,u−i1si,u−i2 · · · si,u−ik

〉]
J,τ

, (S7.8)

where {i1, i2, . . . , ik} are the set of k indices chosen form 1, . . . , n. Since si,usi,u = 1, (si,u)k is 1 when k is even and
si,u when k is an odd number. It can be summarized as

(si,u)k =
1 + (−1)k

2
+ si,u

1− (−1)k

2
. (S7.9)

Using this equation, we obtain

[
∆(n)

]
J,τ

=
1

2nN

[〈
N∏
i=1

n∑
k=0

(
n

k

)(
1 + (−1)k

2
+ si,u

1− (−1)k

2

) k∏
l=1

si,u−il

〉]
J,τ

=
1

2nN

N∏
i=1

n∑
k=0

(
n

k

)1 + (−1)k

2

[〈
k∏
l=1

si,u−il

〉]
J,τ

+
1− (−1)k

2

[〈
si,u

k∏
l=1

si,u−il

〉]
J,τ

 . (S7.10)

The expression above is difficult to compute in general without resorting to extra assumptions, but we can illustrate
its behavior for small pattern lengths.

The proportion of static patterns (1-periodic) in the system in steady state (in large t limit) can be calculated as

Ω(1) =1−Ψ(1) =
∑
s0:t

p(s0:t)δ[su, su−1]

=
∑
s0:t

p(s0:t)
∏
i

1 + si,usi,u−1

2
. (S7.11)

The configurational average of the proportion is

[
Ω(1)

]
J,τ

=

(
1 + q

2

)N
. (S7.12)

That is, for q = 1 (e.g., ∆J = 0 and β →∞), the system will display only static patterns.

The proportion of 2-periodic patterns can be calculated as

Ω(2) =Ψ(1) −Ψ(2) =
∑
s0:t

p(s0:t)δ[su, su−2](1− δ[su, su−1])

=
∑
s0:t

p(s0:t)
∏
i

1 + si,usi,u−2

2

(
1−

∏
i

1 + si,usi,u−1

2

)
, (S7.13)

[
Ω(2)

]
J,τ

=2−N

(
(1 + q)N −

(
1 + 3q

2

)N)
=
[
Ω(1)

]
J,τ

(
1−

(
1 + 3q

2 + 2q

)N)
. (S7.14)
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FIG. S5. Correlated activity in the configurational average, captured by spin covariances q−m2. We observe that spins become
independent both in the disordered phase and in the deep ordered phase.

Similarly, the proportion of 3-periodic patterns is

Ω(3) = Ψ(2) −Ψ(3) =
∑
s0:t

p(s0:t)δ[su, su−3](1− δ[su, su−1])(1− δ[su, su−2]))

=
∑
s0:t

p(s0:t)
∏
i

1 + si,usi,u−3

2

(
1−

∏
i

1 + si,usi,u−1

2

)(
1−

∏
i

1 + si,usi,u−2

2

)
, (S7.15)

[
Ω(3)

]
J,τ

= 2−N

(
(1 + q)N − 2

(
1 + 3q

2

)N
+

(
1 + 6q + ρ(3)

4

)N)

=
[
Ω(1)

]
J,τ

(
1− 2

(
1 + 3q

2 + 2q

)N
+

(
1 + 6q + ρ(3)

4 + 4q

)N)
, (S7.16)

where ρ
(3)
t = [〈si,usi,u−1si,u−2〉], which can be calculated as a three-dimensional Gaussian integral

ρ(3)
u =

1

N

∑
i

∫
p(ξ)

3∏
τ=0

tanh
[
βhi,u−τ (ξu−τ )

]
. (S7.17)

S7.2. Expected cycle length in the disordered and deep-ordered phases

As shown in Fig. S5, the system in steady state exhibits uncorrelated dynamics across the time steps (q−m2 = 0)
at the disordered phase (∆J(β) > ∆Jc(β)) and at the limit of β → ∞ in the ordered phase (∆J(β) < ∆Jc(β)).
We call the latter the deep ordered phase. For the uncorrelated dynamics, the configurational averages of spins in
Eq. S7.10 are given by the product of m, which results in

[
∆(n)

]
J,τ

=
1

2nN

(
n∑
k=0

(
n

k

)(
1 + (−1)k

2
mk +

1− (−1)k

2
mk+1

))N

=
1

2nN

(
1

2
((1 +m)n + (1−m)n +m(1 +m)n −m(1−m)n)

)N
=

1

2(n+1)N

(
(1 +m)n+1 + (1−m)n+1

)N
. (S7.18)

In the following, we provide the configurational average of the proportion for the disordered and deep-ordered phases.
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a. Disordered phase

In the disordered phase, the mean activation rate is m = 0. This results in
[
∆(n)

]
= 2−nN . Hence we obtain

[
Ψ(n)

]
J,τ

=

n∑
k=0

(
n

k

)
(−1)k2−kN =

(
1− 2−N

)n
, (S7.19)

by using the binomial expansion formula. The configurational average of the proportion is computed as[
Ω(n)

]
J,τ

=2−N
(
1− 2−N

)n−1 ≈ λ exp [(1− n)λ] , (S7.20)

where λ = 2−N . The proportion of the longer cycle length exponentially decays with the rate 2−N , and the average
cycle length is given by 1/λ = 2N . Namely, ∑

n

n
[
Ω(n)

]
J,τ

= 2N , (S7.21)

which is the number of possible patterns.

b. Deep ordered phase

In the deep ordered phase, m is positive. We expect (1 + m)n+1 � (1 −m)n+1 for sufficiently large m (m ∼ 1).
Under this condition, Eq. S7.18 is approximated as

[
∆(n)

]
J,τ

=

(
1 +m

2

)(n+1)N
(

1 +

(
1−m
1 +m

)n+1
)N
≈
(

1 +m

2

)(n+1)N

. (S7.22)

Therefore, we obtain

[
Ψ(n)

]
J,τ
≈Z−1

(
1 +m

2

)N n∑
k=0

(
n

k

)
(−1)k

(
1 +m

2

)kN
=

(
1−

(
1 +m

2

)N)n
, (S7.23)

by the binomial expansion formula. Here, we have introduced Z =
∑n
k=0

(
n
k

) [
∆(k)

]
as a normalization factor to

compensate for approximation errors and ensure the consistency condition
∑
n

[
Ψ(n)

]
= 1 (which also guarantees by

definition
∑
n

[
Ω(n)

]
= 1). Using this expression, we can compute the probabilities

[
Ω(n)

]
of pattern lengths as

[
Ω(n)

]
≈
((

1 +m

2

)N (
1−

(
1 +m

2

)N)n−1

≈ λ exp [(1− n)λ] , (S7.24)

where

λ =

(
1 +m

2

)N
. (S7.25)

The last step is the exponential approximation of the geometric distribution guaranteed for a large N . In this case,
the average pattern length is

∑
n

n
[
Ω(n)

]
≈ 1

λ
=

(
2

1 +m

)N
. (S7.26)

The result reveals that the average pattern length grows exponentially with the system size N , and the growth rate
becomes slower as m increases.

We note that the result for the deep ordered phase includes the result of disordered phase: inserting m = 0 yields
λ = 2−N and the average pattern length 1/λ = 2N , which we found at the disordered phase.
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