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Supplementary Notes41

Characterization of the ML-WSe2/graphene heterostructure42

Raman measurements were carried out at room temperature using a 532 nm laser with a power of 143

mW and a spot size of 5 to 10 µm. As shown in Supplementary Fig. 1a, ML-WSe2 is confirmed by44

an intense peak at 250 cm−1 which comes from essentially degenerate A1g and E2g lattice vibration45

modes1, 2. Photoluminescence (PL) measurements are performed using another system with a 53246

nm excitation laser, power of 1 mW and spot size of 1 µm at room temperature. In Supplementary47

Fig. 1b, ML-WSe2 on graphene presents two weak PL peaks (778 nm and 914 nm) only slightly48

above the background. The peak at 778 nm is close in energy to the A-exciton transition energy3, 4.49

The origin of the peak at higher wavelength is unknown, and may come from the existence of50

in-gap defect states. The weakness of the PL signals is consistent with the quenching of PL known51

to occur for ML-TMDCs adjacent to graphene5.52

The sample is protected by the Se capping layer before sending to our lab. After introducing53

the sample into our ultrahigh vacuum (UHV) photoemission end-station, we have annealed the54

sample for 15 minutes at 400◦C through direct current heating to remove the Se capping. After55

annealing, we recorded a low energy electron diffraction (LEED) pattern with the incident beam56

energy of 95 eV, to verify the surface cleanliness and ordering (Supplementary Fig. 1c). The six57

outer sharp LEED spots come from the bottom ML graphene layer (yellow box) and the inner six58

arc-shaped diffraction spots originate from the top ML-WSe2 layer (red box). The occurrence of a59

well-oriented hexagonal pattern of WSe2 spots aligned to the graphene pattern attests the epitaxial60
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nature of our heterostructure and single-domain lattice orientation. A certain level of strain-induced61

misalignment between nanoislands of WSe2 with respect to the graphene layer is evident from the62

azimuthal widths of the diffraction spots.63

Our sample exhibits areas without WSe2, since the top WSe2 layer consists of spatially64

uniform small islands with some distance between the islands. However, the relevant processes65

discussed in our manuscript, i.e., both interlayer hot electron injection with 1.2 eV pump and66

Meitner-Auger type interlayer energy transfer with 1.55 eV pump, are based on the photoemission67

signals from the heterostructure, but will not occur at an isolated graphene or WSe2 layer. For68

example, the observation of the excited state population at WSe2 with below-bandgap excitation69

is not possible for an isolated monolayer WSe2. With near-resonant pump, the deep-lying holes70

would not be excited in a pure graphene sample. Therefore, the signal discussed in our work is71

based on the heterostructure area.72

Additionally, the doping level of epitaxial graphene is different from the pristine graphene73

without WSe2. We discuss possible reasons for this observation: static charge (electron) transfer74

from graphene to WSe2, or the decrease of electrons at the graphene/SiC interface with W or Se75

intercalation as the referee suggested. In the latter case that a substantial part of the Se or W76

elements is intercalated below the graphene layer, the intensity of the diffraction pattern of SiC,77

i.e., 6×6 spots around the graphene (10) and diamond-shape distributed spots around
√

3 ×
√

378

SiC, would be dramatically reduced. As we observed a clear SiC pattern in our LEED image79

(Supplementary Fig.1c), this scenario seems unlikely. Second, we would expect graphene bilayer80
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growth with Se or W intercalation, which is also not observed. Finally, there is no core level81

energy shift of SiC peaks after the growth of WSe2
6, which demonstrates the band alignment at82

the graphene/SiC interface (band bending of p-n junction) is not influenced by the top layer. These83

observations rule out a significant contribution of W or Se intercalation to the graphene’s doping84

level. Therefore, we conclude on a static charge transfer from graphene to WSe2 is the major85

contribution to the modification of the doping of graphene.86

87

Supplementary Fig. 1: Optical characteristics and surface analysis of the heterostructure88

sample. a, Raman measurement of ML-WSe2/graphene (Gr) at room temperature. An89

intense peak at 250 cm−1 belongs to ML-WSe2, whereas other peaks belong to the Gr/SiC90

substrate. b, Photoluminescence measurement of the ML-WSe2/Gr heterostructure. The91

peak originating from the A-exciton of ML-WSe2 is marked with the dashed red line. c,92

LEED pattern of the ML-WSe2/Gr heterostructure at 95 eV after annealing.93

Delayed population rises at KWSe2 and QWSe2 with the below-bandgap excitation94

Upon 1.2 eV excitation, the time trace at the KGr points shown in Fig.2f is by fitting with a95
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single exponential decay function convolved with the instrument response function (IRF), I(t) =96

H(t− t0)× (A · exp(−(t− t0)/τ) +C)⊗ IRF. Here, H(t) is the Heaviside step function, IRF is97

Gaussian envelope function, A is the amplitude and C is the offset. In contrast, as the KWSe2 and98

QWSe2 valleys are populated by interlayer charge transfer (ICT) processes, the corresponding time99

traces are fitted with an exponential growth function to describe the ICT process adding with a100

single exponential decay for relaxation. The delayed population rise between graphene and WSe2,101

∆t = 51 ± 9 fs, is obtained by taking the time difference between the peak at KGr and the time102

delay when the population at the KWSe2 valley reaches its maximum.103

Exclusion of two/multiple-photon absorption in WSe2104

Upon 1.2 eV excitation, we could rule out the two/multiple-photon absorption of WSe2 based105

on three experimental observations. First, we find no excited state population of WSe2 in the energy106

range higher than the conduction band minimum from 1.0 to 2.5 eV as shown in Supplementary107

Fig.2a. The valence band maximum of WSe2 is identified at E − EF = −1.1 eV by the EDC108

analysis in Fig.3d (main text). In the scenario of two-photon absorption, the photo-induced carriers109

would be directly populated atE−EF = 1.3 eV. This direct optical excitation is not observed in our110

measurement. The three-photon absorption, corresponding to the excitation at E − EF = 2.5 eV,111

is more difficult to happen and is neither observed. Second, the delayed population rise in KWSe2112

and QWSe2 valleys compared to the rise of hot carriers in graphene, as shown in Fig.2f (main text),113

is strong evidence of the absence of the direct optical excitation in WSe2. The hot carrier rise in114

graphene demonstrates the arrival of the pump pulse. However, the excited-state population of the115
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WSe2 layer appears ∼50 fs after the pump excitation. Finally, by integrating the photoemission116

intensity, we present the population dynamics of electron (ROI1 in Supplementary Fig.2a) and hole117

components (ROI2 in Supplementary Fig.2a) in WSe2 upon 1.2 eV excitation. Different from the118

hot electron dynamics (blue curve in Supplementary Fig.2b), the intensity of holes (red curve in119

Supplementary Fig.2b) stays constant without any signature of optical excitation. The absence120

of hole dynamics could also be explained by an ultrafast interlayer hole transfer on a time scale121

much shorter than our temporal resolution. However, combined with the first two observations,122

we exclude the occurrence of two/multiple photon absorption. With near-resonant excitation, the123

two-photon absorption is also excluded since no excited-state population is found at E−EF = 2.0124

eV, which corresponds to the energy of excited-state electrons by absorbing two pump photons.125

126

Supplementary Fig. 2: Carrier dynamics upon the below-bandgap excitation a,127

Two dimensional energy-momentum cut with 1.2 eV pump. b, By integrating the photoemission128

intensity in ROI1 and ROI2 in a, the population dynamics of electrons (blue curve) and129
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holes (red curve) are extracted, respectively. The conduction band of WSe2 is filled130

via interlayer hot electron injection. The population of holes stay constant without the131

signature of optical excitation. The time traces are normalized to total photoemission132

intensity at negative time.133

Identification of the Fermi level and distribution of excited-state carriers at KWSe2134

In both experiments, the energy axis calibration has been performed using the position of the Fermi135

level of graphene, which is obtained from the energy distribution curve (EDC) at the Dirac point136

of graphene (Supplementary Fig. 3a and d). Before optical excitation, the EDCs at the KGr point137

(Supplementary Fig. 3b,e) are fitted with a Fermi-Dirac distribution function at 300 K convolved138

with the IRF (∼150 meV FWHM) determined by the energy resolution of the spectrometer and the139

bandwidth of the probe pulses7. The chemical potentials are set to be zero for both experimental140

conditions to remove the XUV-probe-induced space charging effect in each measurement. The141

EDCs in Supplementary Fig. 3b,e are integrated over a momentum window, ∆k = 0.1 Å
−1

and142

selected at negative time delay. Based on the energy reference obtained from the Fermi level fits,143

the energy positions of the conduction band minima at the KWSe2 point can be obtained from EDCs144

showing the excited state carrier distributions of WSe2 upon resonant and off-resonant excitation145

as displayed in Supplementary Fig. 3c and f, respectively. The photoemission intensity has been146

normalized by the total electron count of the spectrum. The energy difference of the carrier147

distribution, more specifically, the smaller kinetic energy of excited carriers with 1.55 eV pump,148

arises from the exciton formation upon the resonant excitation. By fitting with a single Gaussian149
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lineshape on top of a empirical second-order polynomial background, the energies of excited-state150

carriers are extracted as 0.63 eV upon the resonant A-exciton excitation (Supplementary Fig. 3c)151

and 0.73 eV upon the below-bandgap excitation (Supplementary Fig. 3f). The background has152

been removed in the main text (side figures in Fig.3a-b).153

154

Supplementary Fig. 3: Fermi level calibration. a,d, The 2D photoemission intensity155

spectra as a function of energy and momentum at time zero with 1.55 eV and 1.2 eV156

pump, respectively. b,e, EDCs of KGr at negative time delay fitted with a Fermi-Dirac157

distribution convolved with the energy IRF for 1.55 eV and 1.2 eV pump, respectively. The158

chemical potentials are aligned to zero by rigidly shifting the energy axis in both cases.159

c, f EDCs at KWSe2 integrated within the first 100 fs obtained with 1.55 eV and 1.2 eV160

pump, respectively. The dashed lines represent the center of the excited-state carrier161

distributions extracted by a fitting procedure (see text).162
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Identification of the Dirac point energy163

To identify the energy position of the Dirac point, we selected an energy-ky cut (∆t < 0 fs)164

at Dirac point and along the green dashed line in Supplementary Fig. 4a. The small titling angle165

allows us to see both valence bands clearly in Supplementary Fig. 4b. We track the graphene166

valence band dispersion by fitting the momentum distribution curves of occupied bands with two167

Voigt lineshape functions. Then, each graphene valence band is fitted to a linear dispersion and the168

Dirac point is estimated at the intersection of two lines (red and black),E−EF = −0.10±0.05 eV,169

in a reasonable agreement with the previous characterization of similar heterostructures6. This170

energy/momentum cut is different than the one presented in the main text (Fig.3) along the Γ-K171

direction, which is featured by the suppression of one side of the cone due to photoemission matrix172

element effects (sublattice interference)8. In the main text, we choose this cut direction because it173

allows us to clearly resolve the excited state dynamics from both layers.174

175
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Supplementary Fig. 4: Experimental determination of the Dirac energy. a, 2D176

momentum distribution map I(kx, ky) at E −EF = −0.2 eV and E −EF = −1.3 eV. At the177

boundary of the Brillouin zone, it shows the quasi-triangular-shaped π band of graphene.178

b, Energy/momentum cut I(E, k) along the green dash line in a showing the conical band179

dispersion of graphene. Red and black markers indicate the band positions extracted180

from momentum distribution curve fits. Lines are linear fits of the band positions, yielding181

the energy position of the Dirac point of ED = −0.1± 0.05 eV.182

Identification of the Fermi velocity183

The Fermi velocity along Γ-K direction is extracted as vF = (1.8±0.1)·106 m/s as shown in184

Supplementary Fig. 5 using the same band dispersion tracking method in the above paragraph. The185

energy/momentum spectrum is selected at negative time delay (∆t < 0 fs). The Fermi velocities186

in the direction perpendicular to Γ-K with a slightly tilting angle (Supplementary Fig. 4b) are187

vF = (1.1± 0.1) · 106 m/s (red) and vF = (1.5± 0.1) · 106 m/s (black), respectively. The Fermi188

velocity of graphene has been found to to be in the range of 1 · 106 to 3 · 106 m/s, depending on189

the dielectric constant of the environment9. For epitaxially grown heterostructures, the dielectric190

constant of the embedding graphene layer between the bottom substrate and top TMDC layer191

could be modified by the coverage sizes of TMDC layer and substrate material, as the dielectric192

constant is determined by ε = (εtop+εsubstrate)/2. At the same time, the Fermi velocity is also193

sensitive to the graphene’s doping level10. We would like to note that because of the steep band194

dispersion of the graphene band, the momentum of transiently excited intraband electron-hole pairs195
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is small. Therefore, it requires a relative small excitonic COM momentum Q to fulfill energy and196

momentum conservation, which favors the IET process.197

198

Supplementary Fig. 5: Experimental determination of the Fermi velocity. The199

energy/momentum cut I(E, k) along Γ-K direction with band positions (red markers) and200

the linear fit of the band dispersion (red line).201

The near-unity efficiency of IET202

To estimate the efficiency of energy transfer, we performed the same measurement (1.55 eV203

excitation) on bare ML-WSe2, which is prepared by scotch-tape exfoliation and transferred on204

top of thin hexagonal boron nitrid (hBN) with conductive TiO2 substrate (Supplementary Fig. 6a).205

The efficiency of the energy transfer process is commonly defined by the lifetime of the ’donor’206

material (here WSe2) with and without the ’acceptor’ material (here graphene) as: ηET = (τML −207

τhetero)/τML, where τML represents the exciton lifetime of the bare ML-WSe2 and τhetero is the208
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exciton lifetime in the WSe2/graphene heterostructure. The excited-state population dynamics at209

the KWSe2 valley within each system are presented in Supplementary Fig. 6b. The lifetimes of210

the ML sample τML = 1616 ± 345 fs is extracted by fitting with an exponential decay function211

convolved with the IRF. The exciton lifetime of the heterostructure τhetero = 67±7 fs is obtained by212

solving the system of rate equations as described in the main text. Thus, we obtain for the interlayer213

energy transfer efficiency, ηET = 96± 1%. This near-unity transfer efficiency is supported by the214

underlying conservation of energy and momentum. We note that the different sample fabrication215

methods of the bare ML and heterostructure may have influence on the exciton lifetime. However,216

picosecond to sub-nanosecond exciton lifetimes in ML samples, consistent with our observations,217

have been reported for samples fabricated with various methods11, 12. Therefore, we believe that the218

comparison with the exciton lifetimes in the bare ML WSe2 sample provides a reasonable estimate219

of the transfer efficiency.220

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.2

0.4

0.6

0.8

1.0

In
te

n
si

ty
 (

n
or

m
.)

Time delay (ps)

heterostructure
bare ML WSe2

ba

ML WSe2

thin film hBN

Nb:TiO2

221

Supplementary Fig. 6: Estimation of the IET efficiency. a, Schematic of the bare222

ML-WSe2 sample (blue slab) with the bottom hBN layer (yellow) mounted on a Nb:TiO2223
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substrate (grey). b, Time traces of the excited-state carriers at the KWSe2 valleys of the224

bare ML sample (black) and heterostructure (red) sample, respectively.225

Valence bands shifting and broadening effects226

After photoexcitation, we observe shifting and broadening effects of the WSe2 valence band as227

shown in the 2D difference spectrum (Fig. 3c) and EDCs at KWSe2 (Fig. 3d). To extract the transient228

lineshape, we fit the EDC of the top two VBs (VB1 and VB2) with two Gaussian functions on229

top of an empirical second-order polynomial background (BG), I(E) = A1 · exp(− (E−E1)2

2ω2
1

) +230

A2 · exp(− (E−E2)2

2ω2
2

) + BG, where E1, E2 are peak positions and ω1, ω2 are the peak width.231

Supplementary Fig. 7a-d present representative fitting results at four time delays, ∆t < 0 fs,232

∆t = 0 fs, ∆t = 200 fs and ∆t = 1000 fs. Because of the large spectral overlap between VB1 and233

VB2, the fitting is performed with the same shifting, ∆E1(t) = ∆E2(t), and broadening parameter234

, ∆ω1(t) = ∆ω2(t), for the two peak functions, assuming the VBs respond to the interfacial235

coupling and the excitation-induced modification in the same way. The extracted time dependent236

peak shift and linewidth parameter are shown in Supplementary Fig. 7e and f, respectively. The237

error bars are confidence interval of the band fitting process. The band shifting reflects the electronic238

band gap renormalization due to the ICT-induced hot electrons13, 14. Thus, a relative time delay can239

be observed compared with the excited-state population dynamics in the conduction bands. In240

contrast, the linewidth is a measure of the photohole self-energy, which depends on the many-body241

interactions with photoexcited carriers and phonons15. It follows more closely the transient of242

overall excited carriers in the system (grey dashed curve in Supplementary Fig. 7f).243
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244

Supplementary Fig. 7: Transient lineshape of the valence bands of WSe2. a-d,245

The EDCs at the KWSe2 valley present the spectral features of the first two valence bands246

at selected time delays, ∆t < 0 fs, ∆t = 0 fs, ∆t = 200 fs and ∆t = 1000 fs. The EDCs247

are fitted with two Gaussian functions describing VB1 (green dashed curve) VB2 (blue248

dashed curve). The second-order polynomial background is shown as yellow dashed249
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lines. e, Transient peak position of VB1 (green). f Peak linewidth both of VBs as function250

of time (yellow). The population dynamic of excited-states in the WSe2 conduction band251

(grey) is shown in e-f as a reference. The error bars are confidence interval of band fitting.252

253

Meitner-Auger type IET-induced hot electrons near the Fermi level254

The Meitner-Auger-like interlayer energy transfer involves an intraband excitation of the255

deep-lying valence electrons to the photo-generated hot holes below the Fermi level. We observe256

the deep-lying hot holes, as shown in Fig.3e(main text). However, to separate the contribution257

of Meitner-Auger IET induced electrons from the photo-generated hot holes of graphene near258

the Fermi level requires an accurate description of the intrinsic energy-momentum dynamics in the259

graphene layer. The carrier dynamics in graphene after photoexcitation include multiple contributions:260

intraband carrier-carrier scattering, interband Auger heating, phonon-mediated cooling, and Auger261

recombination. These components contribute to the energy-dependent dynamics along the graphene262

bands16, 17. This is particularly important for states close to the Fermi level, which are subject to hot263

carrier accumulation from the highly excited states, carrier redistribution due to the thermalization,264

and carrier annihilation via Auger recombination. Together with the complication of interlayer265

charge and energy transfer, it is very challenging to quantitatively disentangle these dynamics with266

our current energy and time resolution.267

Although a quantitative separation of the IET-induced electrons from the photo-generated268

hot holes remains difficult, some information can be gained from the energy distribution of hot269
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carriers below and above the Fermi level in Fig.3e. In particular, comparing the near-resonant270

and below-bandgap excitation conditions proves insightful. The ratio of the relative intensity271

increase above the Fermi level (E − EF = 0 − 1 eV, red area) to the signal depletion below272

EF (E − EF = −1 − 0 eV, blue area), Ael/Ah can be regarded as a measure of the electron-273

hole imbalance in the system, and we find a significantly stronger imbalance Ael/Ah = 1.6 for274

near-resonate excitation, compared to Ael/Ah = 1.1 for below-bandgap excitation. This supports275

the occurrence of MA-type IET process. Compared with the almost identical spectral weights276

of electrons and holes using below-bandgap excitation, the unequal spectral areas with the 1.55277

eV pump demonstrate the carrier redistribution due to the strong interlayer interactions. While278

we would like to note that the spectral intensities are subject to photoemission matrix elements,279

therefore cannot be directly interpreted as electron and hole occupations. These probe-related280

effects can be reasonably assumed to be identical for the two excitation conditions, thus not281

affecting our conclusions.282

Pump fluence dependent Meitner-Auger interlayer energy transfer283

The pump fluence plays an important role on the MA-type IET process, because of the deep-284

lying valence electrons are excited to the photo-generated hot holes. The high pump fluence285

generates large density of hot holes, i.e., more vacancies for IET-induced intraband transition,286

which benefits the MA-type interlayer coupling. On the other hand, the weak pump fluence would287

suppress the MA-type IET process with the reduced photo-generated hole density. To check this288

effect, we perform the same measurement with the near-resonant excitation (1.55 eV) but weak289
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pump fluence, F = 0.9 mJ/cm2, around half of the pump fluence applied in the manuscript,290

F = 1.7 mJ/cm2. We find the decreased intensity of the deep-lying hole population, as shown291

in the Supplementary Fig.8. From the energy distribution curve (EDC) of graphene band with the292

weak pump fluence (blue curve), a depletion signal around E −EF = −1.8 eV could be observed293

but weaker than that with the high pump fluence.294

295

Supplementary Fig. 8: Pump fluence dependent Meitner-Auger interlayer energy296

transfer. The momentum-integrated spectrum of the graphene band when pumping with297

a weak pump fluence (blue). The EDC of graphene with the high pump fluence (black;298

applied in the main text) is also shown as a comparison.299

Doping level dependence of interlayer energy transfer process300

As we discussed in the main text, the optical excitation prepares the hot holes near the Fermi301

level, which enables the intraband transition under the mechanism of Meitner-Auger-type IET. The302

doping level of graphene plays an essential role in the energy position of the photo-generated hot303

holes, therefore, influencing the MA-type IET. To clarify the influence of the doping level, we304

calculate the Meitner-Auger type transfer rate by increasing the Fermi energy to EF = 0.2 eV. As305
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shown in Supplementary Fig.9a, a dramatically suppression of the Meitner-Auger IET is observed306

with the transfer rate on the order of 0.06 · 10−3 meV, much smaller than that of 3 meV based307

on our real sample system. Compared with the Förster-type coupling (Supplementary Fig.9c), the308

maximum of the transfer rate is even larger than that of the MA-type coupling.309

However, we would like to note that MA-type IET could also happen in the conduction310

bands with the n-doped graphene composition. The natural doping in the graphene layer provides311

electrons in the conduction band, below the Fermi level and above the Dirac point. After compensating312

with the photo-generated hot holes near the Fermi level, the net electron population could be313

excited to highly excited states via the MA-type IET process. By adding the equation of motion314

for the conduction band electron occupation, we find a rate of the MA transfer in the conduction315

band as follows.316

ΓQ = |WQ|2
4

~vF

(
Q− EQ

~vF

)(
f c
Q−

EQ
~vF

− f cQ
)
θ

(
Q− EQ

~vF

)
(1)

with f ck = (exp(~vF |k|−µ)/kBT )+1)−1 and chemical potential µ. It is similar to the transfer rate317

in the valence band (details see section ’Meitner-Auger-like energy transfer’), but with the electron318

occupation f ck in the conduction band.319

As shown in Supplementary Fig.9b. the maximum transfer rate reaches 1.6 meV. Therefore,320

although the Förster-type IET is faster than the intraband transition in the valence band, the MA-321

type IET in the conduction band is the dominant process with highly n-doped graphene. All the322
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calculations are performed at room temperature.323
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Supplementary Fig. 9: Energy transfer rate of a heretostructure with the highly325

n-doped graphene. a-b, The calculated Meitner-Auger transfer rate with EF = 0.2 eV326

in the valence band and conduction band, respectively. c, The calculated Förster-type327

transfer rate in the same condition.328

Band structure visualization with contrast-enhancement329

Fig.1b in the main text shows the three-dimensional data in an artistic isometric representation.330

The data shown in Fig.2a-d were treated with a contrast-enhancing algorithm to emphasize the331

band dispersion. The underlying dataset is the same for all these figures. In Fig.1b, we present332

the original photoemission spectrum showing the 3D band structure of the heterostructure. The333

linearly dispersing valence bands of graphene are emphasized by blue lines. The high symmetry334

points KGr are clearly visible in the iso-energy map shown in the top. Here, we would like to335

emphasize that due to the isometric representation, it might appear as though the ΓWSe2 point336

is energetically higher than the KWSe2 point. To illustrate this and the effect of the contrast337

enhancing algorithm employed for the data shown in Fig.2, Supplementary Fig.10 shows the338

energy-momentum cut of the original data at a negative time delay of ∆t = −400 fs represented as339
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Fig.2a in the main text with and without the contrast enhancement. Due to matrix element effects,340

the photoemission intensity is inhomogeneously distributed across the Brillouin zone (Supplementary341

Fig.10a), making it difficult to visualize the band structure. Therefore, we reduced the intensity342

modulation in band dispersion by using a multidimensional extension of the contrast limited343

adaptive histogram equalization (MCLAHE) algorithm18, 19. The MCLAHE algorithm adjusts the344

local image contrast, decreasing the intensity inhomogeneities without changing the band structure.345

The contrast-enhanced band mapping provides better visualization of the band structure, as shown346

in Supplementary Fig.10b. With the contrast-enhancement, both sides of the valence bands of347

graphene are visible in Fig.2a-d.348

Meanwhile, we show energy distribution curves (EDCs) at both high symmetry points in349

Supplementary Fig.10a in the left panel, to clarify the valence band offset between the ΓWSe2 and350

the KWSe2 point. By fitting the EDCs with Gaussian shape functions on top of an empirical second-351

order polynomial background, the peak position of the top valence band at KWSe2 is obtained at352

E − EF = −1.1 eV, higher than that at ΓWSe2 with the energy of E − EF = −1.55 eV. The353

valence band maximum at the KWSe2 valley confirms the monolayer thickness of the WSe2 layer, as354

predicted by theoretical calculations20, 21 and observed in the previous ARPES measurements22, 23.355

As mentioned above, the 3D band structure surface in Fig.1b was quarter cut open and titled356

forward to show the band dispersion inside the Brillouin zone in an isometric representation. This357

perspective drawing and the relatively intense photoemission signal at the ΓWSe2 point may have358

caused the confusion about the energy offset between ΓWSe2 and KWSe2 .359
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360

361

Supplementary Fig. 10: Contrast-enhanced band structure. a, The energy-momentum362

cut of the original photoemission signal at a negative time delay. The EDCs of the valence363

bands at ΓWSe2 and KWSe2 are shown in the left panel figures, respectively. The energy364

positions of valence band maxima are emphasized with dashed black lines. b, The365

contrast-enhanced band structure from the original data.366
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Supplementary Methods367

Characteristics of pump beams368

In this work, we use two different pump beams which wavelengths are centred at 800 nm369

and 1030 nm, respectively (Supplementary Fig. 11). The pulse duration of 1030nm pump line is370

∼ 200 fs FWHM, while the transform-limited pulse duration of 800 nm pump is ∼ 35 fs FWHM.371

In the measurement, the pump fluence of 800 nm is F800 = 1.7 mJ/cm2 and that of 1030 nm372

is F1030 = 5.3 mJ/cm2, with the consideration of effective pump-probe overlap profile based373

on the formula, a = 1
π(ω2

pump+ω2
probe)

, in the work of Harb et al24. The beam size of the pump is374

ωpump = 248 ± 20 µm and that of probe pulse is ωprobe = 80 ± 5 µm. Here, ωpump and ωprobe are375

the respective beam widths of the pump and probe beams.376

377

Supplementary Fig. 11: Pump spectra. Excitation spectra of the two light sources378

used for pumping as a function of wavelength.379
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Separating the interlayer charge and energy transfer by a rate equation model380

As discussed in the main text, we observed the photoemission signatures of both ICT and IET381

upon resonant A-exciton excitation. To extract the corresponding transfer rates, ΓICT and ΓIET ,382

we develop a multi-state coupled rate equation model describing the interlayer charge and energy383

flow, as well as the hot carrier relaxations. In Fig.4a, the time trace of hot carriers in the CBM384

of WSe2 (black curve) includes the dynamics of photo-generated excitons N ex
T and ICT-induced385

quasi-free electrons N el
T . The VB1 shifting (green curve in Fig.4a) mainly reflects the dynamic386

of N el
T . Therefore, it provides the possibility to disentangle the dynamics of these two kinds of387

quasiparticles. Here, subscript T represents TMDC. Simultaneously, the deep valence band holes388

in graphene Nh
Gr are populated by the IET process and recombine with the rate Γh, as shown in389

Fig.4b. Finally, the dynamics of hot electrons in graphene N el
Gr contains the ICT-induced charge390

flow (input and output towards WSe2) and a decay process with the rate of Γel. With these391

considerations, the complete dynamics across the interface can be described with the following392

set of coupled rate equations:393

Ṅ ex
T = −ΓIETN

ex
T + S(t) (2)

Ṅ el
T = −ΓICTN

el
T + ΓICTN

el
Gr (3)

Ṅ el
Gr = +ΓICTN

el
T − ΓICTN

el
Gr − ΓelN

el
Gr + S(t) (4)

Ṅh
Gr = −ΓhN

h
Gr + ΓIETN

ex
T (5)
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Here, S(t) represents the optical excitation as a Gaussian-shaped pump envelope function.394

By numerically solving the system of coupled differential equations, and a global fit of the solution395

to the data, we obtain the IET transfer time τIET = 67 ± 7 fs, and the ICT transfer time τICT =396

118 ± 18 fs (τ = ~/Γ). At the same time, we get the relaxation times of electrons in graphene,397

τ elGr = 84 ± 7 fs, and that of the deep valence holes, τhGr = 7 ± 4 fs. The fitting results are shown398

in Fig.4a and b.399

Microscopic calculation of IET mechanisms400

We perform microscopic calculations of the IET process mediated by the Meitner-Auger, Förster401

and Dexter type mechanisms.402

Meitner-Auger-like energy transfer A schematic illustration of the Meitner-Auger type (MA)403

interlayer transfer is depicted in the main text in Fig.4f. Here, an exciton in the TMDC recombines404

non-radiatively; its energy excites an electron deep in the valence band of graphene to states close405

to the Dirac point but in the valence band.406

Starting point for the calculation of the MA-type interlayer coupling is the Hamiltonian407

HF =
∑

k,q,k′,q′,λ,λ′,ν,ν′

V λνν′λ′

k,q,q′,k′λ
†
kν
†
qν
′
q′λ′k′ . (6)

As a convention, we use λ(′) as band indices and k(′) as momenta in WSe2 layer and ν(′) as408

band indices and q(′) as momenta in graphene. The appearing matrix element is formally given as409

V λνν′λ′

k,q,q′,k′ =

ˆ
R3

d3r

ˆ
R3

d3r′Ψλ∗
k (r)Ψν∗

q (r′)V (r, r′)Ψν′

q′(r′)Ψλ′

k′(r). (7)
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The band indices in the TMD are restricted to interband transitions λ 6= λ′ but the band indices410

in graphene are taken as the valence band ν = ν ′ = v. The remaining integrals can be evaluated411

within a k·p expansion. Last we introduce exciton operators in WSe2 P
µ
Q =

∑
q ϕ

µ
qc
†
q+ me

mh+me
Qvq− mh

mh+me
Q412

with quantum state µ and COM momentum Q. The final Hamiltonian reads413

H =
∑
k,Q,µ

W µ
QP

†µ
Q v†k−Qvk + h.c. , (8)

with the coupling element414

WQ =
1

e
VQd

cv ·Qϕ∗µ(r = 0). (9)

In the following we restrict ourselves to the lowest bound excitons µ = 1s. From this Hamiltonian415

we calculate the equation of motion for the exciton occupation in the TMD NQ = 〈P †QPQ〉 and416

the electron occupation in the valence band of graphene fk = 〈v†kvk〉 by exploiting Heisenberg417

equation of motion.418

The resulting equations of motion read

∂tNQ =
2π

~
∑
k

|WQ|2 (fk(1− fk−Q)−NQ(fk−Q − fk)) δ(εk − εk−Q − EQ) (10)

∂tfk =
2π

~
∑
Q

|WQ|2 (fk−Q(1− fk)−NQ(fk − fk−Q)) δ(εk−Q − εk − EQ) (11)

+
2π

~
∑
Q

|WQ|2 (NQ(fk−Q − fk)− fk(1− fk−Q)) δ(εk − εk−Q − EQ) (12)

Estimation of the decay rate of WSe2 excitons From the Boltzmann equation we can identify419

the decay rate of WSe2 excitons as420

ΓQ = 8π
∑
k

(fk−Q − fk)δ(εk − εk−Q − EQ), (13)
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where we have added a factor of 4 to account for the valley and spin degree of freedom in graphene.421

Analyzing the Dirac distribution, we find that k accounts for electrons close the Dirac point, and422

k − Q for electrons deep in the valence band. In order to get a simple expression for the decay423

rate, we assume that the electrons close to the Dirac point have much smaller momenta than the424

electrons deep in the valence band, i .e. k� Q and k + Q ≈ Q.425

This way, the Dirac distribution and the k can be evaluated analytically yielding426

ΓQ = |WQ|2
4

~vF

(
Q− EQ

~vF

)(
fQ − fQ− EQ

~vF

)
θ

(
Q− EQ

~vF

)
(14)

The rate depends on the matrix element of the MA transfer, the density of states in graphene and on427

the occupation difference of the involved states in graphene which accounts for the Pauli blocking.428

The heavyside function θ
(
Q− EQ

~vF

)
accounts for the fact, that a minimal momentum is required429

to fulfil the energy and momentum conservation during the intervalley transfer.430

Fig. 4c in the main text illustrates the MA rate of WSe2 excitons to graphene for the photo-431

induced hole vacancies at different energy of µh∗Gr. We adjusted the graphene dispersion to the432

results from the ARPES measurement. From τ = ~/Γ we find scattering times of 270 fs (µh∗Gr =433

−0.3 eV), 210 fs (µh∗Gr = −0.4 eV), and 175 fs (µh∗Gr = −0.5 eV).434

Origin of the finite center-of-mass (COM) momentum The MA mediated IET requires nonzero435

COM momentum of the exciton. For example, the required COM momentum is ∼ 1.3 nm−1
436

as shown in Fig.4c (main text) with µ∗Gr = −0.3 eV, which corresponds to a kinetic energy of437

approximately 100 meV based on the effective mass of the exciton mex = 0.65me.25 Then, where438
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does the energy (momentum) come from? In the following, we discuss the possible origins of439

COM momentum of the exciton which is quantified by the kinetic energy assuming the parabolic440

excitonic band dispersion.441

At room temperature, the mean kinetic energy of the excitons is 25.6 meV which is not442

enough to explain the required energy. Therefore, we calculate the temporal evolution of the443

exciton energy-momentum occupation during the optical pump for detuned excitation26. The444

equation of motion for the excitonic coherence in the rotating frame reads445

Ṗ0(t) =
1

i~
(E0 − ~ωL − iγ)P0(t) + d · E(t), (15)

where the first term accounts for the detuning of the excitonic transition energy E0 from the light

pulse energy ~ωL. γ accounts for the dephasing of the excitonic coherence with contributions from

radiative and exciton phonon coupling27. The last term accounts for the optical excitation with the

dipole element d and the exciting electric field E(t). The equation of motion for the incoherent

exciton occupation reads

ṄQ = ΓFormQ |P0|2 +
∑
K

ΓinQ,KNK −
∑
K

ΓoutQ,KNQ. (16)

The first term accounts for the formation of incoherent exciton occupation from phonon induced446

dephasing from the excitonic coherence. The last two terms account for the thermalization of447

incoherent excitons21. The coupling element of the exciton formation reads448

ΓFormQ =
2

~
∑
±,α

|gQ|2
(

1

2
± 1

2
+ nαQ

)
γ

(EQ − ~ωL ∓ ~Ωα)2 + γ2
. (17)

with the energy ~Ωα
Q and the occupation nαQ of phonons in the branch α with momentum Q. The449

± summation accounts for phonon emission/absorption processes.450
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Supplementary Fig. 12a illustrates the snapshots of the exciton occupation directly at the451

maximum of the pump pulse as a function of kinetic energy with selected detuning pump photon452

energy above the excitonic transition energy. The temperatures are set as room temperature for all453

the calculation. With increasing pump photon energy, the amount of injected excitons decreases454

due to the non-resonant excitation, eq. 15. However, at larger detunings, excitons occupy larger455

energy states due to the excess energy of the pump pulse, which is provided by acoustic and456

optical phonon transitions. The Supplementary Fig. 12b illustrates the exciton occupations but457

normalized to the maximum. Here it is even more obvious that the excitons obtain higher energies458

as the detuning increases. Interesting, for larger detunings two maxima can be observed, where459

the higher one originates from the formation of excitons via acoustic phonon scattering. The lower460

peak originates from the formation of excitons via optical phonon emission but also from relaxation461

of excitons from the higher peak via optical phonon emission.462

Supplementary Fig. 12c illustrates snapshots of the exciton occupation directly at the maximum463

of the pump pulse as a function of kinetic energy for selected detunings below the excitonic464

transition energy. Similar to the previous scenario, the density of injected excitons decreases465

with increasing detuning due to the non-resonant excitation, eq. 15. In Supplementary Fig. 12d,466

the energy-dependent exciton occupations are normalized to their maximum. Interestingly, for467

pumping with larger negative detunings, the exciton distribution broadens such that the relative468

exciton occupation at large kinetic energies increases. The reason is, that for larger detunings469

the Lorentzian in equation 17 flattens which results in higher occupation of hot exciton at large470

energy range. As a consequence, for the near-resonant excitation below the excitonic transition,471
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a substantial amount of excitons is formed at energies above 100 meV which contribute to the472

Meitner-Auger scattering. To conclude, non-resonant excitation of the exciton, both above and473

below the resonance, introduce hot excitons with high kinetic energy, which are subjected to the474

Meitner-Auger IET.475

In our experiment, the pump photon energy is ~νpump = 1.55 eV and the A-exciton transition476

energy isEex = 1.63 eV determined by the energy difference of excited-state particles at CBM and477

VBM. After the photoexcition which prepares the coherent excitons with zero COM momentum478

(Supplementary Fig. 12e), the phonon-assisted dephasing process transfers the coherent excitons479

to incoherent exciton population which gain the finite COM momenta (Supplementary Fig. 12f).480

This dephasing process has been observed by our previous study28. The subsequent thermalization481

of excitons at the excitonic states (Supplementary Fig. 12g) also contribute to the nonzero COM482

momenta which is already included in our calculation.483
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Supplementary Fig. 12: Finite COM momentum of excitons at the KWSe2 valley.485

a, The calculated energy-dependent hot exciton occupation with detuned pump photon486

energy above the resonant excitonic transition energy. b, Normalized hot exciton distributions487

in a. c The hot exciton occupation with detuned pump photon energy below the resonant488

excitonic transition energy and d is the corresponding normalized hot exciton distributions.489
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Schematic illustrations of involved ultrafast dynamics: e, photoexcitation creates the coherent490

exciton. The dash curve represents the coherent excitonic state. f, The phonon-assisted491

dephasing process transfers coherent excitons to incoherent excitons, at the same time,492

increases the COM momentum of excitons. g, The following thermalization also contributes493

to the finite COM momentum.494

Förster coupling To calculate the Förster rate from WSe2 to graphene, we start with the Hamiltonian495

HF =
∑

k,q,k′,q′,λ,λ′,ν,ν′

V λνν′λ′

k,q,q′,k′λ
†
kν
†
qν
′
q′λ′k′ . (18)

As a convention, we use λ(′) as band indices and k(′) as momenta in WSe2 layer and ν(′) as496

band indices and q(′) as momenta in graphene. The appearing matrix element reads497

V λνν′λ′

k,q,q′,k′ =

ˆ
R3

d3r

ˆ
R3

d3r′Ψλ∗
k (r)Ψν∗

q (r′)V (r, r′)Ψν′

q′(r′)Ψλ′

k′(r). (19)

Here, Ψ
λ/ν
k/q account for the electronic Bloch waves in WSe2 and graphene. The appearing Coulomb498

potential shall take into account the dielectric environment of the heterostructure, including the499

WSe2 and graphene layer which are distanced by a gap with dielectric constant εR and width z500

(closely stacked structures have z = 0)29. Additionally we take substrates below and above the501

structure into account.502

We can evaluate the matrix element by Fourier transforming the Coulomb potential and503

calculating the real space integrals within a k · p expansion30. We introduce exciton operators504

in WSe2 P
µ
Q =

∑
q ϕ

µ
qc
†
q+ me

mh+me
Qvq− mh

mh+me
Q with quantum state µ and COM momentum Q as505

33



well as pair operators in graphene Rq
Q = c†

q+ 1
2
Q
vq− 1

2
Q. The Hamiltonian then reads506

HF =
∑
Q,q,µ

F µ
Q(z)P †µQ Rq

Q + h.c. (20)

The appearing coupling element reads507

F µ
Q(z) =

1

e2
√
A
VQ(z)ϕµ(r = 0)Q · dT

cvQ · dvcG (21)

with dvcT the dipole element in WSe2, dvcG the dipole element in graphene, ϕµ(r) the excitonic508

wave function in real space with quantum number µ in WSe2. We restrict our analysis to the lowest509

lying excitons µ = 1s.510

The Förster induced transition rate is given as 31
511

ΓQ(z) = 4π
∑
q

|FQ(z)|2δ
(
Eq

Q − E
1s
Q

)
, (22)

where we have already added a factor of 2 to account for the electron spin in graphene. We512

analytically treat the summation over the delta function, where the area which appears in equation513

(21) cancels. We arrive at514

ΓQ(z) =
|FQ(z)|2AE1s

Q

2~2v2
F

. (23)

vF is the Fermi velocity in graphene. The area A cancels with the area in |FQ(z)|. In a last step515

we average over the angle dependence of |FQ(z)|2, und sum the result over the K and K ′ point in516

graphene, which is already included in the q summation in eq. 22. This way we arive at the final517

expression518

ΓQ(z) =
|VQ(z)|2|ϕ1s(r = 0)|d2

Td
2
GE

1s
QQ

4

8~2v2
F e

2
. (24)
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The Coulomb potential VQ(z) is given as519

VQ(z) =
e2

ε0|Q|εQ(z)
, (25)

where the momentum dependent dielectric function εQ(z) accounts for the dielectric screening520

from the surrounding29. As input parameters, we require the thickness of graphene and WSe2521

layers and their respective dielectric constants. Note, that in the limit of infinitely thin films and a522

uniform background, our results coincides with our previous one21. The required parameters are523

listed in table 1.524

Fig. 4d in the main text illustrates the Förster transfer rate as a function of COM momentum525

and for different WSe2 - graphene distances. For Q = 0 we find a vanishing Förster rate followed526

by a monotonous increase. The large Q behavior is dictated by the interplay of the momentum527

dependence of the Coulomb potential and the factor Q4. For the closest stacking, i.e. 0.0 nm we528

find a peak transition rate of about 0.08 meV.529

Now, we would like to emphasize the difference between MA and Förster transfer theoretically.

The MA and Förster transfer are related and can be derived from the same Hamiltonian since

the physical origin of both mechanisms is the Coulomb interaction between the involved two-

dimensional materials. However, the MA-type IET can be described as monopole-dipole interaction

which is often neglected in the Coulomb potential and different from the dipole-dipole coupling

term corresponding to the Förster-type IET. To illustrate this, we present the detailed derivations of

Dexter, Förster, and MA transfer using a multipole expansion of the Coulomb interaction. We start

from the Coulomb Hamiltonian involving the typical Coulomb matrix element. Here, we use a
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simple Coulomb potential V (r− r′) =
e20

4πε0ε
1

|r−r′| with a constant uniform background. However,

in the manuscript, we use a more complex nonlinear dielectric function valid for the TMDC-

graphene interface and treat it in the momentum space. The Hamiltonian involving all transfer

processes (Förster, Dexter, MA) reads

H =
∑

λ,λ′,ν,ν′

k,k′,q,q′

V λνν′λ′

k,q,q′,k′λ
†
kν
†
qν
′
q′λ′k′ (26)

V λνν′λ′

k,q,q′,k′ =

ˆ
d3r

ˆ
d3r′ Ψ∗λ,k(r)Ψ∗ν,q(r′)V (r− r′)Ψν′,q′(r′)Ψλ′,k′(r) , (27)

where (λ(′),k(′)) stand for graphene quantum numbers and (ν(′),q(′)) for WSe2 quantum numbers.530

We provide now a detailed derivation of all these processes:531

The spatial vector r can be decomposed into a lattice vector Rn pointing to the nth unit cell

and a vector rn defined locally in the nth unit cell: r → rn + Rn. Then the spatial integral is

changed into a sum over all unit cells and an integration over one unit cell. For electronic Bloch

functions of the form Ψλ,k = ξk(r)uλ,k(r), with lattice periodic function uλ,k(r) and envelope

ξk(r), we obtain

V λνν′λ′

k,q,q′,k′ =
∑

Rn,R′
n

ξ∗k(Rn)ξ∗q(R′n)ξq′(R′n)ξk′(Rn)

×
ˆ
UC

d3rn

ˆ
UC

d3r′n u
∗
λ,k(r)u∗ν,q(r′)V (rn − r′n + Rn −R′n)uν′,q′(r′)uλ′,k′(r) . (28)

We assumed that the envelope is spatially constant over one unit cell and exploited the periodicity
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of the functions uλ,k(r). Next, we Taylor expand the Coulomb potential at two points (Rn −R′n):

1

|rn − r′n + Rn −R′n|
=

1

|Rn −R′n|

+
(Rn −R′n)

|Rn −R′n|3
· (r′n − rn)

+
rn · r′n

|Rn −R′n|3
− 3

(r′n · (Rn −R′n))((Rn −R′n) · rn)

|Rn −R′n|5
. (29)

The first line is the zeroth-order and corresponds to monopole-monopole interaction between532

the two parts of the heterostructure. The second line is the monopole-dipole interaction which533

corresponds to an intraband-interband coupling. This term is often neglected in a rotating wave534

approximation when applied to gaped structures, such as a semiconductor heterostructure. However,535

in the case of graphene, this term can not be ignored since the vanishing bandgap allows energetically536

favourite intraband transitions (if not Pauli-blocked). Here, a coupling of intraband excitation in537

graphene and excitons in TMDCs can occur. A typical effect is carrier multiplication32, 33. In our538

study, we include this term which gives rise to the MA coupling, as a monopole (graphene)-dipole539

(TMDC) interaction. The last line, appearing in the first order of both arguments rn, r′n, constitutes540

the typical dipole-dipole interaction coupling (Förster-type transfer).541

Coming back to the Hamiltonian and inserting the last line of Taylor expansion (Eq. (29))

into Eq. (28), we obtain the Förster-type coupling,

V λνν̄λ̄
k,q,q′,k′ =

1

4πε0ε

∑
Rn,R′

n

ξ∗k(Rn)ξ∗q(R′n)ξq′(R′n)ξk′(Rn)

×

(
dλλ̄k,k′ · dνν̄q,q′

|Rn −R′n|3
− 3

dλλ̄k,k′ · (Rn −R′n)dνν̄q,q′(Rn −R′n)

|Rn −R′n|5

)
(30)

with the dipole matrix elements of both materials defined as dλλ̄k,k′ = e0

´
UC

d3r u∗λ,k(r)ruλ̄,k′(r)542
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where λ̄ 6= λ. As explicitly expressed, the Förster-type transfer is referred to as a dipole-dipole543

coupling.544

Next, we insert the second line of Eq. (29) into Eq. (28) to investigate the MA-type coupling:

V λνν′λ′

k,q,q′,k′ =
e2

0

4πε0ε

∑
Rn,R′

n

ξ∗k(Rn)ξ∗q(R′n)ξq′(R′n)ξk′(Rn)
(Rn −R′n)

|Rn −R′n|3

×
(ˆ

UC

d3rn u
∗
λ,k(rn)uλ′,k′(rn)

ˆ
UC

d3r′n u
∗
ν,q(r′n)r′nuν′,q(r′n)

−
ˆ
UC

d3rn u
∗
λ,k(rn)rnuλ′,k′(rn)

ˆ
UC

d3r′n u
∗
ν,q(r′n)uν′,q(r′n)

)
. (31)

Here, the second line of Eq. (31) describes the interaction of a TMDC interband transition (r′n-

integral, (ν,q) WSe2 quantum numbers) and an intraband graphene transition (rn-integral, (λ,k)

graphene quantum numbers). Note, the third line of Eq. (31) describes an interband transition in

the graphene layer and an intraband transition in the WSe2 layer. It is not feasible in our experiment

and also unlikely from theoretical considerations. Thus, we neglect this term. Finally, we obtain

V λνν̄λ
k,q,q′,k′ =

e0

4πε0ε

∑
Rn,R′

n

ξ∗k(Rn)ξ∗q(R′n)ξq′(R′n)ξk′(Rn)
(Rn −R′n)

|Rn −R′n|3
dνν̄q,q′δk,k′ , (32)

where we used the orthogonality of the lattice periodic functions to solve the rn-integral. As545

explicitly shown in Eq. (32), only one dipole element is involved in MA-type transfer, distinguishable546

from the Förster-type dipole-dipole coupling.547

Distance dependence of Meitner-Auger-like and Förster-type energy transfer To study the548

distance dependence of the Meitner-Auger transfer and compare it to the known dependence of549

the Förster process, we calculate MA- and Förster-type transfer rates as a function of interlayer550

distance z. In Supplementary Fig. 13 we show the z-dependence of the Meitner-Auger transfer551
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and also the Förster result, from which we observe a very different behaviour at long distances.552

For the Förster transfer, we obtain an exponential decay (exp(−z)) in the near-field and the well-553

known z−4 dependence in the far-field. In contrast to the Förster transfer, the Meitner-Auger554

transfer decays solely exponentially. In principle, these two processes could be distinguished555

by the different behaviours at long distances. However, both processes decay exponentially at556

short distances, where they can not be distinguished. To formally study the z-dependence of both557

mechanisms, we assume a thermal distribution of the initial states. The correspondingQ-dependent558

rate is then averaged over this thermal distribution (cp. for instance, the approach of reference 14559

in the main text). To study the behaviour analytically, we assume a uniform dielectric environment.560

561

The detailed computations are shown in the following: The Meitner-Auger rate reads ΓQ =

|WQ|2 4
~vF

(Q−EQ/~vF )(fQ−fEQ−Q/~vF )θ(Q−EQ/~vF ), where WQ carries a general Coulomb

potential depending on the dielectric environment. In the manuscript we consider a complex non-

linear dielectric function to accurately describe the two-dimensional materials on the substrate and

evaluate the matrix element in momentum space. However, to have analytical insights, we assume

now a Coulomb potential of the form V (r− r′) = 1
4πεε0

1
|r−r′| with uniform background. We can

then start from the Coulomb matrix element Eq. (32) forming WQ in the Meitner-Auger rate.

We perform a coordinate transformation with the new coordinates s = (Rn + R′n + z)/2 and

S = Rn −R′n − z. Equation (32) becomes

V λνν̄λ
k,q,q′,k′ =

1

4πε0ε

∑
s,Q

e−iQ·(s+z) s + z

|s + z|3
δQ,k−k′δQ,q−q′dνν̄q,q−Q . (33)

The dipole element can be written as dνν̄q,q−Q = dνν̄q,q−Qe with polarization vector e. The Hamiltonian
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Eq. (26) reads

H =
∑
λ,ν

q,Q,k

1

4πε0ε
dνν̄q−Q/2,q+Q/2,a(Q, z) λ†k+Q/2ν

†
q−Q/2ν̄

†
q+Q/2λ

†
k−Q/2 (34)

with a(Q, z) =

ˆ
d2s

e−iQ·(s+z)

|s + z|3
(s + z) · e . (35)

The integral can be solved and reads

a(Q, z) = −2πi
e−Qz

Q
Q · e . (36)

To evaluate the z-dependence of the Meitner-Auger rate, we perform a thermal average according

to our previous work31:

1

τT
= 〈1

τ
〉T =

1

Ω

ˆ
d2Q e−βEQ

1

τQ
=

2

~Ω

ˆ
d2Q e−βEQΓQ (37)

with Ω =
´
d2Q exp(−βEQ) and β = 1/kBT . To calculate the integral, we set the out-scattering

and in-scattering occupation fQ and fEQ−Q/~vF to one and zero, which correspond to a fairly

rough approximation. The matrix element |WQ|2 is determined by the function |a(Q, z)|2 =

2π2 exp(−2Qz) after an angle average. The solution of the integral reads

1

τT
=

π2

2~λ(T )
e
−E1s(E1sλ

2(T )+2~vF z)
~2v2

F [−2~λ(T )vF z

+e
(E1sλ

2(T )+~vF z)
2

~2v2
F
λ2(T )

√
π
(
2E1sλ

2(T )z + ~vF (λ2(T ) + 2z2)
)

erfc
(
E1sλ(T )

~vF
+

z

λ(T )

)]
, (38)

where we introduced the thermal wavelength λ(T ) = ~/
√

2MkBT . In Supplementary Fig. 13 we562

show the z-dependence of the Meitner-Auger transfer and also the Förster result. In contrast to563

the Förster tansfer, the Meitner-Auger transfer decays exponentially. From the function a(Q, z) ∝564

exp(−Qz) we see that the main contribution stems from momenta Q at Q ≈ 0. But to account565
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for energy and momentum conservation, the Meitner-Auger transfer requires large Q, ensured by566

the Heaviside function in ΓQ. We see from the exponential function in front of the parenthesis,567

that the strength of the exponential decay is determined by the slope of the linear graphene band568

structure. For the Förster transfer the function a(Q, z) is proportional to Q exp(−Qz) resulting569

in the different far-field behavior. Interestingly, the different far-field behavior can be traced back570

to the linear band structure of graphene, reflected by the Heaviside function in ΓQ, and not to the571

difference in the interaction. When we artificially set the TMDC band gap to zero, the Meitner-572

Auger transfer shows the same z-dependence as the Förster transfer in the near- and far-field. At573

last, we want to stress, that to calculate Eq. (38) we assumed thermalized electron occupations in574

graphene, which is obviously not the case for a transient experiment.575

Compared with a heterostructure made by the exfoliation and stacking technique, the epitaxially576

grown heterostructure provides a shorter interlayer distance, which benefits the interfacial energy577

transfer. We have identified the closely stacked WSe2 and graphene layer without any significant578

spatial gap with atomic force microscopy in a similar heterostructure6. The z-dependence of579

the energy transfer rates is shown in Supplementary Fig.13. It demonstrates a larger transfer580

energy rate at a shorter z-distance for both MA and Förster-type IET processes. A different581

IET mechanism could be dominant with increased interlayer distance. However, not only the582

interlayer distance z determines the interlayer coupling, but also the rotational orientation between583

two layers. The band structure alignment of an epitaxially grown heterostructure is favoured in a584

few discrete orientations, for example, twisting angle of 0 deg and 60 deg between the WSe2 and585

graphene layer. The heterostructures prepared by the exfoliation method provide the flexibility for586
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engineering the band structure alignment by turning the twisting angel. Therefore, the heterostructure587

samples prepared by these methods provide their specific way for us to understand the interlayer588

interaction.589
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Supplementary Fig. 13: Meitner-Auger and Förster transfer rate as function of591

layer distance. The Förster transfer rate decays exponentially at short distance and592

goes over into a z−4 dependence (blue). The Meitner-Auger transfer rate continues its593

exponential decay (red). The strength of the exponential decay of Meitner-Auger rate594

depends on the slope of the linear graphene band structure595

Dexter Coupling The IET process could also mediated by Dexter-type two-particle exchange,596

whose transfer rate is determined by the wave function overlap34. Starting point for the calculation597

is the Hamiltonian598

HD =
∑

k,q,k′,q′

V cvvc
k,q,k′,q′c

†
kv
†
qvk′cq′ + h.c., (39)
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with the same conventions for the notation as for the calculation of the Förster transfer. The599

appearing coupling element is defined as600

V cvvc
k,q,k′,q′ =

ˆ
R3

d3r

ˆ
R3

d3r′Ψc∗
k (r)Ψv∗

q (r′)V (r, r′)Ψv
k′(r′)Ψc

q′(r). (40)

The Coulomb potential is translational invariant in the in-plane direction, i.e. V (r, r′) =601

V (r‖ − r′‖, z, z
′). Fourier transforming the Coulomb potential w.r.t. the in-plane components,602

writing the electronic wave functions as Bloch waves and decomposing the spatial coordinates603

into one component inside the unit cell and one which addresses the unit cells r → r + R, yields604

for the coupling element605

V cvvc
k,q,k′,q′ =

1

A

∑
K

ˆ
uc

dz

ˆ
uc

dz′χc(z)χv(z′)VK(z, z′)δk,q′+Kδq,k′−K, (41)

with606

χλ(z) =
1

Vuc

ˆ
uc

d2r‖u
∗λ
TMD(r‖, z)u

λ
Graphene(r‖, z) (42)

To evaluate the coupling element further, we restrict ourselves to the case with vanishing607

interlayer spacing. We decompose the z and z′ integration into two integrals over WSe2 and608

graphene609
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V cvvc
k,q,k′,q′ =

1

A

∑
K

δk,q′+Kδq,k′−K×(ˆ
WSe2

dz

ˆ
WSe2

dz′χc(z)χv(z′)VK(z, z′)

+

ˆ
WSe2

dz

ˆ
Graphene

dz′χc(z)χv(z′)VK(z, z′)

+

ˆ
Graphene

dz

ˆ
WSe2

dz′χc(z)χv(z′)VK(z, z′)

+

ˆ
Graphene

dz

ˆ
Graphene

dz′χc(z)χv(z′)VK(z, z′)

)
(43)

Given that the Coulomb potential varies only weakly with each layer, we can replace the z/z′

dependence by the position of the layer z = zWSe2 , zGraphene in the Coulomb potential. This way

we arrive at

V cvvc
k,q,k′,q′ =

1

A

∑
K

δk,q′+Kδq,k′−K×

(
χcWSe2

χvWSe2
VK(z = zWSe2 , z

′ = zWSe2)

+χcWSe2
χvGrapheneVK(z = zWSe2 , z

′ = zGraphene)

+χcGrapheneχ
v
WSe2

VK(z = zGraphene, z
′ = zWSe2)

+χcGrapheneχ
v
GrapheneVK(z = zGraphene, z

′ = zGraphene)
)
, (44)

with610

χλWSe2/Graphene
=

ˆ
WSe2/Graphene

dzχλ(z), (45)

i.e. the contribution of the wave function overlap of the band λ in the individual layers. Assuming,

that the integration in both layers contributes equally to the wave function overlap between WSe2
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and graphene in conduction and valence band, i.e. χλWSe2
= χλGraphene = 1

2
χλ, we obtain the final

expression for the matrix element

V cvvc
k,q,k′,q′ =

1

4A
χcχv

∑
K

δk,q′+Kδq,k′−KV
Dex
K (46)

with

V Dex
K = (VK(z = zWSe2 , z

′ = zWSe2) + VK(z = zWSe2 , z
′ = zGraphene)

+VK(z = zGraphene, z
′ = zWSe2) +VK(z = zGraphene, z

′ = zGraphene)) . (47)

Reinserting the result back into the Hamiltonian (and indexing the operators according to the611

layer, since due to the momentum conservation our convention breaks down) yields612

HD =
∑
K,k,q

1

4A
χcχvV Dex

K+k−qc
†WSe2
k+K v†Grq−Kv

WSe2
k cGrq + h.c.. (48)

So far, the momenta are defined w.r.t. the Γ point in graphene and WSe2. Redefining the613

coordinates k→ KW + k and q→ KG + q expresses them w.r.t. the K point in WSe2/graphene.614

A projection on excitonic wave functions in WSe2 yields615

HD = −
∑
K,q,ν

(
1

4
√
A
χcχv

∑
k

ϕ∗νKW+kV
Dex
KW−KG+K+k−q

)
P †λK RKG+q

K + h.c.. (49)

In the Dexter coupling element, the momentum distance between the K points in graphene616

and the TMD directly enters. We have |KG −KW | ≈ 3.6 nm−1. As a first approximation we can617
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ignore the COM and relative momenta inside the Coulomb potential V Dex
KW−KG+K+k−q ≈ V Dex

KW−KG618

and get a first estimate for the Dexter coupling619

HD = −
∑
K,q,ν

DKP
†ν
K RKG+q

K + h.c., (50)

with620

DK =
1

4
√
A
χcχvϕ∗ν(r = 0)V Dex

KW−KG . (51)

Similar to the Förster transfer, we can evaluate the Dexter induced scattering rate for WSe2621

excitons to graphene622

ΓQ = 2π
∑
q

|DQ|2δ(Eq
Q − E

1s
Q ) (52)

with yields623

ΓQ =
|DQ|2AEQ

4~2v2
F

. (53)

Supplementary Fig. 14a illustrates the Dexter transfer rate from WSe2 to graphene as a624

function of the wave function overlap for the same structure as considered for the Förster transfer.625

Assuming an overlap between the TMD and graphene wave functions of χ =0.039 (see estimation626

below, Supplementary Fig. 15a), we arrive at a Dexter rate of 1.0 ·10−6meV. This number is small627

due to the mismatch of the K points of WSe2 and graphene and due to the small overlap of the628

wave functions which enters with the fourth power. As long as the COM momentum Q is much629

smaller compared to the distance between theK points, the Dexter rate is independent of the COM630

momentum.631
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Supplementary Fig. 14: Estimation for the Dexter transfer rate. a, Dexter transfer633

rate from WSe2 to graphene as a function of the overlap of the electronic wave functions634

of graphene and WSe2. b, Dexter transfer rate from WSe2 to graphene as a function of635

the excitonic COM momentum Q, with the KWSe2 valley and graphene being shifted on top636

of each others.637

Maximum estimation for the Dexter process The reason for the very weak Dexter process is638

the large momentum mismatch between the K points in WSe2 and graphene. This generates a639

momentum-bottleneck. To get an estimation of the maximally possible Dexter rate (and Dexter-640

like processes, such as Dexter-two-phonon processes), we remove this bottleneck artificially and641

move the K points of both layers on top of each other. The Hamiltonian reads642

HD = −
∑
K,q,ν

Dq,KP
†λ
K Rq

K + h.c.. (54)

with the coupling element643

Dq,K =
1

4
√
A
χcχv

∑
k

ϕ∗νk V
Dex
K+k−q. (55)
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The relaxation rate of excitons to graphene is then given by644

ΓK =
A

2π~

ˆ 2π

0

dφ
EK

~2v2
F

|D EK
~vF

(cosφ,sinφ)T ,K
|2. (56)

Supplementary Fig. 14b illustrates the maximum estimation of the Dexter rate as the function645

of the COM momentum. We find a relatively weak rate in the order of 10−3 meV due to the poor646

wave function overlap. If we would set χ = 1, we would obtain 70 meV at the maximum. Last,647

we calculate the thermal average of the Dexter rate, i.e. integrate the momentum dependent Dexter648

rate together with a normalized Boltzmann distribution at 300 K. We obtain 1.5 ·10−4 meV.649

We would like to note the computation of orbital overlaps is very difficult. Practically, we650

do not calculate the overlap explicitly but compute the Dexter rate as function of wavefunction651

overlap. Note, the overlap is not a "totally" unknown parameter in our sample, since we can use652

the trARPES result as an input. With the below-bandgap excitation (outside the range of the MA653

transition and therefore constituting as an independent result), we observe an interlayer electron654

scattering from graphene to WSe2. By comparing with our calculation of the phonon-assisted655

charge tunneling rate as function of wavefunction overlap, we could extract an overlap value of656

around 4%. It can be used to calculate the Dexter-type energy transfer rate in a reasonable range.657

This wavefunction overlap value is comparable to the ab-initio calculated value of the neighboured658

atoms overlap in graphene, 7%35, and the interlayer overlap in a MoSe2/WSe2 heterostructure,659

1%29.660

Besides the wavefunction overlap, we present the details of the Dexter transfer calculation
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and the applied approximations in the following. We start from the general Coulomb Hamiltonian

involving all transfer processes (Förster, Dexter, Meiner-Auger)

H =
∑

λ1,λ2,λ3,λ4
k1,k2,k3,k4
l1,l2,l3,l4

V λ1ν2λ3λ4l1l2l3l4
k1,k2,k3,k4

λ†l11,k1
λ†l22,k2

λl33,k3
λl44,k4

(57)

V λ1ν2λ3λ4l1l2l3l4
k1,k2,k3,k4

=

ˆ
d3r

ˆ
d3r′ Ψ∗l1λ1,k1

(r)Ψ∗l2λ2,k2
(r′)V (r− r′)Ψl3

λ3,k3
(r′)Ψl4

λ4,k4
(r) (58)

with band λi, wave vector ki and layer li. In Eq. (57) we can perform the sum over the band and

layer indices. The combination l1 = l3 and l2 = l4 and λ1 = λ4 = c and λ2 = λ3 = v corresponds

to the Dexter Hamiltonian:

H =
∑

k1,k2,k3,k4

V cvvcGWGW
k1,k2,k3,k4

c†Gk1
v†Wk2

vGk3
cWk4

+ H.c. =
∑

k,q,k′,q′

V cvvc
k,q,k′,q′c

†
kv
†
qvk′cq′ + H.c. (59)

where in the second step, we define k(′) as wave vectors in graphene and q(′) as wave vectors in

WSe2, such that we can drop the layer index for graphene (G) and WSe2 (W ). The Hamiltonian

Eq. (59) describes the electron transfer from the conduction band of WSe2 to graphene, together

with the valence electron transfer from graphene to WSe2. The matrix element reads

V cvvc
k,q,k′,q′ =

1

A

∑
K

ˆ
d3r

ˆ
d3r′ Ψ∗c,k(r)Ψ∗v,q(r′)VK(z, z′)Ψv,q′(r′)Ψc,k′(r) , (60)

where we denote the in-plane Fourier transformed Coulomb potential by VK(z, z′).661

662

Now, we calculate the Dexter transfer rate. First, we set the interlayer distance to zero.

This yields an upper limit of the Dexter rate in the heterostructure using the proper Coulomb

potential. From Eq. (60) we perform the standard steps of shifting the integrals into the first unit
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cell r(′)
‖ → r

(′)
‖,n + R

(′)
n and summing over all unit cells

∑
n,n′ . After inserting Bloch functions we

obtain

V cvvc
k,q,k′,q′ =

1

A

∑
K

ˆ
UC

dz

ˆ
UC

dz′χc(z)χv(z′)VK(z, z′)δk,q′+Kδq,k′−K , (61)

where the Kronecker delta is obtained from the Bloch wave envelopes. In Eq. (61) we define

the orbital overlap χλ(z) = 1
Vuc

´
UC

d2r‖u
∗λ
W (r‖, z)u

λ
G(r‖, z) of WSe2 (W ) and graphene (G)

wavefunction. The z(′)-integration runs over the two materials, such that Eq. (61) can also be

written as

V cvvc
k,q,k′,q′ =

1

A

∑
K

δk,q′+Kδq,k′−K

(ˆ
W

dz

ˆ
W

dz′χc(z)χv(z′)VK(z, z′) +

ˆ
W

dz

ˆ
G

dz′χc(z)χv(z′)VK(z, z′)

+

ˆ
G

dz

ˆ
W

dz′χc(z)χv(z′)VK(z, z′) +

ˆ
G

dz

ˆ
G

dz′χc(z)χv(z′)VK(z, z′)

)
. (62)

To treat the z-integrations in Eq. (62), we assume that the Coulomb potential varies only weakly

in the out-of-plane direction (due to the atomic thickness of the two materials). The approach

presented here is also performed for the Rytova-Keldysh potential in 2D materials36–38 and serves

as a standard assumption39–41. Then, we can use the Coulomb potential directly at the material

position and take it out of the integral. We obtain Eq. (62)

V cvvc
k,q,k′,q′ =

1

A

∑
K

δk,q′+Kδq,k′−K (χcWχ
v
WVK(z = zW , z

′ = zW )

+χcWχ
v
GVK(z = zW , z

′ = zG) + χcGχ
v
WVK(z = zG, z

′ = zW ) + χcGχ
v
GVK(z = zG, z

′ = zG))

(63)

with χλW/G =
´
W/G

dzχλ(z) describing the wavefunction overlap of the bands λ of the individual

layers (since χλ =
´
UC

d2r‖u
∗
W (r‖, z)uG(r‖, z)). Next, we assume that both layers contribute
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equally to the wavefunction overlap. This has the consequence that the interlayer and intralayer

Coulomb potential contribute equally to the Dexter rate. In an extreme scenario, we calculate the

Dexter-type transfer rate with the wavefunction overlap occurring only in one material. It means

two times of the intralayer potential will appear instead of the interlayer potential. The Dexter-type

transfer rate only increases by a factor of∼1.5, indicating that the transfer process depends mainly

on the wavefunction overlap value (which enters to the power of 4 in the Dexter rate) but not where

the overlap occurs. By using χλW = χλG = 1
2
χλ we obtain the final expression

V cvvc
k,q,k′,q′ =

1

4A
χcχv

∑
K

δk,q′+Kδq,k′−KV
Dex
K (64)

V Dex
K = VK(z = zW , z

′ = zW ) + VK(z = zW , z
′ = zG) + VK(z = zG, z

′ = zW ) + VK(z = zG, z
′ = zG) .

(65)

When we reinsert the matrix element into the Hamiltonian Eq. (59) and shift the origin of the wave

vector on the K points of the respective materials, i.e. k→ KW + k and q→ KG + q we obtain

HD =
∑
K,k,q

1

4A
χcχvV Dex

KW−KG+K+k−qc
†W
KW+k+K

v†G
KG+q−Kv

W
KW+kc

G
KG+q + H.c. (66)

Finally, we find that the Fourier transformed Coulomb potential V Dex
KW−KG+K+k−q depends on the663

momentum difference KW −KG + K + k− q, where KW and KG are the K points of WSe2 and664

graphene respectively, k and q are the electronic momenta in WSe2 and graphene, respectively665

and K is the Coulomb induced momentum transfer. From V Dex
KW−KG+K+k−q we see that if a large666

momentum mismatch between the valleys occurs, the Dexter contribution is reduced. To obtain an667

upper limit estimate, we approximate KW −KG + K + k− q ≈ KW −KG, to be the dominant668

distance.669
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The computation of the Dexter rate is based on the above approximations and the trARPES result670

of ICT.671

Microscopic calculation of interlayer phonon-assisted tunneling process672

In this section we will derive an expression for the phonon-assisted tunneling of carriers between

the layers. The Hamiltonian of phonon scattering and tunneling can be generally written as

H = H0 +H1, (67)

with H0 accounting for the dispersion of electrons and phonons.

H0 =
∑
a

εaa†aaa +
∑
b

~ωbb†bbb. (68)

The first term accounts for the dispersion of carriers with operators a(†)
a and the second term673

accounts for the dispersion of phonons with operators b(†)
b . The quantum numbers a, b account for674

layer and momentum of the carriers. The interaction Hamiltonian H1 reads675

H1 =
∑
ab

taba†aab +
∑
abc

gabca†aab(bc + b†−c), (69)

where the first term represents the tunneling and the second term the scattering of carriers with676

phonons. Here the notation −c implies, that the momentum has to be inverted, but all other677

quantum numbers stay the same.678

While we are interested in the second order processes of phonon-assisted tunneling, we apply679
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a canocical transformation to the Hamiltonian680

H ′ = e−SHeS = H0 + (H1 + [H0, S])︸ ︷︷ ︸
first order

+
1

2
[H1, S]︸ ︷︷ ︸

second order

, (70)

and claim that the first order in the interaction vanishes. This holds true for the choice681

S =
∑
ab

αabt
aba†ab +

∑
abc

gabca†aab(βabcbc + γabcb
†
−c), (71)

with coefficients

αab =
1

εb − εa
, (72)

βabc =
1

εb − εa + ~ωc
, (73)

γabc =
1

εb − εa − ~ωc
. (74)

The second order Hamiltonian is now given as682

H2 =
1

2
[H1, S]. (75)

Restricting ourselves only to the tunneling-phonon contribution (besides this, also higher order683

tunneling terms, two-phonon processes as well as attractive electron-electron interaction through684

phonon interaction are contained in this Hamiltonian) we obtain685

H =
1

2

∑
abcd

tdbgadca†aab((
1

εb − εd
− 1

εd − εa + ~ωc
)bc + (

1

εb − εd
− 1

εd − εa − ~ω−c
)b†−c)

− 1

2

∑
abcd

tadgdbca†aab((
1

εd − εa
− 1

εb − εd + ~ωc
)bc + (

1

εd − εa
− 1

εb − εd − ~ω−c
)b†−c) (76)
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Now we insert the compounds: a = (ka, λa, la) for electrons, where ka accounts for the686

momentum, λa accounts for the band and la accounts for the layer quantum number. For phonons687

we insert the compounds c = (kc, lc, ξc), with momentum kc, layer lc and branch ξc and apply the688

selection rules from the matrix elements:689

tλbλdlbldkbkd
= tλbλdlbldδlb l̄dkbkd

δλbλd , (77)

i.e. the tunneling conserves momentum, and band but changes the layer index, and690

gλaλdlaldlckakdkc
= gλaλdlaldlckc

δlaldδldlckc,ka−kdδ
λaλd . (78)

i.e. phonon scattering conserves the layer index, but changes the momentum of the carriers.691

As a result we obtain692

H =
1

2

∑
kKλlξ

λ†l̄k+Kλ
l
k

tλll̄gλl̄ξK (αλll̄k + γλl̄ξk,K)︸ ︷︷ ︸
sλll̄ξk,K

bl̄ξK + tλll̄gλl̄ξK (αλll̄k + βλl̄ξk,K)︸ ︷︷ ︸
s̃λll̄ξk,K

b†l̄ξ−K



− 1

2

∑
kKλlξ

λ†l̄k+Kλ
l
k

tλl̄lgλlξK (αλll̄k+K + γλlξk,K)︸ ︷︷ ︸
uλll̄ξk,K

blξK + tλl̄lgλlξK (αλll̄k+K + βλlξk,K)︸ ︷︷ ︸
ũλll̄ξk,K

b†lξ−K

 , (79)

54



with

αλijk =
1

ελik − ε
λj
k

(80)

βλiξk,K =
1

ελik+K − ελik + ~ωiξ−K
(81)

γλiξk,K =
1

ελik+K − ελik − ~ωiξK
(82)

Both lines describe phonon assisted tunneling from k, b to k + K, b̄. However, in the first line

first the tunneling and next the phonon scattering takes place, whereas in the second line, first the

phonon scattering and next the tunneling takes place. Considering the intermediate statesk, b̄ and

k + K, b being much larger in energy, in both lines, all contributions have the same sign and add

up. The relative sign between both lines (−) is compensated by the opposite signs of the appearing

u and s functions. To further evaluate the phonon assisted tunnel Hamiltonian, we carry out the

summation over the layer

H =
1

2

∑
kKλGξ

λ†Wk+Kλ
G
k

tλGWgλWξ
K (αλGWk + γλWξ

k,K )︸ ︷︷ ︸
sλGWξ
k,K

bWξ
K + tλGWgλWξ

K (αλGWk + βλWξ
k,K )︸ ︷︷ ︸

s̃λGWξ
k,K

b†Wξ
−K



− 1

2

∑
kKλWξ

λ†Gk+Kλ
W
k

tλGWgλWξ
K (αλWG

k+K + γλWξ
k,K )︸ ︷︷ ︸

uλWGξ
k,K

bWξ
K + tλGWgλWξ

K (αλWG
k+K + βλWk,Kξ)︸ ︷︷ ︸

ũλWGξ
k,K

b†Wξ
−K



+
1

2

∑
kKλξ

λ†Gk+Kλ
W
k

tλWGgλGξK (αλWG
k + γλGξk,K )︸ ︷︷ ︸

sλWGξ
k,K

bGξK + tλWGgλGξK (αλWG
k + βλGξk,K )︸ ︷︷ ︸

s̃λWGξ
k,K

b†Gξ−K



− 1

2

∑
kKλξ

λ†Wk+Kλ
G
k

tλWGgλGξK (αλGWk+K + γλGξk,K )︸ ︷︷ ︸
uλGWξ
k,K

bGξK + tλWGgλGξK (αλGWk+K + βλGξk,K )︸ ︷︷ ︸
ũλGWξ
k,K

b†Gξ−K

 (83)

Here, the first two lines involve phonons in WSe2 whereas the last two lines involve phonons
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in graphene. The − signs in front of line two and line four are compensated by the opposite

signs of the s and u functions. To investigate the different contributions to the tunnel-phonon

coupling in more detail, we evaluate the functions s and u in the different terms: (a) we fix the

momenta in WSe2 to the vicinity of the K point. (b) While all scattering processes conserve the

energy, the approximation (a) settles the energy and momentum range of involved carriers. (c) In

the next step, we approximate the prefactors αλijk by their values in the region of interest, where

we find αcGWk≈KW = 1
1eV and αcWG

k≈KG = 1
250meV , which are read out from the DFT calculation in

the main manuscript. To evaluate the prefactors βλiξk,K and γλiξk,K we first realize, that that ∆EKG

appears whenever WSe2 phonons are involved, and ∆EKW appears whenever graphene phonons

are involved. ∆EKG ≈250 meV is large in comparison to typical phonon energies of 30 meV

in WSe2 and ∆EKW ≈1 eV is large in comparison to typical phonon energies of 200 meV in

graphene. Consequently we ignore the appearing phonon energies in βλiξk,K and γλiξk,K. As a result,

the Hamiltonian simplifies to

H =
∑
kKλ,ξ

tλGWgλWξ
K

εWKgr − ε
G
Kgr︸ ︷︷ ︸

hWξ
K ≈const.

λ†Wk+Kλ
G
k

(
bWξ
K + b†Wξ

−K

)
+ h.c.

+
∑
kKλξ

tλWGgλGξK

εGKW − ε
W
KW︸ ︷︷ ︸

hGK≈const.

λ†Wk+Kλ
G
k

(
bGξK + b†Gξ−K

)
+ h.c. . (84)

For a carrier in graphene, the relaxation rate to WSe2 via phonon-assisted tunneling is given
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as

ΓGk = 2π
∑

±,K,ξ,i∈{W,G}

|hiξK|
2

(
1

2
± 1

2
+ niξK

)
δ(εGk − εWk+K ∓ ~ωiξK)

(85)

Assuming hiξK ≈ hiξ and ~ωiξK ≈ ~ωiξ, we obtain693

ΓGk = A
∑

i∈{W,G},ξ,±

mW

~2
|hi|2

(
1

2
± 1

2
+ niξ

)
1εGk∓~ωiξ−εW0 >0, (86)

which is constant for graphene electrons which have at least the energy of the conduction band694

plus the phonon energy in graphene. This reflects the constant density of states in WSe2. The area695

A cancels with the area in the phonon coupling element which is contained in hi.696

In contrast for carriers initially located in WSe2, we get

ΓWk = 2π
∑

±,K,ξ,i∈{W,G}

|hiξK|
2

(
1

2
± 1

2
+ niξK

)
δ(εWk − εGk+K ∓ ~ωiξK). (87)

With similar approximation as above, we end up at697

ΓWk = A
∑

i∈{W,G},ξ,±

εk ∓ ~ωiξ

~2v2
F

|hi|2
(

1

2
± 1

2
+ niξ

)
, (88)

To calculate the relaxation rates, we assume a potential barrier of EB =5 eV corresponding698

to the energy of the WSe2 conduction band w.r.t. to the vacuum level. Then we approximate699

the tunneling element as t = χEB, with χ being the wavefunction overlap29. For graphene, we700

include two optical phonon branches with energies of ~ω =200 meV and the coupling strength of701

g =200 meV42. For WSe2, we include two optical phonon branches with energies of ~ω =30 meV702
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and the coupling strength of g =10 meV43. Supplementary Fig. 15a illustrates the approximate703

relaxation rates of electrons from graphene to WSe2 (ΓG) and WSe2 to graphene (ΓW ) as a function704

of the overlap of the wavefunctions between WSe2 and graphene. We find for both a quadratic705

increase as a function of the overlap, since the latter enters quadratic in both relaxation rates. The706

difference between both relaxation rates arise from different final densities of states of the carrier707

relaxation. In the experiment, a delayed rise of the WSe2 signal w.r.t. to the graphene signal of708

about 50 fs (13 meV) was found, which indicates an overlap of 4.0%. The order of magnitude of709

this value appears reasonable, since the overlap between two neighboring graphene atoms is 7% as710

an example35.711

712

Supplementary Fig. 15: Tunnel transfer for electrons and holes. a, The ICT-induced713

relaxation rate of electrons in graphene towards WSe2 (blue) as a function of the electronic714

wavefunction overlap between the involved conduction bands. The relaxation rate of715

electrons in WSe2 towards graphene (pink). The dashed lines indicate the overlapping716

values which can be expected from the experiment results. b, The relaxation rate of717
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holes in graphene, which have larger energies compared to the valence band maximum718

in WSe2 (blue) and the relaxation rate of holes in WSe2 (pink).719

To evaluate the phonon-assisted tunneling rates for holes, we assume similar phonon coupling720

elements in conduction and valence band in WSe2
43 and graphene but account for the different721

dispersion of the valence band44. Supplementary Fig. 15b illustrates the tunneling rates of holes.722

We find qualitatively similar tunneling rates as for electrons. However, the tunneling of holes from723

WSe2 to graphene is stronger compared to the electrons. This arises from the larger density of724

states of graphene for the involved final states. The reason for this, is that the Fermi energy of the725

system is closer to the conduction band minimum compared to the valence band maximum, cp.726

Fig. 2a in the manuscript.727
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Table 1: Parameters used in the computation. ∗ exemplary value at z = 0 determined

numerically by evaluating the Wannier equation for WSe2 on a SiC substrate. 27,45. ∗∗

taken as double distance between the chalcogen atoms. The Fermi velocity taken the

experimental result.

Param. Param. Ref.

~ 0.658 eV fs dG 0.25 e nm 46

e 1 e vF 1.8 nm fs−1 exp

ε0 5.5·10−2 e2eV−1nm−1 dWSe2 0.32 e nm 27

kB 8.6·10−5 eV K−1 |ϕWSe2(r = 0)| 0.36 nm−1 ∗

εSiC 9.6 E1s
WSe2

1.7 eV 47

MWSe2 3.7 eVfs2nm−2 20

εG 648 εWSe2 13.36

aG 0.33 nm 49 aWSe2 0.67 nm ∗∗ 50
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