

1

Supplementary information for

In-memory mechanical computing

Tie Mei, Chang Qing Chen *

*Corresponding author. Email: chencq@tsinghua.edu.cn (C.Q.C.)

2

Supplementary Note 1: Additional computing process of the mechanical XNOR

structure

In the main text, the computing process of the mechanical XNOR structure has been

introduced for the input being (0, 0) and (1, 0). Note that the computing process for the

input being (0, 1) is the same as that of (1, 0) owing to the upper-bottom symmetry of

the design structure. Here, we will only discuss the state change when the input is (1,1),

as shown in Supplementary Figure 1. If the input is (1, 1), the two input buckled beams

compress the two spring 1 simultaneously (Supplementary Figure 1a). Considering that

the geometry of the input buckled beams is the same, the compressive force at both

ends of the balance bar 1 is also the same, and balance bar 1 remains vertical. Thus, the

slider bars and links stay at their initial position. When the structure is subject to a time

signal (external force F), the common vertex of the two link 1 will push the output

buckled beam for a distance of  (Supplementary Figure 1b). Driven by link 2 and link

3, two of the balance bar 2 rotate and touch the slider bars. The right ends of spring 1

are also pushed for a distance of  and the input buckled beams are initialized to state

0. Considering the output buckled beam arching to the right, its state will switch to 1

after the force F is released, i.e., the structure outputs 1 when the inputs are (1, 1).

Supplementary Note 2: Assembling of the basic mechanical interaction structures

The assembling details of the basic mechanical interaction structures are shown in

Supplementary Figure 3. For the mechanical shift register structure (Supplementary

Figure 3a), slider block 1 is fixed into slide groove 1 and can only move translationally

along the x direction. Link 2 (marked in Fig. 2), slider block 2, and slider block 3 are

fixed into slider groove 2 and can only move translationally along the y direction. The

ends of the buckled beam are inserted into the slot and are fixed. To impose the time

signal (external force F shown in Fig. 2b and c), the electromagnet will be connected

to the connecting block (Supplementary Figure 3b). Driven by the electromagnet, the

connecting block moves downward and the slider block 1 moves towards each other.

Thus, the computing can be done as shown in Fig. 2.

For the mechanical XNOR structure (Supplementary Figure 3c), slider block 1, link 2

in Fig. 3, and slider block 2 are fixed into the slider groove 1, 2, and 3, respectively.

Thus, slider 1 can only move translationally along the x direction while link 2 and slider

block 2 can only move translationally along the y direction. The balance bar 1 and 2

3

(marked in Fig. 3) are connected to the support via cylinder 1 and 2. They can only

rotate around these cylinders. Besides, the slider block marked in Fig. 3 is connected to

link 2 by the insert block. It follows the motion of link 2.

The assembling details of the mechanical perceptron structure are shown in

Supplementary Figure 3d. Slider block 1, 2, and 3 are fixed into the slider groove 1, 2,

and 3, respectively. All these slider blocks can only move translationally along the y

direction.

Supplementary Note 3: Design of other structures required for computing

Designs of several other typical structures required to facilitate computing are given in

Supplementary Figure 4. For the mechanical binary neural network shown in Fig. 4,

bias is stored in the structure illustrated in Supplementary Figure 4a. If the buckled

beam is in state 0 (Supplementary Figure 4ai), the rubber band makes the links point to

the positive direction of the y axis. Thus, the motion of the likes is fixed by the support

when an external force F is imposed. However, if the buckled beam is in state 1

(Supplementary Figure 4aii), the links will generate a displacement load  driven by

F. Note that the state of the memory unit in this structure will not be influenced by the

motion of components. Thus, this structure can be used for long-term memory of the

bias.

Moreover, every input mechanical memory unit in the first layer influences two

memory units in the second layer as shown in Fig. 4e. Thus, we can design a variant

one for the mechanical XNOR operation (Supplementary Figure 4b), where the input

buckled beam is connected to two springs and can drive two XNOR operations at the

same time. Besides, for long-term memory of the weights, the balance bar and slider

block are shortened. Thus, they cannot initialize the input buckled beams to state 0 as

shown in Fig. 3d and Supplementary Figure 1b.

For the mechanical self-learning perceptron shown in Fig. 5, we have designed a data

selector to facilitate the computing process (Supplementary Figure 4c). The data

selector consists of one controlling bar and two input bars (Supplementary Figure 4ci).

There are two blocks on the controlling bar (see the sectional view in Supplementary

Figure 4cii). The controlling bar can selectively block the movement of the input bars

by these blocks to realize the function of the data selector shown in Fig.5b. Inputs of

4

the data selector In1 and In2 are defined as the movement of the input bars 1 and 2,

while the output is defined as the movement of the block at the right of the input bars

(Supplementary Figure 4ciii and civ). If c =0, block 2 will block the movement of input

bar 2, thus the output will be In1 (Supplementary Figure 4ciii). As for c =1, the

movement of input bar 1 will be blocked by block 1, thus the output will be In2

(Supplementary Figure 4civ). Thereby, the structure fulfills the requirements of a data

selector mentioned in Fig. 5b.

Supplementary Note 4: Training of the binary neural network and construction

of mechanical binary neural network with different network structures

To get the weight and bias of a mechanical binary neural network (BNN), a

corresponding binary neural network should be trained first. We adopted the binary

neural network model proposed in Ref 43 of the main text. The BNN is trained with

two sequential runs of the Stochastic Gradient Descent (SGD) procedure. In the first

round, the binary weight and bias are transferred to the real weight and bias by the

hyperbolic tangent function,  tanh  which is also used for activation. In doing so, a

relaxed version of the corresponding BNN is obtained and trained. In the second round,

the weight and bias in the first round are binarized to initialize the BNN parameters. A

noisy feed-forward step is followed, and the parameters are updated while letting the

network be aware of the additional error introduced by the binarization procedure. By

repeating these two rounds, the BNN is trained.

To verify the training method, a BNN is trained to distinguish between labeled images

of handwritten digits. 50 images of each digit from the MINST database (Ref 44) are

picked randomly as the training set while additional 50 images of each digit serve as

the testing set. Each image is represented by an array containing integers ranging from

0 to 255. We rewrite the integers larger (smaller) than 255/2 as 1 (-1) and reduce the

image to a 14×14 array with a pooling process before training. The corresponding

handwritten digit is shown as the insert of Fig. 4g. Then, a BNN with 196 input nodes,

14 hidden nodes, and 1 output node is trained. The output 3
1x is desired to be -1 (1)

when the input handwritten digit is 0 (1). The training process is shown in Fig. 4g. The

error means the number of handwritten digits failed to be distinguished in the training

set (or testing set). The errors for the training and testing sets gradually reduce and

5

become 1 after about 170 training steps. Considering the equivalence of the BNN and

MBNN mentioned in the main text, the training method can serve as a strong tool to

design intelligent deformation input-output relationships that can even adapt to unseen

conditions by its ability of generalization.

Except for the MBNN shown in the main text, we have also constructed an MBNN with

different network structures. An example is shown in Supplementary Figure 5a, with

the corresponding schematic diagram and experiment setup given in Supplementary

Figure 5b and c, respectively. Using the training method mentioned before, the MBNN

can be reprogrammed to fulfill all 16 logic gates with two inputs and one output (i.e.,

AND, OR, NOR, XOR gates, and so on) as shown in Supplementary Movie 3. This

experiment again demonstrates the equivalence between the BNN and MBNN.

Supplementary Note 5: Construction of the mechanical self-learning perceptron

with n+1 inputs

A Rosenblatt perceptron with n +1 inputs is shown in Supplementary Figure 6a. Its

forward propagation procedure is:

 

   0 1 0 1

-1

, ,..., , , ,...,

T

T T

n n

y

w w w x x x



 





w x

w x
 (1)

where y is the output, ix is the input, iw is the weight, Bix  and Riw  , i =0, 1,

2,…, n . The weights of the backward propagation are updated as:

  sign di i t iw w y y x w     (2)

where ty is the target output, and dw is the updating increment. The corresponding

mechanical self-learning perceptron model is shown in Supplementary Figure 6B. Its

forward propagation procedure represented by the black interaction symbols is the same

as Eq. (1). The weights can be written as:

1

, 0,1,2,3...
m

i i i ij
j

w x i 


   (3)

In the backward propagation procedure denoted by the brown interaction symbols, the

memory elements evolve as:

6

1 2 1 (1)

1 2 1 (1)

, ,..., , 1

, ,..., , 0

0,1,2,...,

i im i i im i m

i t i i im i m

x x x x x x c

x y x x x x c

i n





   
    



 (4)

Thus, the weights are updated as follows:

  signi i i t im t iw w y x y y x     (5)

Equation (5) is a variant version of (2) where i t imdw y x  . Though the update

increments vary for different weights in different updating steps, we have verified that

the weights can still converge by selecting a small i , large m , and randomly setting

the initial value of ijx .

The verification results are shown as three typical cases listed in Supplementary Figure

6c and d. For cases 1, 2, and 3, n =9, 19, and 29, while 300 target input-output pairs (

x , ty) are randomly selected and can form two node sets defined by the target output

ty on both sides of the hyperplane described by equations (6-8) respectively.

 0 1 2 3 4

5 6 7 8 9

13.15 15.175 15.825 13.75 17.4

22.45 10.525 3.8 8.7 24.525 1

x x x x x

x x x x x

    

     
 (6)

0 1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18 19

3.15 1.9 6.8 21.375 2.075 24.175 16.325

0.05 2.475 14.25 0.2 17.925 14.175

24.2 17.85 5.2 14.025 20 18.025 7.2 1

x x x x x x x

x x x x x x

x x x x x x x

     
     

       
 (7)

0 1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18 19

20 21 22 23

17.65 12.675 3.45 16.3 23.4 8.9 14.625

1.35 16.5 3.875 20.15 5.625 10.625

7.625 11.45 14.6 22.125 20.95 3.15 9.95

21.8 2.075 6.55 24.225 9

x x x x x x x

x x x x x x

x x x x x x x

x x x x

     

     
      

     24 25 26

27 28 29

.25 19.3 8.625

16.625 17.625 10.075 1

x x x

x x x

 
   

 (8)

We set 1 40i  , 25i   , 2000m  for all three cases. The error is defined as the

number of outputs that fail to meet the target output and its evolution is shown in Fig.

5f. The mechanical self-learning perceptron acquires all the target output after about

3500 training steps. As another example to show the updating process, the evolution of

7

0w is given in Fig. 5g. These examples show the generality of the mechanical self-

learning perceptron.

List of supplementary figures

Supplementary Figure 1. Computing process of the mechanical XNOR structure

for input (1, 1). a Before receiving the time signal. b After receiving the time signal.

8

Supplementary Figure 2 Mechanics of the buckled beam without and with a

spring. a Geometry and notation for the buckled beam. b FEM and theoretical results

of the force-deflection curves (f-wm) of the buckled beam in a. c Contour of w0 in the d-

t space. d Contour of fs in the d-t space. e A buckled beam connected to a spring with

a fixed end. f Theoretical results of the f-wm relationship for the buckled beam in e. g A

buckled beam is compressed via a connected spring. h Theoretical results of the u-wm

relationship for the buckled beam in g.

9

Supplementary Figure 3 Assembling details of the basic interaction structures. a

Assembling of the mechanical shift register. b Method to impose time signal. c

Assembling of the mechanical XNOR structure. d Assembling of the mechanical

perceptron.

10

Supplementary Figure 4 Design of other structures required for computing. a

Structure that stores the bias. For (i), the bias is 0. For (ii), the bias is 1. b A variant

design for the mechanical XNOR operation. c Design of the data selector. (i) shows the

main components. (ii) is a sectional view of (i). (iii) (iv) Computing process of the data

selector. For (iii), the output is In1 when c=0. For (iv), the output is In2 when c=1.

11

Supplementary Figure 5 A reprogrammable mechanical binary neural network to

realize all 16 logic gates of two inputs and one output. a The corresponding binary

neural network. b The schematic diagram and c the experiment setup of the mechanical

binary neural network.

12

Supplementary Figure 6 A mechanical self-learning perceptron with n+1 inputs. a

A perceptron model with n+1 inputs. b The schematic diagram of the mechanical self-

learning perceptron.

