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REVIEWER COMMENTS 

Reviewer #1 (Remarks to the Author): 

In this work the authors describe their development of an artificial intelligence framework to determine 

unknown Hamiltonian parameters from inelastic neutron scattering experiments. Their framework 

combines a neural network, previously trained on simulated data from a model Heisenberg Hamiltonian, 

with automatic differentiation. This approach is successfully tested on a Linear Spin Wave Theory (LSWT) 

simulator and experimental data from the square-lattice spin-1 antiferromagnet La2NiO4. 

While this work provides some new results worthy of publication, as a whole it is not of sufficient 

novelty to warrant publication in this journal. By the authors own admission, this work extend recent ML 

guided analysis of static neutron scattering experiments (such as refs 16 and 17). This would be already 

a concern when judging novelty and, moreover, there is already prior work in the literature that tackles 

the problem of inelastic neutron scattering: in addition to references 18 and 19, which train inverse 

models on inelastic neutron scattering data, one can find that [Doucet, Mathieu, et al. "Machine 

learning for neutron scattering at ORNL." Machine Learning: Science and Technology 2.2 (2020): 

023001.] gives an overview that includes references to inelastic neutron scattering and [Samarakoon, 

Anjana M., et al. "Extraction of interaction parameters for α− RuCl 3 from neutron data using machine 

learning." Physical Review Research 4.2 (2022): L022061.] performs a full analysis on inelastic neutron 

scattering results using ML methods. 

This is not to say that the contribution of this work is irrelevant, quite the contrary, it introduces novel 

aspects to the problem that are worthy of publication, but this should be done in a more specialised 

journal. 

Minor corrections 

- Line 86: it should say conventional FFNN, not convention FFNN. 

- Line 138: SIREN should be defined on first use. 



- Some passages become a bit repetitive: compare for example lines 151- 153 and eq 2 or lines 159-160 

and lines 179-180 

- Line 167: Since this article is probably intended for a wider readership it would be good to explicitly 

label all referenced BZ critical points in Fig 1b (P is missing). 

Reviewer #2 (Remarks to the Author): 

The authors present a new method for applying neural-network techniques to the modeling of 

measured excitations in a crystal. Here they apply the approach to determining superexchange 

parameters for spin waves in antiferromagnetic La2NiO4, making use of recent experimental results 

obtained by time-of-flight neutron scattering. The method involves training the neural network on 

model calculations for a range of parameter values and then finding the result that gives the best match 

to the experimental data. If applied in real time during an experiment, this approach has the potential to 

optimize measurement time. 

In my opinion, this new approach to data analysis is quite interesting. I would support acceptance after 

the authors have had a chance to consider the following comments. 

1. Please insert each equation between lines within the paragraph where it is discussed, not at the end 

of the paragraph. 

2. Some notation is used that may be common among neural network experts but which is unfamiliar to 

an experimentalist such as myself. Please present more definitions. For example, please explain the set 

theory notation first used in line 152. 

3. Please give a better explanation for \Phi. Equation (2) is not an equation: what does the right arrow 

mean? Also, what is the connection to Fig. 1(c), which is supposed to provide a visualization. Related to 

that, the figure shows “64 x 3” twice, while the caption mentions 64 x 3 and 64 x 1; why? 



4. The potential application to real-time analysis during data collection seems to assume that the full Q-

dependence is collected simultaneously. I suspect (based on my own experience) that the experimental 

data shown required measurements at many different sample angles. Of course, such measurements 

can be repeated, and the analysis approach could be applied before repetitions to determine whether 

they are necessary. Noting this sort of reality would be appropriate. 

5. The real-time analysis proposal also neglects possible complications from features such as phonons. In 

the present case, it appears that the “background” subtraction scheme, along with the large L-

integration range, has been effective in minimizing phonon signal relative to spin waves. This may not 

always be the case (or at least an effective way to minimize the phonon signal might not be obvious in 

real time). 

Reviewer #3 (Remarks to the Author): 

The authors report on a developed AI framework combining a neural network trained to mime 

simulated data from a model Hamiltonian with automatic differentiation to recover unknown 

parameters from experimental data, and benchmark the approach on a LSWT simulator and an 

experimental INS dataset. 

This work meets the current challenges to use neutron and photon beamtime as efficient as possible, 

and to make use of advanced computing opportunities on the other hand. The strength of the presented 

paper lies in a thorough analysis of the existing work in the field, the focus on a well-defined problem 

complementary to existing approaches (predicting continuous parameters within an assumed 

Heisenberg model during neutron/x-ray experiments), and considering the specific aspects of the 

physics and experimental technique (rapid decisions on sufficient statistics, weighting weak features in 

the spectrum, background consideration, instrument resolution, low neutron experiment count-rates). 

The clear definition of the problem to answer and the limitation of methodological development on that 

allows to present an approach which identifies successfully the key parameters of a linear spin-wave 

spectrum. 

The work is justified in detail. The paper is very well structured and explained, it allows both specialists 

in solid-state physics and AI methods to follow a well-thought strategy, its different steps and the 

reasons to choose the methods and to neglect aspects in this state of the work. 

Being not a specialist in AI methods the methodological decisions are reasonable to me. The benchmark 

on La2NiO4 is carefully performed and provides very good results with respect to physics and ML 

method. The idea to create a surrogate model in advance making an in-situ parameter estimate during 

the experiment possible is excellent. Providing suited tools in addition could be a big step in changing 

certain inelastic experiment procedures to be more efficient. 



I therefore suggest to publish the work giving huge impact to the experimental method. 

There are only few minor comments: 

• Fig. 1c: May there be a typo in the given layers? Two times 64 x 3 instead of 64 x 1 and 64 x 3? In case 

the figure is right, please explain. 

• Fig.2: For sure the colour plots look very similar but the quantitative comparison is difficult by eyes. 

Would it be reasonable to show the subtraction or any other quantitative criteria for the agreement? 

• Line 338: number of detected neutrons within the path region – could this be so clearly stated in the 

caption of Fig. 4, too, instead of “Detector Counts”? 



Reviewer #1 (Remarks to the Author): 

Reviewer Comments 1.1: In this work the authors describe their development of an artificial 

intelligence framework to determine unknown Hamiltonian parameters from inelastic neutron 

scattering experiments. Their framework combines a neural network, previously trained on 

simulated data from a model Heisenberg Hamiltonian, with automatic differentiation. This 

approach is successfully tested on a Linear Spin Wave Theory (LSWT) simulator and 

experimental data from the square-lattice spin-1 antiferromagnet La2NiO4. 

While this work provides some new results worthy ofpublication, as a whole it is not of sufficient 

novelty to warrant publication in this journal. By the authors own admission, this work extend 

recent ML guided analysis of static neutron scattering experiments (such as refs 16 and 17). This 

would be already a concern when judging novelty and, moreover, there is already prior work in 

the literature that tackles the problem of inelastic neutron scattering: in addition to references 18 

and 19, which train inverse models on inelastic neutron scattering data, one can find that 

[Doucet, Mathieu, et al. "Machine learningfor neutron scattering at ORNL." Machine Learning: 

Science and Technology 2.2 (2020): 023001.] gives an overview that includes references to 

inelastic neutron scattering and [Samarakoon, Anjana M., et al. "Extraction of interaction 

parameters for α− RuCl 3 from neutron data using machine learning." Physical Review 

Research 4.2 (2022): L022061.] performs a full analysis on inelastic neutron scattering results 

using ML methods. 

This is not to say that the contribution of this work is irrelevant, quite the contrary, it introduces 

novel aspects to the problem that are worthy ofpublication, but this should be done in a more 

specialisedjournal. 

Our Response 1.1: We appreciate your comments regarding the technical quality of our work 

and your other thoughtful remarks. Here, we take the opportunity to point out some of the novel 

aspects of the work that we did not properly emphasize in our original submission. 

In short, the novelty of our study involves three major aspects that will be of interest to various 

scientific communities: 

- Use of implicit neural representations as a new way of implementing ML in experimental 

work. 

- Real-time data interpretation of our model, which is key for future efforts towards 

experimental guiding and optimization. 

- Simplicity of our model. Our straightforward platform will be amenable to implementation 

by non-experts and it will thus be adaptable to many areas beyond neutron scattering.  



We elaborate further on the preceding points as follows. 

- We incorrectly noted in our original manuscript that our work “extends” prior ML efforts 

for neutron scattering data. We emphasize that our work does not simply build on or extend 

prior work but that our study presents a fundamentally new approach. Although References 

1-3 use a forward model for Hamiltonian parameter extraction, our approach is very 

different. Our novelty is in the application of implicit neural representations as a powerful 

tool to model scattering experiments. We show that this approach, which has recently been 

shown to accurately represent images and hypervolumes in computational photography, 

can add substantial value to analyzing dynamical measurements. 

- Our framework is based on a coordinate representation of the data as opposed to the pixelated 

representations used in all prior works, and therefore, it does not rely on grid discretization. 

This implies that our trained forward model can be applied to essentially arbitrary ranges 

of the energy/momentum space that are provided by various detectors and instrument 

configurations. In addition, our approach can take in unstructured data and is not sensitive 

to input sizes. For example, it does not require data to be formatted or padded into 2D/3D 

grids. 

- Our approach yields a simple and compact solution via an architecture that allows the entire 

pipeline to be described by one differentiable model rather than a combination of models 

which have to be separately optimized and trained. Furthermore, our coordinate 

representation is able to naturally handle cases such as missing or additional data which 

may pose issues for pixel-based representation methods. 

- Another major point of distinction between our method and that of Refs. 2 and 3 is that our 

focus is on being able to continuously fit parameters in real-time as data are collected. Refs. 

2 and 3 instead focus on selecting which simulations to perform in an intelligent fashion. 

We show that automatic differentiation via stochastic gradient descent is effective at 

filtering noise and that our approach performs well under low-signal conditions typical of 

real-time measurements. We believe that the continuous fitting capability of our approach 

will be valuable in determining when sufficient data has been collected to terminate an 

experiment as well as in guiding where the measurement should next be performed. 

[1] Samarakoon, Anjana M., et al. "Machine-learning-assisted insight into spin ice Dy2Ti2O7." 

Nature communications 11.1 (2020): 892. 

[2] Samarakoon, Anjana, et al. "Integration of machine learning with neutron scattering for the 

Hamiltonian tuning of spin ice under pressure." Communications Materials 3.1 (2022): 84. 

[3] Samarakoon, Anjana M., et al. "Extraction of interaction parameters for α− RuCl 3 from 

neutron data using machine learning." Physical Review Research 4.2 (2022): L022061. 

[4] Doucet, Mathieu, et al. "Machine learning for neutron scattering at ORNL." Machine 

Learning: Science and Technology 2.2 (2020): 023001. 



Revisions made in response to Comments 1.1. The preceding discussion has been incorporated 

briefly in the revised manuscript as follows. 

- Refs. 3 and 4 are included as you suggested. A paragraph has been consolidated into the 

Introduction section (Lines 62-85) which describes previous ML work in further detail. 

- We have moved the explanation of the neural implicit representation idea to the Introduction 

(Lines 86-104) to further emphasize the novelty of applying this method to inelastic 

neutron scattering. 

- Further text has been added in the discussion section on the ability of our approach to 

readily ingest new data, handle missing data without the need for model retraining, and 

predicting under low signal-to-noise conditions (Lines 304-327, 363-376). 

Reviewer Comments and our Responses 1.2: Minor corrections  

- Line 86: it should say conventional FFNN, not convention FFNN. 

Thank you for the correction, we noticed that the model used for this task was actually a 

convolutional neural network (instead of a FFNN). We have made this correction in the text 

(Lines 65-68). 

- Line 138: SIREN should be defined on first use. 

Thank you for the clarifying comment. We have added the description Sinusoidal Representation 

Network (SIREN) to the text (Line 142). 

- Some passages become a bit repetitive: compare for example lines 151- 153 and eq 2 or lines 

159-160 and lines 179-180 

We have removed Equation 2 and replaced it with a mathematical definition of the SIREN 

function (ending Line 163) in response to a comment from Reviewer 2. 

The description of the motivation for the log(1+x) transform now only appears once in the 

manuscript (Lines 152-154). 

- Line 167: Since this article is probably intended for a wider readership it would be good to 

explicitly label all referenced BZ critical points in Fig 1b (P is missing). 

Thank you for this comment. We have added the missing point to the revised Figure 1b. 



Reviewer #2 (Remarks to the Author): 

Reviewer Comments 2.1: The authors present a new methodfor applying neural-network 

techniques to the modeling of measured excitations in a crystal. Here they apply the approach to 

determining superexchange parameters for spin waves in antiferromagnetic La2NiO4, making 

use of recent experimental results obtained by time-of-flight neutron scattering. The method 

involves training the neural network on model calculations for a range ofparameter values and 

then finding the result that gives the best match to the experimental data. If applied in real time 

during an experiment, this approach has the potential to optimize measurement time. 

In my opinion, this new approach to data analysis is quite interesting. I would support 

acceptance after the authors have had a chance to consider the following comments. 

Our Response 2.1: Thank you very much for your review. We found your questions very helpful 

and hope that the amendments will strengthen the work and make it more accessible to the 

readership. Furthermore, we have included your suggestions about highlighting relevant 

experimental conditions which may pose issues for the ML methodology presented here. 

Reviewer Comments and our Responses 2.2: 

1. Please insert each equation between lines within the paragraph where it is discussed, not at 

the end of the paragraph. 

Thank you for this suggestion, which is now followed in the revised manuscript. 

2. Some notation is used that may be common among neural network experts but which is 

unfamiliar to an experimentalist such as myself. Please present more definitions. For example, 

please explain the set theory notation first used in line 152. 

We are happy to follow your thoughtful suggestion. We have included a few changes to better 

present the work to experimentalists: 

- We have now added definition for R_+^1 being a real positive number {x∈R∣x>0} 

(Line 146) 

- We have added details of SIREN as an acronym for Sinusoidal Representation Network 

(Line 142). 

- We have added a brief explanation of the key parameters that govern ML training in the 

Methods: SIREN Model Training section (Lines 480-484). 

- We have added a brief explanation for the batch size parameter for the auto-differentiation 

of the ML model in the Methods: Machine Learning Parameter Extraction section (Lines 

513-515) 



3. Please give a better explanation for \Phi. Equation (2) is not an equation: what does the right 

arrow mean? Also, what is the connection to Fig. 1(c), which is supposed to provide a 

visualization. Related to that, the figure shows “64 x 3” twice, while the caption mentions 64 x 3 

and 64 x 1, why? Please give a better explanation for \Phi. Equation (2) is not an equation: what 

does the right arrow mean? 

Thank you for this question. \Phi is the neural network which aims to approximate the function 

log(1+S(Q,w,J,Jp)). Equation 2 was intended to represent this mapping, but we recognize that 

this is unclear and that it is not actually an equality. We have removed this equation from the 

text and instead provided a new Equation 2 which is the mathematical definition for the SIREN 

function. Note that the implicit neural representation is composed of a series of matrix 

multiplications and vector additions which are non-linearly transformed by successive 

applications of the sine function. The matrices and vectors used are “learned” during the 

optimization procedure in order to allow \Phi to closely mimic log(1+S(Q,w,J,Jp)). The 

preceding points are now clarified in the text when discussing Eq. 2 (Lines 154-163). 

Also, what is the connection to Fig. 1(c), which is supposed to provide a visualization. 

With the new Equation 2, Figure 1c now corresponds directly. It is the graphical representation 

of the series of matrix multiplications given by Equation 2. 

Related to that, the figure shows “64 x 3” twice, while the caption mentions 64 x 3 and 64 x 1, 

why? 

Thank you for this correction – this was a typo in the Figure. The figure has been amended to show 

64x3 for the neural network layers with the sinusoidal activation function and 64x1 for the layer 

with the linear activation function. This is also clarified in the Figure 1c caption. 

4. The potential application to real-time analysis during data collection seems to assume that the 

full Q-dependence is collected simultaneously. I suspect (based on my own experience) that the 

experimental data shown required measurements at many different sample angles. Of course, 

such measurements can be repeated, and the analysis approach could be applied before 

repetitions to determine whether they are necessary. Noting this sort of reality would be 

appropriate. 

Thank you for this comment. We agree that the way in which the effectiveness of the framework 

for real-time analysis is examined assumes that the full Q-dependence has been collected. This 

exercise gives insight into the ability of the model to handle low statistics and noisy data. We added 

your comment in the text, that once a full data set has been collected, this could be used to determine 

if more data is needed. We also note that future work could involve simulating the training data 

with respect to sample orientations, which would be preferred when considering 



experimental guiding for a real, live experiment. We adapted the manuscript to include these points 

in the section on Real-Time Fitting (Lines 282-289) in the Discussion (Lines 378-388). 

5. The real-time analysis proposal also neglects possible complications from features such as 

phonons. In the present case, it appears that the “background” subtraction scheme, along with the 

large L-integration range, has been effective in minimizing phonon signal relative to spin waves. 

This may not always be the case (or at least an effective way to minimize the phonon signal might 

not be obvious in real time). 

We agree that the specific “background” subtraction scheme applied here suppresses dispersionless 

phonon modes. This scheme is already challenging for strongly dispersive phonons or excitations 

of orbital nature. Implementing a framework for more complex background subtraction will be 

interesting for future work but it is beyond the scope of this work. We have added comments on 

this challenge in the Discussion section (Lines 345-355). 



Reviewer #3 (Remarks to the Author): 

Reviewer Comments 3.1: The authors report on a developed AIframework combining a neural 

network trained to mime simulated data from a model Hamiltonian with automatic differentiation 

to recover unknown parameters from experimental data, and benchmark the approach on a 

LSWT simulator and an experimental INS dataset. 

This work meets the current challenges to use neutron and photon beamtime as efficient as 

possible, and to make use of advanced computing opportunities on the other hand. The strength 

of the presented paper lies in a thorough analysis of the existing work in the field, the focus on a 

well-defined problem complementary to existing approaches (predicting continuous parameters 

within an assumed Heisenberg model during neutron/x-ray experiments), and considering the 

specific aspects of the physics and experimental technique (rapid decisions on sufficient 

statistics, weighting weakfeatures in the spectrum, background consideration, instrument 

resolution, low neutron experiment count-rates). The clear definition of the problem to answer 

and the limitation of methodological development on that allows to present an approach 

which identifies successfully the key parameters of a linear spin-wave spectrum. 

The work is justified in detail. The paper is very well structured and explained, it allows both 

specialists in solid-state physics and AI methods to follow a well-thought strategy, its different 

steps and the reasons to choose the methods and to neglect aspects in this state of the work. 

Being not a specialist in AI methods the methodological decisions are reasonable to me. The 

benchmark on La2NiO4 is carefully performed and provides very good results with respect to 

physics and ML method. The idea to create aa surrogate model in advance making an in-situ 

parameter estimate during the experiment possible is excellent. Providing suited tools in addition 

could be a big step in changing certain inelastic experiment procedures to be more efficient. 

I therefore suggest to publish the work giving huge impact to the experimental method. 

Our Response 3.1: Thank you very much for your review. We appreciate the positive comments 

about the readability of the manuscript and the appropriateness of the approach to be applied to 

experimental settings. We include all your suggested changes which are detailed specifically 

below. 



Reviewer Comments and our Responses 3.2:  

There are only few minor comments: 

• Fig. 1c: May there be a typo in the given layers? Two times 64 x 3 instead of 64 x 1 and 64 x 3? 

In case the figure is right, please explain. 

Regarding Fig. 1c, this was indeed a typo. The figure has been amended to show 64x3 for the 

neural network layers with the sinusoidal activation function and 64x1 for the layer with the 

linear activation function. We have also clarified this point in the figure caption. 

• Fig.2: For sure the colour plots look very similar but the quantitative comparison is difficult by 

eyes. Would it be reasonable to show the subtraction or any other quantitative criteria for the 

agreement? 

Following your suggestion, we have now added an additional figure in the Supplementary 

Information section, which shows the absolute difference between the LSWT simulation and the 

ML prediction (Supplemental Figure S2). At the colorbar level which is used for the rest of the 

data in the manuscript (0.5), there are only small variations between the simulation and the ML 

prediction. Note, there appears to be some alternating patterns in the difference profile. This is 

likely due to the discrete choice of momenta simulated with SpinW. This is smoothed by the ML 

prediction which is continuous. The preceding points are noted in the caption to Figure S2. 

• Line 338: number of detected neutrons within the path region – could this be so clearly stated 

in the caption ofFig. 4, too, instead of “Detector Counts”? 

We have amended the Figure 4a x-axis label to “Number of detected neutrons within path 

regions” and corrected the caption appropriately.  



REVIEWERS' COMMENTS 

Reviewer #1 (Remarks to the Author): 

The latest version of the manuscript exhibits significant improvements compared to its previous 

iteration. The authors have taken steps to address all comments and suggestions. In particular, the 

introduction now provides readers with a clearer and more comprehensive understanding of the 

research's scope and significance, and overall the new version adeptly highlights the novel aspects of the 

study, emphasizing the original contributions it brings to the field. 

Although I retain some minor reservations regarding the novelty and potential impact of the research, I 

acknowledge that such assessments can be subjective. Considering the significant improvements made 

to the manuscript and taking into account the opinions of the other referees, I find no compelling reason 

to object to its publication. 

Reviewer #2 (Remarks to the Author): 

I have read the authors' responses to my comments and those of the other referees, as well as the 

changes to the manuscript. In my opinion, the authors have made reasonable modifications of the 

manuscript. I support acceptance of the revised manuscript. 

Reviewer #3 (Remarks to the Author): 

The authors report on an AI framework using a neural-network technique for modeling excitations from 

neutron (or x-ray) scattering data, and apply it on the example of spin waves in La2NiO4 measured by 

inelastic neutron scattering. The aim of the development is an in-situ determination of the model 

parameters (here: the exchange parameters) during the experiment. 

The revised version of the paper is significantly improved in readabilty, especially for non-specialists 

(either in neutron scattering or in ML methods), and I appreciate the effort to consider the comments of 

the editor and the reviewers. The paper provides an (again improved) thorough analysis of the existing 



work in the field including the specific aspects of the physics and experimental technique. The approach 

is well justified to be complementary to others and providing a new way for real-time interpretation of 

experimental data, by fitting model parameters with ML technique but without (human-guided) peak-

fitting procedures. 

Being not an expert in ML methods, I accept the novelty and the sense of the approach. Absolutely, the 

work contributes to the scientific discussion on the potential and the usefulness of ML techniques in 

neutron and x-ray scattering beyond image analysis, and will interest scientists to re-use the provided 

approach. This will lead to a discussion of the effort (e.g. number of simulations before the experiment) 

and benefit (e.g. beamtime saved) vs. the scientific outcome in the field of inelastic scattering, and drive 

the development of experimental procedures and possible cultural changes. 

All reviewer comments have been considered. 

Therefore, I recommend to publish the paper after considering the following point: 

Thanks for preaparing figure S2. I understand the alternating pattern in the difference profile. 

Nevertheless, I am not sure about the scale of the color code - if the values of S(Q,w) in Fig.2 are mainly 

0...0.5, the difference of both approaches (LSWT and ML prediction) cannot be of +-0.4 in similar units. 

In addition, the difference plot should not mimic the shape of the dispersion, but should be more or less 

flat (especially since there are "there are only small variations between the simulation and the ML 

prediction" as mentioned in your reply. May be there is a differnt understanding of "difference plot"; 

please check again and either describe the difference plot in more detail or change the scale(s). 



Response to Reviewers

We thank the reviewers for their thorough review of our manuscript and for their time and
effort during this process. Having addressed the comments from peer review, we feel that
the quality and impact of the manuscript has been substantially improved.

Below, we address the last remaining comment from Reviewer 3:

Thanks for preaparing figure S2. I understand the alternating pattern in the difference profile.
Nevertheless, I am not sure about the scale of the color code - if the values of S(Q,w) in Fig.2
are mainly 0...0.5, the difference of both approaches (LSWT and ML prediction) cannot be of
+-0.4 in similar units. In addition, the difference plot should not mimic the shape of the
dispersion, but should be more or less flat (especially since there are "there are only small
variations between the simulation and the ML prediction" as mentioned in your reply. May be
there is a differnt understanding of "difference plot"; please check again and either describe
the difference plot in more detail or change the scale(s).

Thank you for your comment. The difference plot here is simply the prediction minus spinW
simulation. We have changed the colorbar to reflect the maximal positive and negative
deviation and updated the figure caption accordingly. In fact, we would expect that the
difference plot might mimic the shape of the dispersion curve. Here, the difference is really
highlighting the areas where the model may be uncertain. Note, in regions where the true
signal is 0, the ML model is able to confidently predict that the value will be 0 (this is
because neighboring pixels also have 0 values). However, there is higher uncertainty on the
dispersion curve and so we would expect worse predictions in this region. This is
particularly true since the simulated curve is discrete and the ML prediction is a continuous
interpolation.
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Understanding the nature and origin of collective excitations in materials is of fundamental importance for
unraveling the underlying physics of a many-body system. Excitation spectra are usually obtained by measuring
the dynamical structure factor, S(Q,ω), using inelastic neutron or x-ray scattering techniques and are analyzed
by comparing the experimental results against calculated predictions. We introduce a data-driven analysis tool
which leverages ‘neural implicit representations’ that are specifically tailored for handling spectrographic mea-
surements and are able to efficiently obtain unknown parameters from experimental data via automatic differ-
entiation. In this work, we employ linear spin wave theory simulations to train a machine learning platform,
enabling precise exchange parameter extraction from inelastic neutron scattering data on the square-lattice spin-
1 antiferromagnet La2NiO4, showcasing a viable pathway towards automatic refinement of advanced models
for ordered magnetic systems.

INTRODUCTION

Quantum matter, as featured by the existence of macro-
scopic orders from microscopic spin and/or charge arrange-
ments or other phases with spontaneous symmetry breaking,
represents an abundant and complex class of materials in con-
densed matter physics. For example, the magnetic config-
uration of a material and its dynamics are often driven by
competing effects of multiple interactions as well as crys-
talline symmetries. The collective spin excitations in most
magnetic materials, such as spin waves or magnons, act as
probes of those interactions. The associated dispersion rela-
tions and correlations are key for developing potential appli-
cations, which include next generation spintronics devices, as
well as new strategies for carrying, transferring, and storing
information [1–3].

A primary aim of the last few decades has been to char-
acterize wide classes of excitations, and this has been facil-
itated by advances in spectroscopic techniques, such as neu-
tron scattering [4–7]. These techniques use the kinematics
of scattered neutrons to obtain dispersion relations, lifetimes,
and amplitudes of spin excitations. Neutron scattering stud-
ies are, however, challenging due to the paucity of available
neutron sources, low neutron flux compared to other sources,
and small neutron scattering cross sections. As a result, the
question of how the efficiency of neutron experiments could
be enhanced is drawing considerable interest in the field [8, 9].
Notably, the interpretation of neutron scattering spectra can be

challenging and time-consuming due to the complex nature of
the physical processes involved, the diversity of samples, and
the limited knowledge often provided by theoretical model-
ing. It is clear that there is an urgent need for collaboration
among experiment, theory, and data science to accelerate the
understanding of spin-related properties of materials [10].

As the rates of data collection continue to increase rapidly,
especially with the advent of next-generation X-ray free elec-
tron laser facilities and the ability to collect hyper-dimensional
datasets, it is important to develop techniques for real-time
modeling and analysis of experimental spectra. The ability to
perform ‘on-the-fly’ fitting [11] would enable efficient use of
expensive beamtime by ascertaining when sufficient data has
been collected, as well as by coupling to adaptive sampling
methods to gain the most information about parameters of in-
terest with the least number of measurements. Currently, real-
time fitting for neutron scattering data can require substan-
tial preparation. For example, direct fitting with the software
package SpinW [12] requires the extraction of the eigenmodes
of the system and therefore, needs an accurate, and prefer-
ably automatic, peak extraction algorithm. When the chosen
paths in reciprocal space are numerous or the dispersion rela-
tions change significantly along those paths, this can involve
significant human guidance and monitoring. In addition, fit-
ting directly with SpinW does not take into consideration the
magnon peak intensities or their shapes. Approaches to fit
peak intensities and shapes directly, such as Multi- or Toby-
fit implemented in HORACE [13], are possible alternatives –
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however, these fitting procedures still require significant hu-
man guidance and are either slow and therefore incompatible
with data acquisition rates or else they require an analytical,
rapidly calculable spin wave model. Finding such a model is
usually only feasible for simpler systems with minimal mag-
netic frustration or a low number of magnetically distinct sites.

Machine learning methods have recently been utilized in
the analysis of x-ray and neutron scattering measurements to
improve the accuracy and speed of data interpretation [10, 14].
Convolutional neural networks, trained on linear spin wave
simulations, have been applied to inelastic neutron scatter-
ing measurements to discriminate between two plausible mag-
netic exchange models [14, 15]. As these models are typically
trained on simulated profiles, achieving robust prediction gen-
erally requires detailed modelling and corrective dataset aug-
mentations of experimental effects accounting for attributes
such as background noise, missing data, and matching in-
strumental profiles [15–17]. Recently, a cycleGAN approach,
which makes experimental data look like simulated data has
been proposed as a way to improve model robustness [16].
In cases where the desired observables have continuous val-
ues, such approaches are often highly sensitive to background
noise and other effects [18]. To predict continuous Hamil-
tonian parameters from static and inelastic neutron scattering
data, previous approaches have utilized a combination of an
autoencoder neural network, used for data compression, and
a generative model, used for forward prediction [14, 19–21].
This pipeline has been shown to return excellent results on
fully-collected data but has not previously been applied to the
setting of on-the-fly parameter extraction.

Prior machine learning efforts in the neutron scattering
community have relied on traditional image-based data rep-
resentations. A promising direction in this field can be cap-
italized on with the introduction of a new paradigm of data
modelling based on neural implicit representations [22, 23].
Such models are often described as coordinate networks as
they take a coordinate as input and typically output a single
scalar or a small set of scalars. In computational imaging
applications, these networks learn mappings from pixel co-
ordinates (i, j) to an RGB value representing the color of that
pixel. The coordinate-based representation encodes the image
implicitly through a set of trainable weights and can be used
to make predictions at sub-pixel scales. These models have
been shown to be able to accurately capture high-frequency
features in images and scenes and have been particularly suc-
cessful at tasks such as 3D-shape representation and recon-
struction. Furthermore, gradients and higher-order derivatives
of the implicit representation can be readily calculated and
used for solving inverse-problems [22, 24–26].

In this work, we develop a neural implicit representation
for the dynamical structure factor, S(Q,ω), as a function of
energy transfer (ℏω), momentum transfer (Q), and Hamilto-
nian parameter coordinates. The dynamical structure factor is
a general function measured in many inelastic x-ray and neu-
tron experiments and is related to different correlation func-
tions of the probed order, see Methods for further details. To

demonstrate the versatility of our method, we report the re-
sults using a series of calculations based on mean field theory
through the linear spin wave theory (LSWT) framework [27].
We simulate LSWT spectra for a spin-1 square-lattice Heisen-
berg model Hamiltonian over a large phase space of Hamilto-
nian parameters and use it to train a neural implicit represen-
tation. The model is applied to experimental time-of-flight
neutron spectroscopy data [28] taken on the quasi-2D Néel
antiferromagnet La2NiO4, and leverages a GPU-based opti-
mization procedure to return the Hamiltonian parameters that
represent the system under study. In particular, the method
does not rely on peak fitting algorithms and performs well un-
der low signal-to-noise ratio scenarios. To gain further insight,
we use a Monte-Carlo simulation of the experimental data col-
lection process to demonstrate the potential of our approach
for continuous in-situ analysis to provide guidance on when
an adequate amount of data has been collected to conclude the
experiment. Collectively, these findings pave the way for con-
ducting scattering experiments in a streamlined and efficient
manner, and open exciting new avenues to swiftly unravel the
parameterization of underlying dynamical models.

RESULTS

Neural Implicit Representation Modelling

Our machine learning framework is based on the concept
of implicit neural representations which are machine learning
models that can be used to store images (or hypervolumes)
via trainable network parameters. Accordingly, we develop a
neural implicit representation for the hyper-volume of the dy-
namical structure factor across different model Hamiltonian
parameters. Our Hamiltonian, which corresponds to an ex-
tended nearest-neighbor Heisenberg model, is given by Equa-
tion 1 [7, 29].

H =J ∑
⟨i, j⟩

Ŝi · Ŝ j+Jp ∑
⟨i, j′⟩

Ŝi · Ŝ j′, (1)

As depicted in Fig. 1a, J and Jp are the first- and second-
nearest-neighbor Heisenberg exchange coupling parameters
on a square lattice. Thus, for Qx and Qy, a square-lattice no-
tation is utilized with a and b corresponding to the vectors
connecting the first nearest neighbors or opposing edges of
the square, respectively.

The specific implicit neural representation presented in this
work is a Sinusoidal Representation Network (SIREN) [22],
which is a fully-connected neural network [30] with sinu-
soidal activation functions that accepts coordinates as input.
Our SIREN model is trained to approximate the scalar func-
tion log(1+S(Q,ω,J,Jp)) ∈R1

+ (a real positive number {x ∈
R|x > 0}), which is a logarithmic transformation of the dy-
namical structure factor evaluated at a specific Q ∈ R3 (3 di-
mensional, reciprocal lattice vector in reciprocal lattice units
(r.l.u.)), ℏω ∈ R1 (energy transfer in units of meV) and J and
Jp ∈ R1 (specific Hamiltonian coupling parameters in units
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of meV). We use the logarithm to increase the weighting of
weaker features in the data and to prevent ill-conditioned be-
haviour around zero.

The functional form of the SIREN neural network, denoted
as Φ, involves applying a series of matrix multiplications, vec-
tor additions and sinusoidal operations to the coordinate vec-
tor [Q,ω,J,Jp]

⊺ ∈ R6 (Equation 2).

h0 = sin(W0[Q,ω,J,Jp]
⊺+b0)

hi = sin(Wihi−1 +bi) with i ∈ {1,2,3}
Φ = (W4h3)+b4 (2)

Here, b0 ∈ R6, {b1, b2, b3} ∈ R64, b4 ∈ R1, W0 ∈ R64×6,
{W1, W2, W3} ∈ R64×64 and W4 ∈ R1×64 are vectors and ma-
trices, respectively, that are learned during the training process
to ensure that Φ(Q,ω,J,Jp) mimics log(1+S(Q,ω,J,Jp)) as
closely as possible. Graphically, W0,W1, W2, and W3 corre-
spond to the weights between the first four layers of the net-
work which are transformed by applying the sine function in
an element-wise manner. W4 represents the weights for the
final layer for which no non-linear function is applied. This
specific neural architecture is also illustrated in Fig. 1c.

We note that although our model is written for three-
dimensional Q, the neutron profiles used in the following
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sections do not include a Qz component due to limited sample
orientations. The model is trained on 1,200 LSWT simula-
tions of S(Qlist,ωlist) over a large set of possible J and Jp
values and on two paths in reciprocal space (Fig. 1b). Q-path
1 and 2 are denoted as P→M→ X→ P→ Γ→ X and P1→
M1→ X1→ P1→ Γ1→ X1 which correspond to Qpath1 ={[ 3

4
1
4 0

]
,
[ 1

2
1
2 0

]
,
[ 1

2 0 0
]
,
[ 3

4
1
4 0

]
, [1 0 0] ,

[ 1
2 0 0

]}
and

Qpath2 = [−0.07 0.03 0] + Qpath1. Here, Qlist ∈ RNQ and
ωlist ∈ RNω is an overloaded notation which refers to a series
of NQ and Nω points in the (Q,ω)-space, respectively.

Once the differentiable neural implicit model is trained, it
is possible to use gradient-based optimization to solve the in-
verse problem of determining the unknown J and Jp param-
eters from data. Our objective function for the optimization
task measures the Pearson correlation coefficient (r) between
log(1 + S(Q,ω,J,Jp)) and the machine learning prediction
(Equation 3).

L = 1− r(log(1+Smeasured),Φ(Q,ω,J,Jp)) (3)

We use the correlation as the metric because the normaliza-
tion factors between the experiment and simulation are here
unknown. Using the prior is favourable as it enhances the
weighting of the coherent excitation at high ℏω and further
helps evade contamination due to statistical noise in the elas-
tic and incoherent-inelastic scattering, which arises primarily
at low ℏω and that cannot be removed by background sub-
traction. The latter is important since we are not aiming to
fully describe the spectral weights, which would require the
exact handling of all individual neutrons in the full three-
dimensional Q-space, instead of the averaged weight in the
reduced two-dimensional Q-space. During optimization, any
subset of (Qlist, ωlist) coordinates can be chosen as long as
they fall along either of the paths defined in Fig. 1b. Here, we
note that from an inference point of view, any momentum or
energy coordinates could be chosen, however our training data
only includes two reciprocal-space paths. To determine the
Hamiltonian parameters, J and Jp are treated as free parame-
ters in the optimization problem. The objective in Equation 3
is optimized using the Adam optimizer [31], a commonly used
gradient-based optimization algorithm that exploits the auto-
matic differentiation capabilities in Tensorflow [32] to calcu-
late dL

dJ and dL
dJp

, see Methods for details.

In our technique, it is not necessary to use all sets of Qlist,
ωlist along both paths to perform the fitting. Instead, ran-
dom batches of coordinates (Qbatch, ωbatch) can be queried
at each optimization iteration in order to improve computa-
tional efficiency and converge to a better minimum, in a man-
ner similar to the regularization effects of stochastic gradient
descent [33]. Pseudo-code for the optimization procedure is
provided in Algorithm 1.

Algorithm 1 Differentiable Neural Optimization
while N < MaxIter do

Qbatch, ωbatch, Sbatch ∼ [Qlist, ωlist, Slist]
log(1+Spred) = Φ(Qbatch, ωbatch, J, Jp)
J, Jp← ADAM(L(Sbatch, Spred))

end while

Application to La2NiO4

We first characterize the performance of our machine learn-
ing framework on simulated SpinW data in order to demon-
strate the viability of using a neural implicit representation for
the LSWT simulator. Fig. 1e demonstrates the ability of our
implicit model to generate new predictions for S(Q,ω) un-
der Hamiltonian parameter ranges that lie outside the training
data. Fig. 2 provides a comparison between the LSWT and
machine learning simulation with specific values of the input
parameters (J = 45.57 meV and Jp = 2.45 meV). In this exam-
ple, the machine learning framework was fed (J, Jp) directly
(instead of obtaining these parameters using gradient descent
through the neural representation). The machine learning pre-
diction and the LSWT simulation are seen to be almost in-
distinguishable. A quantitative analysis of the difference be-
tween simulation and prediction is provided in Supplementary
Fig. S2.
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Figure 2. Comparison between linear spin wave theory simulation
and machine learning prediction for a given set of parameter val-
ues (J = 45.57 meV and Jp = 2.45 meV). a Example of ground-truth
simulated S(Q,ω) calculated using the SpinW software program and
b corresponding machine learning forward model prediction.

Although our model can clearly approximate simulated
data well, our main motivation, however, is to provide a tool
that can reliably extract the spin Hamiltonian parameters of
interest from real, experimental data. For this reason, we ap-
plied our method to the measured inelastic neutron scattering
data (after an automatic background-subtraction) taken from
the quasi-2D Néel antiferromagnet La2NiO4. Experimental
data prior to background subtraction are shown in Supplemen-
tary Fig. S1. Though a full 3D dataset was collected, we chose
two paths in Q-space to simulate many spectra for a range
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of J and Jp for the model training prior to any inclusion of
real data. After the model was trained on the two simulated
paths, we applied Algorithm 1 to determine J and Jp from the
data. The optimization for both experimental paths was per-
formed jointly, and therefore, the fit parameters are the same
for both cases. Our approach was found to yield excellent pre-
dictions, both qualitatively and quantitatively, relative to the
results of a detailed and expensive analytical fit, as shown in
Fig. 3a and b. The analytical parameters in the LSTW limit,
adapted from Petsch et al. [28], are J = 29.00(8)meV and
Jp = 1.67(5)meV. The parameters obtained from our machine
learning fitting are J = 29.68 meV and Jp = 1.70 meV. We
also experimented with fitting each path independently and
also obtained similar predictions; for path 2, this is especially
notable since a significant portion of the experimental data is
missing in this case, see Supplementary Fig. S3. Supplemen-
tary Fig. S4 provides fitting results from SpinW with algorith-
mic peak-fitting, which yields similar results for this dataset.

Since our neural implicit model is computationally inex-
pensive to evaluate, we also constructed a loss landscape of
the objective function with respect to J and Jp. The objective
function is found to be well-behaved and the gradient descent
scheme finds a fit close to the analytical result (Fig. 3e). We
emphasize that the only information provided to the algorithm
is the knowledge of a region of the (Q,ℏω)-space on which to
carry out an automatic background subtraction prior to fitting
the data. Importantly, no peak finding or extraction is needed
as the optimization objective uses the intensity of all provided
voxels in the (Q,ℏω)-space or pixels on the 2D intensity map
rather than the magnon peak positions ℏωQ.

Real-Time Fitting

In real experimental settings, another critical issue is the
ability to make rapid decisions on whether or not sufficient
data have been collected at any one time to allow for a good
understanding of the physics being explored.

To probe the effectiveness of our framework for real-time
fitting during an experiment, and to reduce data collection
time, we used the experimental data to generate plausible data
for low counting situations. Specifically, we smoothed the ex-
perimental data and used it as a probability distribution which
is sampled using rejection sampling, see Methods. In a real
experiment, a sample is normally measured using a series of
different orientations on the spectrometer, often which vary-
ing time scales. Here, the rejection sampling simulates the
La2NiO4 neutron scattering experiment performed in the same
sample orientations but with throughout equally shorter data
collection times. This exercise gives insight into the viability
of our approach for handling low statistics and noisy data. We
note that any “detector noise” and scattering from the sam-
ple environment is negligible compared to statistical noise in
the scattering from the sample. In Fig. 4a, we show the ob-
tained parameters from the machine learning fitting as a func-
tion of the number of detected neutrons within the two path
regions. Visualizations of path 1 at selected points in time
are also shown in Fig. 4b. The machine learning prediction
is obtained as the lowest objective value from 10 independent
gradient descent optimizations starting from random locations
in the Hamiltonian parameter space. Using the median predic-
tion gives very similar results. This test demonstrates that our
machine learning model quickly converges to the true solution
and is effective under low signal-to-noise conditions.
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DISCUSSION

In this work, we develop a neural implicit representation
customized for inelastic neutron scattering analysis and show
that this model can enable precise extraction of Hamiltonian
parameters and has the potential to be deployed in real-time
settings to minimize required counting time.

We emphasize that our implicit modelling scheme con-
siders data as coordinates (Q,ω,J,Jp) which is fundamen-
tally different from the traditional image-based representa-
tions. One benefit of this approach is that the model continu-
ously represents energy, momentum, and Hamiltonian param-
eters, and can therefore be used to make predictions at dis-
placed coordinates (Q+δQ,ω +δω,J +δJ,Jp +δJp). This
enables prediction at finer resolutions of Q and ω than those
recorded on pixelized detectors or at Hamiltonian parameters
not present in the training set. Additionally, since the model
is a SIREN neural network, it is composed of a series of dif-
ferentiable operations and is therefore amenable to automatic
differentiation techniques. This is highly advantageous and al-
lows the entire analysis pipeline to be compactly expressed by
a single model that is end-to-end differentiable relative to the
parameters of interest. This approach also allows for an ele-
gant treatment of missing data. Here, missing coordinates can
simply be dropped from the parameter estimation step without
the need for additional model retraining or data masking.

To validate our approach, we use inelastic scattering data
from La2NiO4 and find that our method accurately recov-
ers unknown parameters corresponding to the assumed spin-1
Heisenberg Hamiltonian model on a square lattice. The small

overestimation of J arises from several factors. Small differ-
ences in the value of J arise from the 3-dimensionality of Q
and the associated variations in the magnetic form factors and
polarization factors. Such 3-dimensional information is not
included in our analysis since we only consider quantities av-
eraged over Qz ∈ [−10,10] r.l.u. Also, the resolution function
and finite lifetime are only approximations here and further,
any multi-magnon scattering is not described by LSWT. Fi-
nally, we do not include effects of the experimentally observed
energy shifts resulting from the spin gaps [28, 34]. These is-
sues could, however, be addressed through more comprehen-
sive simulations within the overall modelling framework pre-
sented here.

Another area for improvement concerns the challenging
task of background subtraction. For the analysis of La2NiO4,
we were able to develop an automatic background subtrac-
tion scheme, based on human insight, to successfully suppress
non-magnetic contributions which include non-magnetic co-
herent excitations (phonons here). However, the suppression
of other contributions by this method may not always be fea-
sible. In future work – phonon dispersion calculations, nu-
clear structure factors, and usage of Q-dependence of spectral
weights – could be implemented in our framework to distin-
guish additional coherent excitations.

Our ability to continuously fit and refine data as it is col-
lected is important for enabling more efficient and informative
experimental design. Since neutron scattering measurements
typically involve low detector count rates, this is a major fac-
tor that will influence the efficiency of measurement time at
facilities. Moreover, one would like to minimize the amount
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of time needed to complete an experiment without sacrificing
data quality. We have shown our model to perform well un-
der low signal conditions and to yield accurate Hamiltonian
parameter predictions, thereby providing guidance on when
best to conclude data collection. Here, stochastic gradient de-
scent of the neural implicit model is an effective strategy to
filter noise and achieve robust optimization. Note that, if other
paths in reciprocal space were available, leveraging the infor-
mation obtained in the additional data would have simply re-
quired training with additional simulations, without any nec-
essary changes to the overall machine learning model. This is
an important point for real-time applications, as the flexibil-
ity of the coordinate-based representation to ingest additional
data is a significant advantage over from conventional analy-
sis pipelines, which rely on manually guided peak-fitting algo-
rithms that are not suited to this type of high-dimensional data.
We note that the characterization of the framework’s effec-
tiveness for real-time fitting only considers the case of shorter
counting times across all measured sample orientations, high-
lighting the framework’s capability to handle sparsely dis-
tributed detection. Since such measurements usually have to
be repeated, this analysis approach could be applied between
repetitions to determine whether more data collection is nec-
essary. Furthermore, additional work could involve simulating
the training data with respect to sample orientations, which
would be preferred when considering experimental guiding
for a real, live experiment. In general, we anticipate that our
method will be readily compatible with autonomous experi-
mental steering agents by exploiting the model’s fast and scal-
able forward computations which are essential in Bayesian ex-
perimental design [35, 36].

Although the present contribution focused on linear spin
wave simulations, the approach presented here is not re-
stricted to a particular choice of theoretical scheme. We ex-
pect that our framework will be particularly impactful when
combined with using expensive and advanced computational
methods for simulating strongly correlated systems, such
as exact diagonalization (ED) [37], density matrix renor-
malization group (DMRG) [38, 39], determinant quantum
Monte-Carlo (DQMC) [40, 41], and variational Monte Carlo
(VMC) [42, 43] simulations.

The methodology presented here breaks the barrier of real-
time fitting of inelastic neutron and x-ray scattering data, by-
passing the need for complex peak-fitting algorithms or user-
intensive post-processing. Our study thus opens new oppor-
tunities for significantly improved analysis of excitations in
classical and quantum systems.

METHODS

Sample Preparation and Data Collection

In the experiment a 21 g single crystal of the quasi-
2D Néel antiferromagnet La2NiO4+δ (P42/ncm with a =
b =5.50 Åand c =12.55 Å), grown by the floating-zone tech-

nique, was utilized. The presented time-of-flight neutron
spectroscopy data were collected on the SEQUOIA instru-
ment at the Spallation Neutron Source at the Oak Ridge Na-
tional Laboratory [44] with an incident neutron energy of
190 meV, the high-flux Fermi chopper spun at 300 Hz, and
a sample temperature of 6 K. The data is integrated over the
out-of-plane momentum Qz ∈±10 r.l.u. The lattice can be ap-
proximated by I4/mmm with a = b ≈ 3.89 Å. Qx and Qy for
I4/mmm are equivalent to Qx and Qy in the square-lattice no-
tation. For more details see Ref. [28].

SpinW Simulation and Fitting

In an inelastic scattering experiment the measured quan-
tity is the partial differential cross section which is re-
lated to the dynamical structure factor S(Q,ω) by d2σ

dΩdE f
=

k f /ki S(Q,ω), where ki and k f are the incident and fi-
nal neutron or photon wave vectors. In our simulations,
the dynamical structure factor is approximated to S(Q,ω) ∝

∑m,n
∫

dt e−iQ·(rm−rn)e−iωt⟨Sm(t)Sn(0)⟩, where ⟨Sm(t)Sn(0)⟩
represents spin-spin correlations at different atomic sites m,n.
The neutron polarization factor as well as the magnetic form
factor are neglected here.

The two momentum paths used for S(Q,ω) simulation are
Qlist1 =

{[ 3
4

1
4 0

]
,
[ 1

2
1
2 0

]
,
[ 1

2 0 0
]
,
[ 3

4
1
4 0

]
, [1 0 0] ,

[ 1
2 0 0

]}
and Qlist2 = [−0.07 0.03 0]+Qlist1, respectively in reciprocal
lattice units. The SpinW software [12] was used to perform
600 simulations for each path (1200 total) corresponding to
randomly sampling J and Jp in ranges of [20, 75] meV and
[-30, 10] meV. The lower limit for J and upper limit for Jp are
chosen such that the ground state remains the Néel state which
is satisfied in LSWT for J > 2Jp and J > 0. For each location
in Q, the corresponding energies from 0 - 200 meV were ob-
tained. The quantum fluctuation renomalization factor Zc is
set to 1.09 [28, 45, 46]. After simulation, the data was convo-
luted with an energy-dependent kernel based on the beamline
instrument profile. For this procedure, an in-built tool from
SEQUOIA was used to give a polynomial fit for the depen-
dence of the resolution (FWHM) in meV on the energy trans-
fer (ℏω) in meV: FWHM = 1.4858×10−7(ℏω)3 +1.2873×
10−4(ℏω)2−0.084492ℏω+14.324 [44]. In addition, the data
was broadened with a 1D Gaussian kernel (σ = 5 pixels) in
Q to correct for the discrete sampling of the simulation and to
partially consider the momentum resolution of the instrument.

The SpinW-software-based spin wave spectrum fitting was
implemented using its built-in function. The inputs are
peak information extracted from experimental spin wave dis-
persion data. The R value is optimized using a particle
swarm algorithm to find the global minimum defined as
R =

√
1/nE ×∑i,Q 1/σ2

i,q(ℏωsim
i,Q −ℏωmeas

i,q )2, where (i,q) in-
dex the spin wave mode and momentum, respectively. Esim
and Emeas are the simulated and measured spin wave energies,
σ is the standard deviation of the measured spin wave energy
determined previously by fitting the inelastic peak and nE is
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the number of energies to fit.

SIREN Model Training

A 5-layer SIREN neural network (Fig. 1c) was trained on
1,000 simulations of (S(Q,ω), J, Jp) tuples; 200 simulations
were left aside for validation and testing. Here, ℏω ∈ [0 -
200] meV, J ∈ [20 - 75] meV and Jp ∈ [-30 - 10] meV were
normalized to 0-1 in order for all the parameters to be on ap-
proximately the same scale. The model was trained to predict
log(1+ S(Q,ω,J,Jp)) by optimizing the mean-squared-error
objective L between the prediction and the label with respect
to the network parameters. During training, the following
hyperparameters and settings were used: Adaptive Moment
Estimation (ADAM) algorithm for optimization (β1 = 0.9,
β2 = 0.999) [31], batch size = 2,048, learning rate = 0.001.
Here, β1 and β2 influence the degree to which past gradients
affect the current step. The batch size is a parameter which
controls the number of images used to compute the mean-
squared-error objective and the learning rate controls the gra-
dient descent step size. The learning rate was exponentially
decayed by a factor of exp(−0.1) for every epoch (full pass
through the entire dataset) after the first ten epochs. We used
NVIDIA A100 GPU hardware with the Keras API [47] and
the model was trained for 50 epochs.

Machine Learning Parameter Extraction

Prior to differentiable optimization, the experimental data
were automatically background subtracted using the follow-
ing procedure. First, a region of (Qlist, ωlist) space was cho-
sen for each slice (160-170 pixel location in the Q-axis) and
averaged across Qlist to yield a one-dimensional energy pro-
files. This procedure was chosen based on prior assumptions
on the isotropic nature of the scattering and the Néel ground
state. Next, the one-dimensional energy profiles were fit using
a Savitzy-Golay filter (window size = 51, polynomial order =
3) and used for background subtraction.

The unknown J and Jp parameters were recovered from
data using gradient-based optimization of the neural network
implicit representation. For the experimental data presented in
this work, the metric (1− r) between the measured and simu-
lated (1+S(Q, ω, J, Jp)) was used as the objective function L
introduced in Equation 3; here, r refers to the Pearson correla-
tion coefficient. No normalization was performed for scaling
the simulation data relative to the experimental data.

The objective L was optimized using the ADAM algorithm
with respect to J and Jp and Qlist and ωlist were randomly sam-
pled from the list of paths containing the experimental data.
Here, a batch size of 4,096 was used for the(Qlist, ωlist) sam-
pling, with 2,000 Adam optimization steps and a learning rate
of 0.005. Here, the batch size refers to the number of pixels
in the experimental image that are randomly selected in each
step of the optimization procedure.

Low count data generation and fitting

High-count data for each slice (without background sub-
traction) were smoothed using a 3x3 Gaussian convolutional
kernel. The resultant images were each normalized to (0, 1)
using the total intensity. Each slice was treated as a probability
distribution which was sampled using Monte-Carlo rejection
sampling. This process was used to create a series of datasets
with neutron counts in the range (1×104 - 9×106). Each
dataset was individually and automatically background sub-
tracted by the previously described method and fit ten times
from random starting locations in (J, Jp) using the machine
learning optimization procedure. Note, the corresponding
low-count data was used in order to perform the automated
background subtraction.
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resentation for Mesh-Free Inverse Obstacle Scattering. arXiv
preprint (2022). arXiv:2206.02027.

[26] Levy, A., Wetzstein, G., Martel, J. N., Poitevin, F. & Zhong,
E. Amortized Inference for Heterogeneous Reconstruction in
Cryo-EM. Advances in Neural Information Processing Systems
35, 13038–13049 (2022).

[27] Kubo, R. The Spin-Wave Theory of Antiferromagnetics. Phys-
ical Review 87, 568 (1952).

[28] Petsch, A. N. et al. High-energy spin waves in the spin-1
square-lattice antiferromagnet La2NiO4. arXiv preprint (2023).
arXiv:2304.02546.

[29] Marshall, W. & Lovesey, S. W. Theory of Thermal Neutron
Scattering (Oxford University Press, 1971).

[30] Hastie, T., Tibshirani, R., Friedman, J. H. & Friedman, J. H.
The Elements of Statistical Learning: Data Mining, Inference,
and Prediction, vol. 2 (Springer, 2009).

[31] Kingma, D. P. & Ba, J. Adam: A Method for Stochastic Opti-
mization. arXiv preprint (2014). arXiv:1412.6980.

[32] Abadi, M. et al. Tensorflow: Large-Scale Machine Learning
on Heterogeneous Distributed Systems. arXiv preprint (2016).
arXiv:1603.04467.

[33] Bottou, L. Stochastic Gradient Descent Tricks. Neural Net-
works: Tricks of the Trade: Second Edition 421–436 (2012).

[34] Nakajima, K., Yamada, K., Hosoya, S., Omata, T. & Endoh,
Y. Spin-Wave Excitations in Two Dimensional Antiferromagnet
of Stoichiometric La2NiO4. Journal of the Physical Society of
Japan 62, 4438–4448 (1993).

[35] Granade, C. E., Ferrie, C., Wiebe, N. & Cory, D. G. Robust on-
line Hamiltonian learning. New Journal of Physics 14, 103013

mailto:chitturi@stanford.edu
mailto:zhurun@stanford.edu
mailto:apetsch@stanford.edu
mailto:joshuat@slac.stanford.edu


10

(2012).
[36] McMichael, R. D. & Blakley, S. M. Simplified Algorithms for

Adaptive Experiment Design in Parameter Estimation. Physical
Review Applied 18, 054001 (2022).

[37] Dagotto, E. Correlated electrons in high-temperature supercon-
ductors. Reviews of Modern Physics 66, 763 (1994).

[38] White, S. R. Density matrix formulation for quantum renormal-
ization groups. Physical Review Letters 69, 2863–2866 (1992).

[39] White, S. R. Density-matrix algorithms for quantum renormal-
ization groups. Physical Review B 48, 10345 (1993).

[40] Blankenbecler, R., Scalapino, D. J. & Sugar, R. L. Monte Carlo
calculations of coupled boson-fermion systems. I. Physical Re-
view D 24, 2278–2286 (1981).

[41] White, S. R. et al. Numerical study of the two-dimensional
Hubbard model. Phys. Rev. B 40, 506–516 (1989).

[42] Ferrari, F., Parola, A., Sorella, S. & Becca, F. Dynamical struc-
ture factor of the J1− J2 Heisenberg model in one dimension:
The variational Monte Carlo approach. Physical Review B 97,
235103 (2018).

[43] Hendry, D., Chen, H., Weinberg, P. & Feiguin, A. E. Cheby-
shev expansion of spectral functions using restricted Boltzmann
machines. Physical Review B 104, 205130 (2021).

[44] Granroth, G. E. et al. SEQUOIA: A Newly Operating Chop-
per Spectrometer at the SNS. Journal of Physics: Conference
Series 251, 012058 (2010).

[45] Igarashi, J.-i. 1/S expansion for thermodynamic quantities in a
two-dimensional Heisenberg antiferromagnet at zero tempera-
ture. Physical Review B 46, 10763 (1992).

[46] Singh, R. R. Thermodynamic parameters of the T=0, spin-1/2
square-lattice Heisenberg antiferromagnet. Physical Review B
39, 9760 (1989).

[47] Chollet, F. et al. Keras. https://keras.io (2015).
[48] Chitturi, S. R. et al. Code accompanying: Capturing dynam-

ical correlations using implicit neural representations. Zen-
odo. 10.5281/zenodo.8267474. neural-representations-sqw.
https: // doi. org/ 10. 5281/ zenodo. 8267474

[49] Chitturi, S. R. et al. Dataset: Capturing dynamical cor-
relations using implicit neural representations. Zenodo.
10.5281/zenodo.7804447. https: // doi. org/ 10. 5281/
zenodo. 8267499

https://keras.io
https://doi.org/10.5281/zenodo.8267474
https://doi.org/10.5281/zenodo.8267499
https://doi.org/10.5281/zenodo.8267499
redacted



11

Supplementary Information for Capturing dynamical correlations using implicit neural representations

50

80

80

110

140

En
er
gy
ħω
(m
eV
)

0

10

20

30

40
a b

Wave vector Wave vector
P PM X XΓ P1 P1M1 X1 X1Γ1

Figure S1. Inelastic neutron scattering dataset without automated background subtraction. Visualization of a path 1 and b path 2 for inelastic
neutron scattering data without automated background subtraction (Fig. S1). Note, path 2 contains a portion of missing data.
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Figure S2. Visualization of the numerical subtraction between LSWT simulation and machine learning forward model prediction. (a) Differ-
ence plot with minimum and maximum colorbar limits set at the maximal positive and negative deviation and corresponding to the calculation
in Fig. 2. Note, there appears to be some alternating patterns in the difference profile. This is likely due to the discrete choice of momenta
simulated with SpinW which are smoothed out by the continuous machine learning prediction. In regions outside of the dispersion curve, the
difference is 0 since the model is able to confidently predict that there is no signal.
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Figure S3. Machine learning forward model accurately predicts scattering profile for a missing region (red rectangle) of path 2 data. For
the displayed path there is no data available in the utilized neutron dataset for the missing region of Q-space. However, data is available
for (Qx,Qy) 7→ (Qy,Qx), so for the 2D momenta of the missing path region rotated by 45◦. As this compound is assumed to be tetragonal
magnetically orderedS(Qx,Qy,ω) = S(Qy,Qx,ω) and thus, the missing region in Q can be substituted by the equivalent data with Qx and Qy
exchanged. The data along the full path with the missing region substituted is depicted in comparison with the result predicted by our forward
model. a Experimental data with missing region filled in by exchanging Qx and Qy. b machine learning prediction using only experimental
data from path 2 with missing region. Evidently, the machine learning prediction closely models the true experimental data. Note, in this case,
the prediction for path 2 only uses the data from path 2. No information from path 1 is utilized in the fitting.
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Figure S4. SpinW fitting results for the (J,Jp) parameters when both path 1 and path 2 are used for the fitting. SpinW optimization yielded
Hamiltonian parameters (J,Jp) = (29.15,1.55)meV. Corresponding forward predictions for a path 1 and b path 2. Relative to the machine
learning method, SpinW fitting does not utilize all the available pixel information and instead requires additional peak finding and peak fitting
steps.
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