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Supplementary Note 1: Fidelities

In Supplementary Figure 1, we show the fidelities 1 − ϵ =
min± | ⟨Ψ(0)±|Φ(0)±⟩ |2 associated with the data of Fig. 2
(main text). One can see that the superposition of two energy
eigenstates |Ψ(0)±⟩ is in general very well approximated by
a product state |Φ(0)±⟩. While a small fidelity necessarily
yields a small certified amplitude, a large fidelity alone is not
sufficient to obtain a large value of Acert. (right panel).

Supplementary Note 2: Single-particle excitations

For completeness, we briefly discuss a second class of os-
cillating product states that exist in the disordered Heisenberg
chain. In contrast to the deformed domain wall states, these
states can be classified as “single-particle like” as they exist
irrespective of the strength of the interaction term Ŝ

(z)
j Ŝ

(z)
j+1

in the Hamiltonian and since their total magnetization is close
to minimal. Yet, their energies are extensive. For an explicit
construction, consider the single-particle subspace spanned by
the states that result from flipping a single spin in the vacuum
state |↓⟩ ⊗ · · · ⊗ |↓⟩. The Hamiltonian H acts on these states
exactly as a single-particle Hamiltonian with nearest-neighbor
hoppings plus an additional random potential. It then follows
from the theory of Anderson localization [84] that the eigen-
states |ϵ : k⟩ within this subspace are exponentially localized
around the different lattice sites k = 1 . . . L with a localiza-
tion length that decreases with the strength of the disorder.
All these states have a total magnetization −L/2 + 1/2 and a
large overlap with the product state for which spin k is flipped
as compared to the vacuum. Then the states

|ψk ⟩ =
1√
2
(|↓⟩ ⊗ · · · ⊗ |↓⟩+ |ϵ : k ⟩) (1)

can be approximated to high fidelity by a product state and
show high fidelity oscillations at site k for sufficiently high
disorder strength.

Supplementary Note 3: The MBL crossover in terms of certified
amplitudes

The data in the main part of the paper was obtained for a
disorder strength W = 8. We now study the behavior of the
certified amplitude as one crosses into the ergodic regime. In
this case, the eigenstates can no longer be represented faith-
fully by MPS with a low bond dimension, which entails that
we can only access small systems in our numerics.

In Supplementary Figure 2, we show the certified ampli-
tude for L = 20 as a function of W . The data was obtained

using a maximum bond dimension of χ = 48 (note that even
for L = 20 this bond dimension is not sufficient to faithfully
represent all states for small values of W ). We observe that
Acert drops to a small value around W ∼ 3.5, which is the
commonly-found disorder strength for the crossover into the
ergodic regime at L = 20 [33]. This is plausible since our
construction hinges on the existence of localized states.

Supplementary Note 4: Multiple localized dynamical excitations

We argued that in a sufficiently large system there will be
product states with multiple oscillating, localized excitations
at different locations of the chain. In order to back up this
claim, we start out with an analytic argument. Let us consider
|E : k1⟩ as well as an eigenstate |Ẽ : k2⟩ obtained from an
up-down domain-wall seed at position k2 > k1 (i.e., |dw : k2⟩
but with all spins flipped). Let m be the site at the midpoint
between k1 and k2 (or the closest site to the right), and let
L and R be the set of sites left and right of m, respectively
(R includes m). If the distance d = k2 − k1 is sufficiently
large, then both eigenstates |E : k1⟩ and |Ẽ : k2⟩ are (approx-
imately) unentangled over the bipartition L:R:

|E : k1⟩ ≈ |E : k1⟩L ⊗ |E : k1⟩R, (2)

|Ẽ : k2⟩ ≈ |Ẽ : k2⟩L ⊗ |Ẽ : k2⟩R. (3)

Since |E, k1⟩ and |E, k1 + 1⟩ coincide far away from k1, we
also find
∣∣∣Ψ(k1)

±
〉
=

1√
2
( |E : k1 ⟩ ± |E : k1 + 1 ⟩) (4)

≈ 1√
2
( |E : k1 ⟩L ± |E : k1 + 1 ⟩L)⊗ |E : k1 ⟩R

(5)

=
∣∣∣Ψ(k1)

±
〉

L
⊗

∣∣∣Ψ(k1)
±

〉
R
, (6)

and similarly

∣∣∣Ψ̃(k2)
±

〉
=

1√
2

(
|Ẽ : k2⟩ ± |Ẽ : k2 + 1⟩

)
(7)

≈
∣∣∣Ψ̃(k2)

±
〉

L
⊗

∣∣∣Ψ̃(k2)
±

〉
R
. (8)

Now let us consider the state
∣∣∣Ψ(k1,k2)

±±
〉
=

∣∣∣Ψ(k1)
±

〉
L
⊗

∣∣∣Ψ̃(k2)
±

〉
R

(9)

as well as

|E : k1, k2⟩ = |E : k1⟩L ⊗ |Ẽ : k2⟩R. (10)
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SUPPL. FIG. 1. Fidelities. Same as Fig. 2 (main text) but showing the fidelities 1 − ϵ = min± | ⟨Ψ(0)±|Φ(0)±⟩ |2 of the superposition of
eigenstates and the corresponding product state. Left: Median (orange) and maximum (light violet) of the fidelities as well as the corresponding
mean and standard deviation (brown, dark violet). The maximum is again restricted to domain walls with interface in the middle half of the
system. The standard deviation is plotted according to the scale on the left axis. For example, for L = 10 it is of the order of 0.01 for the
median fidelities and 0.005 for the maximum fidelities. Right: Fidelities (brown) and certified amplitudes (blue).
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SUPPL. FIG. 2. Crossover into the ergodic regime. The same as
in Fig. 2 (main text) but as a function of the disorder strength W for
a fixed system size L = 20 and 40 disorder realizations per disorder
strength. The light blue dots show the median certified amplitude for
each realization, and dark blue indicates the corresponding average
values and the standard deviation. While some of the rescaled en-
ergy variances (light red) are no longer small as one crosses into the
ergodic regime around W ∼ 3.5, the picture does not change signif-
icantly when post-selecting only on those disorder realizations with
median rescaled energy variances below 10−12 (magenta).

In case that |E : k1, k2⟩, |E : k1+1, k2⟩, |E : k1, k2+1⟩, and
|E : k1 + 1, k2 + 1⟩ are all eigenstates of Ĥ , then |Ψ(k1,k2)

±± ⟩
will show perfect revivals. Since |Ψ(k1)

± ⟩ and |Ψ̃(k2)
± ⟩ are well

approximated by product states and host a local, oscillating
observable, the same holds true for |Ψ(k1,k2)

±± ⟩.
In order to see whether the system hosts pairs of local-

ized oscillations, it is thus sufficient to show that the states
|E : k1, k2⟩ are indeed energy eigenstates for sufficiently
large d. This can be done efficiently since the states |E : k1⟩

and |Ẽ : k2⟩ are already available in MPS form. Indeed, if
A[j]σj and B[j]σj denotes corresponding tensors, then we can
simply construct a candidate MPS for |E : k1, k2⟩ with local
tensors C [j]σj by setting

C [j]σj =

{
A[j]σj if j < m

B[j]σj if j ≥ m.
(11)

Since the original MPS are (to high precision) product states
over the cut at sitem, the resulting MPS reproduces the expec-
tation values in the state |E : k1⟩ in L and those of |Ẽ : k2⟩
in R. In Suppl. Fig. 3 (left), we have calculated the energy
variance of this MPS as a function of the distance d for one
disorder realization and arbitrary values of k1 < k2 (with
d = k2 − k1 fixed). The data shows that the resulting state
is an eigenstate up to numerical precision for d ⪆ 15 − 20.
(Note that in contrast to the remaining data in this work, we
here had to compute both the down-up and the up-down de-
formed domain-wall eigenstates.)

This distance (or rather the inverse of the exponential
decay-rate in Suppl. Fig. 3 (left)) may be interpreted as (twice)
the localization length of the system. We emphasize, how-
ever, that this localization length will typically fluctuate with
the position in the system depending on the precise disorder
realization.

From our discussion, it should be clear that the above ar-
guments can be iterated in order to construct eigenstates with
three or more domain-wall interfaces by cutting and gluing
MPSs. In Suppl. Fig. 3 (right), we plot rescaled energy vari-
ances for three domain wall interfaces. Again, we find energy
eigenstates up to numerical precision for sufficiently large dis-
tances between the interfaces.
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SUPPL. FIG. 3. Numerical data in support of multiple excitations. Left: For a system of size L = 80 and one disorder realization at
W = 8, we determine all eigenstates associated with down-up domain walls at site k1 and up-down domain walls at site k2. For a given
distance d = k2 − k1 between their interfaces, we then cut and glue their respective MPS representations at the midpoint to obtain a candidate
state with a pair of localized excitations. Blue points show the associated rescaled energy variance (for varying k1 < k2 but fixed d), the
orange points are the corresponding median. For sufficiently large d, we obtain energy eigenstates. Right: The same but for triplets of
localized excitations separated by d1 = k2 − k1 > 0 and d2 = k3 − k2 > 0. We vary 30 ≤ k2 ≤ 49 and show the corresponding median.

Supplementary Note 5: Approximate eigenstates and timescales

Our numerical procedure yields matrix-product states |ψ ⟩
that are approximate eigenstates in the sense that their energy
variance Var( |ψ ⟩ , Ĥ) = ⟨ψ | Ĥ2 |ψ ⟩− ⟨ψ | Ĥ |ψ ⟩2 is on the
order of machine precision. This entails that all our analytical
predictions remain true up to times of the order of the inverse
standard deviation of the energy. To see this, note the follow-
ing standard bound on how much |ψ ⟩ dynamically deviates
from being an eigenstate:

f(t) =
∥∥∥e−iĤt |ψ ⟩ − e−itE |ψ ⟩

∥∥∥
2

≤ 2t

√
Var( |ψ ⟩ , Ĥ),

where E = ⟨ψ | Ĥ |ψ ⟩. To derive this bound, we first com-
pute the derivative of the squared norm as

d

dt
f(t) =

d

dt

(
2− ( ⟨ψ | e−it(Ĥ−E) |ψ ⟩+ c.c.)

)

= i( ⟨ψ | (Ĥ − E)e−it(Ĥ−E) |ψ ⟩+ c.c.).

Thus, we find that the derivative is upper-bounded as

∣∣∣∣
d

dt
f(t)

∣∣∣∣ ≤ 2
∣∣∣ ⟨ψ | e−it(Ĥ−E)(Ĥ − E) |ψ ⟩

∣∣∣

≤ 2 ∥ |ψ ⟩∥
∥∥∥(Ĥ − E) |ψ ⟩

∥∥∥

= 2

√
Var( |ψ ⟩ , Ĥ). (12)

Since f(0) = 0, we get

f(t) = |
∫ t

0

d

dt′
f(t′)dt′| ≤

∫ t

0

∣∣∣∣
d

dt′
f(t′)

∣∣∣∣dt′

≤ 2t

√
Var( |ψ ⟩ , Ĥ). (13)


