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I - Modified exciton transfer near-field model

Our near-field model is based on the following assumptions :

(1) Bright excitons diffuse as classical quasi-particles.

(2) In the low density regime, we conserved that bright excitons are non-interacting with

other type of excitons mainly: dark excitons, B-excitons, momentum forbidden excitons.

(3) The effective diffusion lengths L1 and L2 are quasi constant in both materials which

are separated by a depletion zone acting as an ideal thin interface of fixed width ϵ ≪

L1,L2, where no electron-hole pair are created and no electron-hole recombination occurs.

(4) Presence of a local uniform field force F⃗ inside the interface (− ϵ
2
≤ x ≤ ϵ

2
) due to

the difference in the band-gaps of the two materials, leading to a drift velocity v⃗∗ = µbF⃗

which modifies locally the exciton velocity.

Determination of n(x,xtip)

In the linear regime, we solve, analytically and separately, the 1D linear diffusion equation

in each material i (1 = WSe2, 2 = MoSe2). The terms in the steady-state diffusion

equation (1) given in the main text are homogenized to an excitonic density as follows:

L2
i

d2n(x, xtip)

dx2
− n(x, xtip) + nsie

−
(x−xtip)

2

w2 = 0 (1)

Where nsi = Γ0iτi. The solution of (1) is written as :

n(x > 0, xtip) = C1e
x/L1 + C2e

−x/L1 − ns1/L1

∫ ∞

x

ds sinh ((s− x)/L1)e
−

(s−xtip)
2

w2 (2)

n(x < 0, xtip) = C3e
x/L2 + C4e

−x/L2 + ns2/L2

∫ x

−∞
ds sinh ((s− x)/L2)e

−
(s−xtip)

2

w2 (3)

Where C1, C2, C3 and C4 are integration constants. To determine them, first we

impose boundary conditions as n(x → ±∞, xtip) = 0, resulting in C1 = C4 = 0. Second,

we express C2 and C3 as a function of n±
0 = n(x = 0±) ≃ n(x = ± ϵ

2
) to obtain the

following solutions:
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n(x > 0, xtip) =

(
n+
0 + ns1/L1

∫ ∞

0

ds sinh (s/L1)e
−

(s−xtip)
2

w2

)
e−x/L1

− ns1/L1

∫ ∞

x

ds sinh ((s− x)/L1)e
−

(s−xtip)
2

w2 (4)

n(x < 0, xtip) =

(
n−
0 − ns2/L2

∫ 0

−∞
ds sinh (s/L2)e

−
(s−xtip)

2

w2

)
ex/L2

+ ns2/L2

∫ x

−∞
ds sinh ((s− x)/L2)e

−
(s−xtip)

2

w2 (5)

In order to obtain the steady-state expressions of n±
0 we first calculate, using (4 - 5),

the exciton flux at each side of the interface as follows :

jn(x = 0+) = −D1
dn

dx

∣∣∣∣
x=0+

=
L1

τ1
n+
0 − ns1

τ1

∫ ∞

0

dxe−x/L1e−
(x−xtip)

2

w2 (6)

jn(x = 0−) = −D2
dn

dx

∣∣∣∣
x=0−

= −L2

τ2
n−
0 +

ns2

τ2

∫ 0

−∞
dxex/L2e−

(x−xtip)
2

w2 (7)

Second, we solve analytically, in the steady state, the semi-classical diffusion equation of

bright exciton inside the interface given by :

∇⃗.⃗jn = ∇⃗.(nv⃗∗ −Db∇⃗n) ≃ 0 (8)

Where nv⃗∗ is the local drift exciton flux and Db is the diffusion coefficient inside the

interface. By imposing the continuity of the exciton density n(− ϵ
2
≤ x ≤ ϵ

2
) inside the

interface, we demonstrate that the junction imposes a uniform local density of exciton

flux j⃗n = nv⃗∗ −Db∇⃗n on both sides of the interface, which depends on the tip position.

Integrating (8) over the interface width allows a link between jn and n±
0 as follows :

n+
0 =

(
n−
0 +

jn
v∗

)
e
− v∗ϵ

Db − jn
v∗

(9)

By replacing in (9) the exciton flux jn = jn(x = 0±) obtained in (6 - 7) we get the

two independent relations between n±
0 as follows :

n+
0 = n−

0 κ
+ +

ns2

v∗τ2

(
e
− v∗ϵ

Db − 1

)∫ 0

−∞
dxex/L2e−

(x−xtip)
2

w2 (10)
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n−
0 = n+

0 /κ
− − ns1

v∗τ1

(
e

v∗ϵ
Db − 1

)∫ ∞

0

dxe−x/L1e−
(x−xtip)

2

w2 (11)

Where κ± are expressed as follows :


κ+ =

(
1− L2

v∗τ2

)
e
− v∗ϵ

Db + L2

v∗τ2

κ− =

[
(1 + L1

v∗τ1
)e

v∗ϵ
Db − L1

v∗τ1

]−1

When the near-field excitation (w ≪ L1) takes place inside WSe2, the integral in

(10) becomes null, and κ+ = n+
0 /n

−
0 describes the exciton diffusion from WSe2 to MoSe2.

However, if the near-field excitation (w ≪ L2) takes places inside MoSe2, the integral in

(11) becomes null, and κ− = n+
0 /n

−
0 describes the exciton diffusion from MoSe2 to WSe2.

In both cases, the ideal junction maintains a local equilibrium of exciton densities on

both sides of the interface, described by the constant κ = n+
0 /n

−
0 , we call this constant

the partition coefficient and define it as follows :

κ =


κ+ =

(
1− L2

v∗τ2

)
e
− v∗ϵ

Db + L2

v∗τ2
xtip > 0

κ− =

[
(1 + L1

v∗τ1
)e

v∗ϵ
Db − L1

v∗τ1

]−1

xtip < 0
(12)

We can now, according to (10 - 11), obtain the complete expressions of n±
0 as follows

:

n−
0 (xtip) =

ns1
τ1
τ2
L2 + κ+L1

∫ ∞

0

dxe−x/L1e−
(x−xtip)

2

w2 +

ns2

L2 + κ− τ2
τ1
L1

∫ 0

−∞
dxex/L2e−

(x−xtip)
2

w2 (13)

n+
0 (xtip) =

ns1κ
+

τ1
τ2
L2 + κ+L1

∫ ∞

0

dxe−x/L1e−
(x−xtip)

2

w2 +

ns2κ
−

L2 + κ− τ2
τ1
L1

∫ 0

−∞
dxex/L2e−

(x−xtip)
2

w2 (14)
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Integrated PL intensity

The PL intensities away from the junction are given by :

I∞PL(A
WSe2
1s )(xtip → +∞) =

∫ ∞

0

dx
Γ1(x, xtip)τ1

τ r1
=

√
π
ns1w

τ r1
(15)

I∞PL(A
MoSe2
1s )(xtip → −∞) =

∫ 0

−∞
dx

Γ2(x, xtip)τ2
τ r2

=
√
π
ns2w

τ r2
(16)

Experimentally we know that β = I∞PL(A
WSe2
1s )/I∞PL(A

MoSe2
1s ) ≃ 3, giving us

ns1τ
r
2

ns2τ
r
1
≃ 3.

We then use (4 - 5) to calculate the PL intensities as a function of the tip position as

follows:

IPL(A
MoSe2
1s )(xtip) =

∫ 0

−∞
dx

n(x, xtip)

τ r2
=

n−
0 (xtip)

τ r2
L2+

ns2

τ r2

∫ 0

−∞
dx(1− ex/L2)e−

(x−xtip)
2

w2

(17)

IPL(A
WSe2
1s )(xtip) =

∫ ∞

0

dx
n(x, xtip)

τ r1
=

n+
0 (xtip)

τ r1
L1+

ns1

τ r1

∫ ∞

0

dx(1− e−x/L1)e−
(x−xtip)

2

w2

(18)
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Figure 1: Normalized PL intensities calculated using as a simple example: β = 3, κ =
0.001, L1 = L2 = LD = 0.1µm, τ1 = τ2 and τ r1 = τ r2 .

Fig. 1 shows the calculated PL intensities from (17 - 18). One can see that the

calculated PL intensity of MoSe2 is discontinuous at the junction.
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Continuity of the integrated PL intensity

We observed experimentally that for both e-LH and un-LH systems, the integrated PL

intensities of each material remain continuous as the tip crosses the junction. The conti-

nuity is not described by the model presented above that does not account for potential

variations of the scattering time with positions. However, we know that the velocity of

excitons interacting with the junction is modified (due to the drift velocity v⃗∗). For ex-

ample, as the tip approaches the junction, excitons diffusing from MoSe2 towards WSe2

are stopped at the junction, their average velocity going to zero. We believe that this

phenomenon, by reducing the probability to encounter defects and decreasing the kinetic

energy carried by the excitons, has a local effect on the exciton non-radiative lifetime.

As the total amount of excitons in the steady state depends on the scattering time, the

excitonic density at the junction is increased, resulting in an enhanced PL intensity. This

interaction does not affect the radiative life-time.

To account for this local variation of scattering time of the exciton interacting with

the junction, for each tip position, we accounted for the resulting increase of the exciton

density at the junction while the near-field excitation occurs inside MoSe2 and rewrite

(13 - 14), as follows:

n−
0 (xtip) =

ns1
τ1
τ2
L2 + κ+L1

∫ ∞

0

dxe−x/L1e−
(x−xtip)

2

w2 +

ns2γ

L2 + κ− τ2
τ1
L1

∫ 0

−∞
dxex/L2e−

(x−xtip)
2

w2 (19)

n+
0 (xtip) =

ns1κ
+

τ1
τ2
L2 + κ+L1

∫ ∞

0

dxe−x/L1e−
(x−xtip)

2

w2 +

ns2κ
−γ

L2 + κ− τ2
τ1
L1

∫ 0

−∞
dxex/L2e−

(x−xtip)
2

w2 (20)

The factor γ is determined by imposing the continuity of the PL intensity at the

junction:

IPL(A
MoSe2
1s )(xtip = 0+) = IPL(A

MoSe2
1s )(xtip = 0−) (21)
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and

IPL(A
WSe2
1s )(xtip = 0+) = IPL(A

WSe2
1s )(xtip = 0−) (22)

resulting in γ =
τ1
τ2

L2+κ+L1

τ1
τ2

L2+κ−L1

τ2τr1
τ1τr2

β. In our case, κ+ ∼ κ− ≪ 1 , thus γ ≃ τ2τr1
τ1τr2

β. The

normalized PL intensities can then be written as follows:

IPL(A
MoSe2
1s )(xtip)

I∞PL(A
WSe2
1s )

=
Aκ√
πw

∫ ∞

0

dxe−x/L1e−
(x−xtip)

2

w2

+
1√
πβw

∫ 0

−∞
dx

(
1 + (βAκ − 1)ex/L2

)
e−

(x−xtip)
2

w2 (23)

IPL(A
WSe2
1s )(xtip)

I∞PL(A
WSe2
1s )

=
1√
πw

∫ ∞

0

dx
(
1− (1−Bκ)e

−x/L1
)
e−

(x−xtip)
2

w2

+
Bκ√
πw

∫ 0

−∞
dxex/L2e−

(x−xtip)
2

w2 (24)

Where Aκ = L2τ2
L2τ1+L1τ2κ+

τr1
τr2

≃ τ2τr1
τ1τr2

and Bκ = κ+Aκ
τr2
τr1
. The radiative lifetimes are of

the same order of magnitude in each material, we then get an order of magnitude of the

partition coefficient κ+ ∼ κ− ∼ Bκ/Aκ.

Table 1: Results of the PL fits using the near-field model for both e-LH and un-LH
systems.

Area L1(nm) L2(nm) Aκ Bκ κ± ∼ Bκ/Aκ

e-LH 120 ± 6 110 ± 5.5 1.1 10−3 ∼ 10−3

un-LH 550 ± 55 45 ± 45 1 10−3 ∼ 10−3

Kapitza resistance equivalence

The abrupt change in the exciton energy at the junction causes a discontinuity of excitonic

density. This finding can be interpreted in terms of an excitonic Kapitza resistance Rn

whose sign depends on the direction of excitonic flux. Indeed, Rn > 0 for the diffusion

from MoSe2 to WSe2 and Rn < 0 from WSe2 to MoSe2, illustrating the non-reciprocal

excitonic diffusion through the junction. According to (9), we can define a Kapitza

exciton resistance of a high-quality junction as a function of the partition coefficient κ as

follows:
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Rn =
n(x = 0−)− n(x = 0+)

jn
≃

 R+
n ≃ 1−κ+

v∗
1−ev

∗ϵ/Db

1−κ+ev
∗ϵ/Db

< 0 xtip > 0

R−
n ≃ 1−κ−

v∗
1−ev

∗ϵ/Db

κ−ev
∗ϵ/Db−1

> 0 xtip < 0
(25)

One can see that if the gap difference between the two TMD-MLs forming the junction

is high (v∗ = µF → ∞), there is a strong influence on the exciton diffusion (R±
n → ∓∞).

On the other hand, in the opposite situation (very weak gap difference, compared to

kBT ) v
∗ → 0, the exciton density becomes continuous, and the junction loses its Kapitza

resistance (Rn → 0).

II - Power dependence transport properties of WSe2

Here we describe the results obtained from the time-resolved PL profile inWSe2 where we

see the large change between the e-LH and un-LH samples. Spatio-temporal information

allows us to separate the transport and the recombination mechanisms. The experiment

is based on a diffraction-limited laser excitation that induces lateral diffusion of the

photogenerated excitonic species. We used a Streak camera system to record the time

evolution of the PL spatial profile IPL = I(x, t) with a time resolution of 5.5ps. The

Ti:Sa laser excitation is set to Eex = 1.79eV , with a 80MHz repetition frequency, 1.5ps

pulse width and we vary the excitation power from 10µW to 1mW . Each PL spatial

profile is considered as Gaussian, and we examine the squared width w2 of the PL profile

as a function of time. In case of (quasi)linear broadening, an effective diffusion coefficient

Deff can be extracted according to the relation ∆w2(t) = 4Deff t.

We first present the results from uncapped sample(un-LH ). Fig. 2 A shows TRPL

data and the extracted lifetimes (Fig. 2 B) obtained from bi-exponential fit. The results

show a reduction of the overall lifetime with increasing excitation power. Fig. 2 C shows

the time evolution of the squared width w2 where we see an increase of the slope as we

increase the excitation power. We then extract the effective diffusion coefficient Deff

(Fig. 2 C) which is found to increase with the excitation power from a typical value in

TMD of 1cm2/s up to 20cm2/s.

Similar observations are found from the fully encapsulated sample e-LH as it can be
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Figure 2: Experimental results of time resolved PL profile for the un-LH sample. (A)
Time resolved PL intensity (TRPL) for various excitation powers. (B) Extracted lifetimes
from TRPL data. (C) Time evolution of the squared width w2, the curves for the different
excitation powers are offset for visibility. (D) Extracted effective diffusion coefficient from
(C) as a function of excitation power.

seen in Fig. 3. The increase of the effective diffusion coefficient with exciton density has

been previously observed in the literature.1,2 As mentioned in the main text, although

differences between fully encapsulated sample and uncapped one were found in Ref.2 ,

we observe a similar trend in the power dependence behavior in our two samples. This is

probably due to the bottom hBN layer which prevents a large discrepancy of the transport

mechanisms on the two samples.

To go further, we model the experimental results by solving numerically a classical

diffusion equation:

D
d2n(x)

dx2
− n(x)

τ
− CEEAn

2(x) + Γ(x, t = 0) =
dn(x)

dt
(26)

where Γ(x, t = 0) is the local excitation generation rate at t =0ps, τ =100ps the effective
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Figure 3: Experimental results of time resolved PL profile for the e-LH sample. (A) Time
resolved PL intensity (TRPL) for various excitation powers. (B) Extracted lifetimes from
TRPL data. (C) Time evolution of the squared width w2, the curves for the different
excitation powers are offset for visibility. (D) Extracted effective diffusion coefficient from
(C) as a function of the excitation power.

lifetime which accounts for radiative and non-radiative decays,D = 1cm2/s is the intrinsic

diffusion coefficient and CEEA is the excitonic Auger coefficient (i.e. exciton-exciton

annihilation EEA). We then calculated IPL(x, t) ∝ n(x, t) from which we extract TRPL

data and calculate ∆w2(t) = 4Deff t. Results are displayed in Fig. 4 for a large set

of Γ(x, t = 0). We found a good agreement with the experimental data when we set

CEEA = 0.2 ∼ 10−6cm2/s. Although we do not pretend to extract an exact Auger

coefficient, its low value might confirm that the bottom hBN layer prevents the TMD layer

to be influenced by dielectric disorder. Despite its small value, the EEA process influences

the transport at high excitation flux and increases the effective diffusion coefficient Deff

as observed in the literature.1,2
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Figure 4: Modeling results of time resolved PL profile for the e-LH sample. (A) Time
resolved PL intensity (TRPL) for various excitation powers. (B) Extracted lifetimes from
TRPL data. (C) Time evolution of the squared width w2, the curves for the different
excitation powers are offset for visibility. (D) Extracted effective diffusion coefficient from
(C) as a function of the excitation power.

III - Additional figures

To select ideal interfaces away from any defects (Inclusions, cracks, ...), we have also

performed Raman spectroscopy measurements. Raman spectra are recorded every 500

nm using 532 nm wavelength and 1 mW power excitation of linearly polarized laser in

both samples e-LH and un-LH. Fig. 5 A displays the typical µ-Raman spectra measured

in e-LH (left) and un-LH (right). Each material has been identified by its pronounced

Raman peak, either A′
1
MoSe2 mode located at ∼ 241cm−1 and A′

1/E
′WSe2 mode located

at ∼ 251cm−1. Some inclusions are visible in the PL maps shown in Fig. 1 of the main

text but are not visible in the Raman maps shown here because their small size reduces

significantly the Raman intensity.
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Figure 5: A. Typical µ-Raman spectra measured in the WSe2 and MoSe2 regions of e-LH
(left panel) and un-LH (right panel). B. Spectrally integrated µ-Raman intensity maps
of e-LH (left panel) and un-LH (right panel). The integrated intensity is obtained by in-
tegrating MoSe2 (respectively WSe2) µ-Raman spectra over the shaded blue (respectively
red) range shown in A. µ-Raman spectra are recorded every 500 nm (step size), using a
532 nm excitation wavelength and 1 mW laser power.

Raman shift (cm-1)

x t
ip
(μ
m
)

Xtip=0

WSe2

MoSe2

Figure 6: Tip enhanced Raman spectra intensity map versus position of the tip. The
maximum of the pronounced Raman peak is marked by a red dot on the color map. The
position of the interface is determined by pinpointing the xtip position where the signal
abruptly change from MoSe2 Raman signature to WSe2 Raman signature.
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Figure 7: A (B) Top: Energy and FWHM of each Lorentzian peak obtained from the
fitting procedure described in the main text. Bottom: Amplitude of each Lorentzian
peak obtained from the fitting procedure. The red, blue and green stars indicate A1s

WSe2
,

A1s
MoSe2

, and the WSe2 dark exciton (XD
WSe2

) respectively.
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