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Supplementary Figures

Supplementary Figure 1 . Dynamical brain maps | Brainstorm software was used to pre-process the resting-state MEG data
and obtain power maps at six canonical electrophysiological bands (i.e., delta (δ: 2-4 Hz), theta (θ: 5-7 Hz), alpha (α: 8-12
Hz), beta (β: 15-29 Hz), low gamma (lo-γ: 30-59 Hz), and high gamma (hi-γ: 60-90Hz)) [1] (see Methods for more details).
FOOOF algorithm was used to parametrize power spectral density and estimate the intrinsic timescale [2, 3] (see Methods for more
details). Note that log-10 transformed intrinsic timescale map is shown here. Principal component analysis was used to estimate
the principal component of the neurophysiological time-series features obtained from the hctsa toolbox (see Fig. 3). All obtained
brains maps are depicted across the cortex at 95% confidence interval (Schaefer-100 atlas [4]).



2

Supplementary Figure 2 . Spectral parameterization of neurophysiological activity | Spectral parameterization FOOOF toolbox
was used to extract periodic and aperiodic components of the MEG power spectrum [2]. (a) The identified oscillatory peaks
of the periodic component were used to estimate band-limited “oscillation score” maps at delta (2-4 Hz), theta (5-7 Hz), alpha
(8-14 Hz), and beta (15-30 Hz) frequency bands. The oscillation scores reflect the average power at each region and frequency
band, weighted by the probability of observing an oscillation peak at that region and band [2]. The aperiodic exponent and “knee”
parameter (controls for the bend in the aperiodic component) were used to estimate intrinsic timescale (see Methods for details).
Note that log-10 transformed intrinsic timescale map is depicted here for a more clear visualization. (b) Distribution of center
frequencies of the identified periodic peaks are depicted across all vertices and participants. Visual inspection of the distribution
shows clusters of peaks around the frequency bands shown in panel (a). Inset depicts the distribution of goodness-of-fit (R2) for
the FOOOF algorithm. (c) PC1 score map of hctsa time-series features was compared with the aperiodic-adjusted power maps and
intrinsic timescale. Consistent with the results obtained with the total power maps at the canonical frequencies (Fig. 3), PC1 is
significantly associated with the intrinsic timescale (FDR-corrected; 10 000 autocorrelation-preserving spin nulls). rs denotes the
Spearman’s rank correlation coefficient.
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Supplementary Figure 3 . Parameters of aperiodic component of power spectrum | PC1 was correlated with the exponent and
offset of the aperiodic component of the power spectrum. The exponent describes the “curve” or the overall “line” or the slope of
the aperiodic component and the offset describes the overall vertical shift (up and down translation) of the whole power spectrum
[2]. rs denotes the Spearman’s rank correlation coefficient.

Supplementary Figure 4 . PCA with reduced set of time-series features | PCA was repeated 1 000 times with reduced sets of time-
series features, where 100 time-series features were randomly selected from the original list of 6 880 features at each repetition.
Variance explained by PC1, PC2, and PC3 as well as the Pearson correlation coefficients between the PCs from randomly selected
feature matrices and the ones obtained from the original analysis are depicted. For each PC, variance explained obtained from the
original analysis is shown with a red vertical line and the distribution of variance explained obtained from PCA on reduced feature
sets is shown by blue histogram. Box plots depict the correlation coefficients between PC1 scores from the original PCA and the
ones from reduced feature matrices.
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Supplementary Figure 5 . Sparse canonical correlation analysis (sCCA) | Sparse canonical correlation analysis (sCCA; [5])
was used as an alternative multivariate analysis approach to investigate the link between neurophysiological dynamics and micro-
architectural features. The results are consistent with the findings from the original PLS analysis (Fig. 4). (a) First canonical variate
explained 56.9% of the covariance, and (b) captured similar brain score patterns to PLS analysis. A distance-dependent cross-
validation analysis was used to assess the out-of-sample relationship between sCCA-derived brain scores, identifying consistent
relationship between sCCA scores in training and test sets (see Methods). (c) sCCA-derived weights for micro-architectural features
are shown for each set of brain maps. Features labeled with grey color had zero weights due to the sparsity constraint imposed by
sCCA.
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Supplementary Figure 6 . PLS loadings for linear autocorrelation at various time lags | The hctsa toolbox generates time-series
features capturing the time-series linear autocorrelation at a range of time lags between 1 and 40 time steps (here corresponding
to 2 ms and 80 ms, respectively). PLS loadings for all time lags are depicted as bar charts. ACX denotes autocorrelation at lag X,
where X is the number of time steps (each corresponding to 2 ms). Note that autocorrelation at a lag of 48 ms (24 time steps)
was shown as an example feature in Fig. 4c.
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Supplementary Figure 7 . Univariate analysis of neurophysiological time-series features | Spearman’s rank correlation coeffi-
cients (rs) were used to investigate the univariate associations between hctsa time-series features of neurophysiological signal and
two commonly-used micro-architectural maps: (a) T1w/Tw2 ratio as a proxy measure of intracortical myelin, and (b) principal
component of gene expression. The resulting correlations were compared with null distributions of correlations obtained from
10 000 spatial autocorrelation-preserving nulls. Grey background indicates non-significant time-series features (FDR corrected).
Examples of high loading time-series features are shown for each micro-architectural map. The group-average first zero-crossing
time point of the autocorrelation function, tc, is shown for T1w/T2w ratio. The group-average linear autocorrelation at a time
lag of 48 ms, ac48, is shown for principal component of gene expression. The autocorrelation function and short segments of raw
time-series are also shown for a randomly selected participant at three different regions (circles on the brain surface: pink ≈ 5th

percentile, green ≈ 50th percentile, purple ≈ 95th percentile). Full lists of features, their correlation coefficients and p-values are
available for T1w/T2w ratio and gene expression in the online Supplementary Datasets S5,6.
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Supplementary Figure 8 . Signal-to-noise ratio (SNR) | (a) Source-level MEG signal-to-noise ratio (SNR) was estimated. Par-
cellated, group-average SNR map is depicted across the cortex. MEG SNR was compared with the principal component of neuro-
physiological dynamics (PC1 - original). (b) SNR was compared with full set of neurophysiological time-series features (i.e., 6 880
features) using univariate correlations. Features that were significantly correlated with SNR were removed without correcting for
multiple comparisons (pspin < 0.05, 10 000 spatial autocorrelation-preserving permutation tests) and PCA was repeated using the
remaining 3 819 features. The principal component of the retained feature subset (PC1 - feature subset) explained 31.6% of the
variance and was significantly correlated with the original PC1 from the full set of features. (c) SNR was linearly regressed out from
the full set of time-series features. PCA was applied to the feature residuals. The principal component of SNR-regressed time-series
features (PC1 - SNR regressed) explained 41.4% of the variance and was significantly correlated with the original PC1. rs denotes
the Spearman’s rank correlation coefficient; linear regression lines are added to the scatter plots for visualization purposes only.

Supplementary Figure 9 . Empty-room recordings | PCA was applied to time-series features obtained from pre-processed empty-
room MEG recordings. Following the Procrustes alignment of the resulting PCA weights with the PCA weights of the resting-state
MEG recordings, the first principal components were compared between the two. The principal component of the empty-room
time-series features (PC1 - empty room; variance explained = 41%) was not significantly correlated with the original PC1. rs
denotes the Spearman’s rank correlation coefficient; linear regression line is added to the scatter plot for visualization purposes
only.
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Supplementary Figure 10 . Topographic distribution of neurophysiological dynamics for Schaefer-400 | (a) Principal com-
ponent analysis (PCA) was applied to MEG time-series features at a higher resolution parcellation (i.e., Schaefer-400 atlas). The
first principal component accounted for 48.6% of the variance. The spatial organization of features captured by PC1 is depicted
across the cortex, displaying a consistent pattern with the original PCA results obtained for the Schaefer-100 atlas (Fig. 3). (b) Top
loading features contributing to PC1 were identified using Pearson correlation coefficients between PC1 pattern and all time-series
features. Grey background indicates non-significant features based on 10 000 spatial autocorrelation-preserving permutation tests
(FDR corrected). Consistent with the original analysis, the top loading features were mainly related to power spectral density.
Regional power spectral densities are depicted, where each line represents a brain region. Regions are coloured by their position
in the putative unimodal–transmodal hierarchy [6]. The full list of features, their loadings and p-values are available in the online
Supplementary Dataset S3. (c) PC1 pattern was directly correlated with MEG power maps at 6 canonical frequency bands and in-
trinsic timescales. Consistent with the original findings, PC1 score was significantly correlated with hi-gamma power and intrinsic
timescale (FDR-corrected). rs denotes the Spearman’s rank correlation coefficient.
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Supplementary Figure 11 . Partial least squares (PLS) analysis for Schaefer-400 | PLS analysis was used to assess the multi-
variate relationship between micro-architectural and time-series features for the Schaefer-400 atlas. The results were consistent
with the original findings for the Schaefer-100 atlas (Fig. 4). (a) PLS identified a single significant latent variable (pspin = 0.0083,
covariance explained = 75.7%). (b) Spatial patterns of micro-architecture and time-series features scores are depicted for the first
latent variable. The two brain score maps were significantly correlated, demonstrating similar patterns to the ones obtained for
Schaefer-100 atlas (Fig. 4b). (c) Micro-architectural feature loadings were also consistent with the original findings (Fig. 4d). Full
list of time-series feature loadings are included in the online Supplementary Dataset S4. Consistent with the original analysis, the
top loading features were mainly related to the linear correlation structure of the signal. rs denotes the Spearman’s rank correlation
coefficient.
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Supplementary Figure 12 . Stability of time-series features | To identify the time-series length required to robustly estimate the
time-series features, we calculated a subset of hctsa features using the catch-22 toolbox [7] on subsequent segments of time-
series with varying length for each participant. We extracted time-series features from short segments of data ranging from 5 to
125 seconds in increments of 5 seconds. To identify the optimal time-series length required to estimate robust and stable features,
we calculated the Pearson correlation coefficient r between features of two subsequent segments (e.g., features estimated from 10
and 5 seconds of data). The group-average correlation coefficient between the estimated features started to stabilize at time-series
segments of around 30 seconds, consistent with previous reports [8] (left). To compare the stability analysis of catch-22 features
with full hctsa features, the correlation coefficients between subsequent segments of time-series are shown for a randomly selected
participant (right).
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