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Reviewer #1 (Remarks to the Author):

This paper investigates the relationship between spontaneous neurophysiological dynamics across
the human brain and cortical micro-architecture. The authors mapped over 6,800 time-series
features to a multi-modal atlas and found that neurophysiological dynamics are co-localized with
multiple micro-architectural features.

Major comments:

1) The authors use hctsa to generate a massive set of time series features, which may result in
features that are difficult to interpret in terms of underlying neurophysiology. For example, one of
the top loading time series features from the PLS analysis is the autocorrelation at a lag of 48ms,
but it is unclear how to interpret this in terms of neurophysiological activity. I'm guessing that
hctsa also generated features capturing the autocorrelation at many lags, so what is the
significance of 48ms?

2) I had initially thought that with such a high nhumber of features, the neurophysiology data PCA
would be run using time series from each vertex, or at least each subject. I was surprised to find
that it was run on a 100 x 6880 matrix. 100 observations seems very small with such a large
number of features, and this may be why a single component captured the vast majority of the
variance. The fact that the other components explained 10% of the variance or less makes me
think that the number of observations was not sufficient to characterize neurophysiological
diversity.

3) Given 100 observations, 6880 time series features, and 45 microarchitecture features, I would
be extremely surprised if it were impossible to find linear combinations of features from each
group that would yield high correlations between them. There doesn't seem to be any guiding
theory or model to this approach, and while the authors describe it as data-driven, its scope is so
large that there is a danger of veering from data mining to data dredging. The out-of-sample
analysis does mitigate this to some extent, but it may be better to use something like sparse PLS
(e.g. Chun & Keles, 2010).

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2810828/

4) "We find that PC1 has high spatial correlations with most of those maps (|r| > 0.36), and
significant correlations with intrinsic timescale (r s = 0.84, p spin = 0.03; FDR-corrected) and hi-
gamma (rs = 0.87, p spin = 0.005; FDR-corrected)"

The high spatial correlations that are not significant are meaningless. So the traditionally time
series features described by PC1 are the intrinsic timescale and high gamma. Is PC1 just reflecting
the slope and/or offset of the aperiodic spectrum?

Minor comments:

1) "Given the hierarchical organization of PC1 and its close relationship with power spectral
features"

What is the hierarhcical organization of PC1? This wasn't clear to me

2) The use of a notch filter restricts the range of frequencies that can be used for the FOOOF fit.
What about using iterative zapline to remove line noise? This would allow the full frequency range
to be used.

3) The FOOOF algorithm estimates of aperiodic spectral parameters can be sensitive to the choice
of the frequency range used. I have found in some datasets that the lower frequency bound has to
be about 0.1Hz to get an accurate estimate of the aperiodic slope. I could not find any measures
of the model fit reported in the paper.

4) Band-limited power in gamma frequencies was not analyzed using spectral parameterization,
but one of the main results from the PCA is that PC1 was highly correlated with high gamma. So
what is high gamma? Related to major comment 5 and minor comment 4, does this mean it's just
the residual of the slope of a bad 1/f fit?

5) What do the time series look like when projected onto PC1? It would be nice to see the power
spectral densities after this projection

6) Why were principal components of the gene expression and neurotransmitter receptors and
transporters data used in the PLS analysis rather than the raw data? Was it to reduce the number
of features? If so, why use 6880 time series features?

Reviewer #2 (Remarks to the Author):



The paper by Shafiei and colleagues details a novel body of work in which the authors have
established correlative links between neurophysiological phenomena (predominantly neural
oscillations) measured using MEG, and aspects of brain microstructure gathered from many
different open source datasets. The headline finding of the paper is that the spatial variation in
neurophysiological dynamics is correlated with a number of micro-architectural features, including
myeloarchitecture, neurotransmitter receptor density and metabolism.

I believe that this paper is both novel and an important contribution to the literature in this area.
Neural oscillations are a well established phenomenon that are known to be involved in critical
functionality, including for example, long range connectivity. Moreover neural oscillations are
known to be abnormal in a number of psychiatric and neurological problems. However their
fundamental origins and relationship to tissue microstructure are poorly understood - this paper
sheds significant light on that important question. I am happy to recommend publication. However
before publishing, the authors may wish to think about the following comments.

1) The way in which the MEG data are processed seems to me to be quite non-standard;
specifically I haven’t before come across ‘highly comparative time series analysis’. This isnt a
criticism! However, because of the way the article is structured with results coming before the
detailed methods, the “"6880 time series features” appear a little abstract and will likely confuse
some readers - particularly those unfamiliar with MEG. I wonder if a paragraph could be added
explaining more about what this feature selection process does. Also, from Figure 1, it seems that
whilst there may be 6880 features those features cluster making the columns of the “regions x
features” matrix highly correlated... would it be possible to better explain what each of the
separate clusters in this matruix relate to - Im aware from the text that some relate to canonical
frequencies etc - but a better explanation of this would, in my opnion, help add clarity and impact.
2) For me the “headline” result was in Figure 4D, which showed how the neurophysiological
dynamics loads on each of the aspects of microstructure. However I found this quite hard to
interpret (admittedly not helped because the bars are colour coded, and Im colour blind!). I
wonder if there is a better way to present this — for example by making a version that simplifies
the finding to a bar chart with the 6 summary measures as well as the current plot?

3) In the discussion, the limitations of the MEG aspects of the study were well explained. However
I think it would be good to point out limitations in the microstructure metrics; for example, myelin
wasn’t measured directly but via the ratio of relaxation constants T1 and T2 - whilst a useful
indicator this is not a true measure of tissue myelin content. I suspect similar limitations exist on
other measurements. I would be tempted to add a little discussion of these limitations, just to
ensure a reader is aware of what is being measured directly, and what is inferred based on e.g.
imaging etc.

Minor comments:

Strong relationships between tissue myelin and MEG measured signals have been published
previously (e.g. Helbling et al, NeuroImage 2015, and Hunt et al, PNAS, 2016 - there may be
others). Perhaps referencing these past papers would be helpful?

In the discussion, the authors say that higher SNR measures like iEEG and ECoG may be helpful -
however such measures lack whole brain coverage and so its hard to see how they could be
deployed? Wouldn't on scalp MEG be a better fit?

Reviewer #3 (Remarks to the Author):

This manuscript identifies how spatial variations of neurophysiological signals derived from MEG
co-localize with a wide set of micro-architecture markers. This study naturally follows previous
works from the same research team that explored how molecular markers co-localise with the
organization of the human cortex (Hansen et al. 2022, Nature Neuroscience) and with cross-



disorder features (Hansen et al. 2022; Nature Communications), among others.

This study is rigorous and methodologically sound. It expands the previous work with additional
microarchitecture maps and, more importantly, explores in a meticulous way, thousands of
features derived from MEG dynamics. As in previous studies, I have to congratulate the team for
the effort in providing data and code that is curated and ready to use. The sensitivity section
already addressed the only methodological concerns that I initially had so I recommend this paper
for publication.



Thank you for the constructive feedback on our initial submission and for the opportunity to
revise and resubmit the manuscript. Following the Reviewers’ comments and suggestions, we
have thoroughly revised the manuscript. In this letter, we respond to each of the Reviewers’
comments in detail. Reviewer comments are in bold font and our responses are in regular font.

Reviewer #1 (Remarks to the Author):

This paper investigates the relationship between spontaneous neurophysiological
dynamics across the human brain and cortical micro-architecture. The authors mapped
over 6,800 time-series features to a multi-modal atlas and found that neurophysiological
dynamics are co-localized with multiple micro-architectural features.

Major comments:

1) The authors use hctsa to generate a massive set of time series features, which may
result in features that are difficult to interpret in terms of underlying neurophysiology.
For example, one of the top loading time series features from the PLS analysis is the
autocorrelation at a lag of 48ms, but it is unclear how to interpret this in terms of
neurophysiological activity. I'm guessing that hctsa also generated features capturing
the autocorreiation at many lags, so what is the significance of 48ms?

We thank the Reviewer for their comment. Yes, that is correct. The hctsa toolbox generates
features capturing the autocorrelation at a range of time lags. Specifically, the studied range
comprises 40 time lags between 1 and 40 time steps, corresponding to 2 ms and 80 ms,
respectively. We selected a time lag of 48 ms to provide an example of the topographic
distribution of top-loading features in the analysis (absolute loading of AC-48ms = 0.71).
However, the top loading features also include other time lags with similar or higher loadings.
The figure below shows the PLS loadings for all time lags that were included in the analysis:
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To clarify this, we have now included this figure as a supplementary figure in the revised
manuscript. We also include all the information related to hctsa feature loadings in machine-
readable format in Supplementary File S2. In addition, we have added the following text to the
revised manuscript (“Results” section, “Neurophysiological signatures of micro-architecture”
subsection, paragraph #4):

“Another example is the linear autocorrelation of the MEG signal at longer time
lags. Fig.4c, left shows autocorrelation at a lag of 48 ms (24 time steps),
demonstrating lower autocorrelation in unimodal cortex and higher
autocorrelation in transmodal cortex. Note that the list of top-loading features
includes linear autocorrelation at other time lags and autocorrelation at a lag of
48 ms was only selected as an illustrative example (Fig. S5 depicts the full range
of loadings for linear autocorrelation at all time lags included in hctsa).”

And (“Results” section, “Neurophysiological signatures of micro-architecture” subsection,
paragraph #3):

“The full list of time-series feature loadings for the first latent variable is
available in the online Supplementary File S2.”

2) | had initially thought that with such a high number of features, the neurophysiology
data PCA would be run using time series from each vertex, or at least each subject. | was
surprised to find that it was run on a 100 x 6880 matrix. 100 observations seems very
small with such a large number of features, and this may be why a single component
captured the vast majority of the variance. The fact that the other components explained
10% of the variance or less makes me think that the number of observations was not
sufficient to characterize neurophysiological diversity.

We concur with the Reviewer that projecting a small number of observations to a redundantly
high dimensional space is associated with various issues in statistical analysis (also known as
“curse of dimensionality”). However, to our knowledge, the smaller number of samples than
features should not per se drive the amount of variance explained by the principal components
extracted by PCA, given that PCA by design reduces the data dimensionality while preserving
the maximum variation in the data regardless of the number of features or samples (Jolliffe &
Cadima, 2016). Nevertheless, to ensure that the findings were independent from the data
dimensionality, we performed a sensitivity analysis where we randomly selected 100 hctsa
features from the original 6880 features and re-ran PCA on the new 100 x 100 matrix (rows
correspond to regions and columns correspond to randomly selected hctsa features). We then
computed the correlation coefficient between the PC scores derived from the PCA applied to the
smaller 100 x 100 matrix and those from the original PCA applied to the larger 100 x 6880
matrix. We repeated this procedure 1000 times.

The figure below depicts the variance explained by PC1, PC2, and PC3 as well as the Pearson
correlation coefficients between the PCs from randomly selected 100 x 100 matrices and the



ones from the original analysis. We note that the variance explained from the original analysis
(shown by vertical red lines) is consistent with the distribution of variance explained obtained
from the sensitivity analysis (shown by blue histograms) for all PCs. Moreover, the spatial
distributions of PC scores are highly correlated between the original and sensitivity analysis
(shown by box plots below the histograms; PC1: r>0.99, PC2: r>0.8, PC3: r>0.75).

We have modified the text and added the figure below to the revised manuscript to reflect this
analysis (“Results” section, “Topographic distribution of neurophysiological dynamics”
subsection, paragraph #4):

“Moreover, to verify that the apparent low-dimensionality of the data and the
identified PC patterns were not driven by the smaller number of samples (i.e.,
brain regions) than features (i.e., time-series features), we performed a sensitivity
analysis where we randomly selected 100 time-series features (from the original
list of 6880 features) and re-ran PCA (1000 repetitions). The identified PC
patterns and their corresponding amount of variance explained were consistent
with the original analysis using the full set of time-series features (Fig. S3).”
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In addition, we repeated the analysis with a cortical atlas with a higher parcellation resolution to
assess whether the findings were affected by the number of parcels (i.e. number of
observations or samples). Specifically, we used the Schaefer-400 atlas with 400 cortical regions
instead of the Schaefer-100 atlas with 100 regions used in the original analysis. The results
were consistent for both parcellations. We have included this analysis in the manuscript along
with a supplementary figure depicting the results (“Results” section, “Sensitivity analysis”
subsection, paragraph #2):



“Finally, to ensure that the findings are independent from the parcellation
resolution, we repeated the analyses using a higher resolution parcellation
(Schaefer-400 atlas with 400 cortical regions (Schaefer et al., 2018)). The results
were consistent with the original analysis (Fig. S9 and Fig. S10). In particular, the
first principal component (PC1) accounted for 48.6% of the variance and
displayed a similar spatial organization as the one originally obtained for the
Schaefer-100 atlas (Fig. S9a). As before, the top loading time-series features
were mainly related to the characteristics of the power spectral density (Fig.
S9b,c). The full list of features, their loadings and p-values are available in the
online Supplementary File S3.”

Jolliffe, I. T., & Cadima, J. (2016). Principal component analysis: a review and recent
developments. Philosophical transactions of the royal society A: Mathematical, Physical and
Engineering Sciences, 374(2065), 20150202.

3) Given 100 observations, 6880 time series features, and 45 microarchitecture features, |
would be extremely surprised if it were impossible to find linear combinations of features
from each group that would yield high correlations between them. There doesn't seem to
be any guiding theory or model to this approach, and while the authors describe it as
data-driven, its scope is so large that there is a danger of veering from data mining to
data dredging. The out-of-sample analysis does mitigate this to some extent, but it may
be better to use something like sparse PLS (e.g. Chun & Keles, 2010).
https://www.ncbi.nim.nih.qov/pmc/articles/PMC2810828/

We concur with the Reviewer that multivariate associative analyses (such as PLS) will, by
design, maximize the correlation between linear combinations of features. We also agree that
the data dimensionality makes it challenging to reliably identify such associations. Our main
goal in this study was to go beyond a small number of manually selected time-series and micro-
architectural features-of-interest. Instead, we attempted to comprehensively map extensive sets
of dynamical and micro-architectural features across multiple scales using data-driven
approaches. Such all-to-all mapping approaches using multivariate analysis methods have been
previously used in the literature, providing useful charts on how multimodal brain data are
associated to each other (Hansen et al., 2021) or how they relate to behavioral and/or clinical
phenotypes (Smith et al., 2015; Avants et al., 2014; Xia et al., 2018; Kirschner et al., 2020).

However, to mitigate challenges that accompany data-driven analysis with multivariate
approaches, our original PLS analysis involved a rigorous out-of-sample cross-validation testing
(as pointed out by the Reviewer). We also performed a sensitivity analysis using a higher
resolution parcellation with 400 cortical regions (Figure S10). Moreover, following the
Reviewer’s suggestion, we repeated the analysis using a Python implementation of sparse
canonical correlation analysis (sCCA; Witten et al., 2009) to investigate the multivariate
associations between time-series and microarchitectural features. We opted to use sCCA given
that it is commonly used in the field, making the analysis technique comparable to previous



reports (Smith et al., 2015; Avants et al., 2014; Xia et al., 2018; Hansen et al., 2021). Another
advantage of using CCA is that in CCA the correlation matrix between the input sets is
corrected for within-set correlations (as opposed to PLS), ensuring that the identified link
between the two input data matrices is not driven by the correlation structure within one of them
(Mclintosh & Misi¢, 2013). We used sCCA to relate MEG time-series features to
microarchitectural features and found similar findings to the original PLS analysis. The figure
below shows the findings from sCCA:
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We have included this new analysis in the revised manuscript and have added a new
supplementary figure to show the results:

“Results” section, “Neurophysiological signatures of micro-architecture”, paragraph #1:
“Fig.4a shows that the analysis identifies multiple such combinations, termed
latent variables (similar results were obtained using sparse canonical correlation

analysis (sCCA); Fig. S4).”

“Methods” section, “Partial Least Squares (PLS)” subsection, paragraph #5:



“Finally, we used sparse canonical correlation analysis (SCCA; Witten et al.,
2009) as an alternative multivariate analysis technique to assess whether using a
different method with sparsity affects the results (Witten et al., 2009; Chun &
Keles, 2010). Similar to PLS, CCA is another reduced-rank regression analysis
that is used to identify multivariate linear relationships between two sets of data
matrices (Mclntosh & Misi¢, 2013; Smith et al., 2015; Avants et al., 2014; Xia et
al., 2018; Hansen et al., 2021). The main difference between CCA and PLS is
that in CCA the correlation matrix between the input sets is corrected for within-
set correlations, ensuring that the identified link between the two input data
matrices is not driven by the correlation structure within one of them (Mclntosh &
Misi¢, 2013). Moreover, sparse CCA (sCCA) adds a regularization parameter to
the analysis to impose sparsity and avoid overfitting (Witten et al., 2009). The
regularization parameter ranges between 0 and 1, where 0 corresponds to
highest possible sparsity and 1 corresponds to lowest possibility sparsity. We
used sCCA (regularization parameter = 0.7) to identify multivariate associations
between neurophysiological time-series features and micro-architectural features
and found similar results to the original PLS analysis (Fig. S4).”

In addition, we added the following sentence to the Introduction section in the revised
manuscript (“Introduction” section, paragraph #4):

“Instead of manually selecting a small number of features-of-interest, we use
extensive sets of dynamical and micro-architectural features using data-driven
approaches.”

Witten, D. M., Tibshirani, R., & Hastie, T. (2009). A penalized matrix decomposition, with
applications to sparse principal components and canonical correlation analysis. Biostatistics,
10(3), 515-534.

Chun, H., & Keles, S. (2010). Sparse partial least squares regression for simultaneous
dimension reduction and variable selection. Journal of the Royal Statistical Society: Series B
(Statistical Methodology), 72(1), 3-25.

Mclintosh, A. R., & Misi¢, B. (2013). Multivariate statistical analyses for neuroimaging data.
Annual review of psychology, 64, 499-525.

Smith, S. M., Nichols, T. E., Vidaurre, D., Winkler, A. M., Behrens, T. E., Glasser, M. F., ... &
Miller, K. L. (2015). A positive-negative mode of population covariation links brain connectivity,
demographics and behavior. Nature neuroscience, 18(11), 1565-1567.



Avants, B. B., Libon, D. J., Rascovsky, K., Boller, A., McMillan, C. T., Massimo, L., ... &
Grossman, M. (2014). Sparse canonical correlation analysis relates network-level atrophy to
multivariate cognitive measures in a neurodegenerative population. Neuroimage, 84, 698-711.

Xia, C. H., Ma, Z., Ciric, R., Gu, S., Betzel, R. F., Kaczkurkin, A. N., ... & Satterthwaite, T. D.
(2018). Linked dimensions of psychopathology and connectivity in functional brain networks.
Nature communications, 9(1), 3003.

Kirschner, M., Shafiei, G., Markello, R. D., Makowski, C., Talpalaru, A., Hodzic-Santor, B., ... &
Misi¢, B. (2020). Latent clinical-anatomical dimensions of schizophrenia. Schizophrenia bulletin,
46(6), 1426-1438.

Hansen, J. Y., Markello, R. D., Vogel, J. W., Seidlitz, J., Bzdok, D., & Misic, B. (2021). Mapping
gene transcription and neurocognition across human neocortex. Nature Human Behaviour, 5(9),
1240-1250.

4) "We find that PC1 has high spatial correlations with most of those maps (|r| > 0.36),
and significant correlations with intrinsic timescale (r s = 0.84, p spin = 0.03; FDR-
corrected) and hi-gamma (r s = 0.87, p spin = 0.005; FDR-corrected)"

The high spatial correlations that are not significant are meaningless. So the traditionally
time series features described by PC1 are the intrinsic timescale and high gamma. Is PC1
just reflecting the slope and/or offset of the aperiodic spectrum?

We concur with the Reviewer that reporting the non-significant correlations is not useful. We
have now removed this information and modified the text in the revised manuscript (“Results”
section, “Topographic distribution of neurophysiological dynamics” subsection, paragraph #3):

“We find that PC1 is significantly correlated with intrinsic timescale (rs = 0.84, pspin
= 0.03; FDR-corrected) and hi-gamma (rs = 0.87, pspin = 0.005; FDR-corrected).”

We thank the Reviewer for their comment about the slope and offset of the aperiodic component
of the power spectrum. Our analysis demonstrates that PC1 captures the linear correlation
structure of the neurophysiological activity and broad variations in its power spectrum. These
properties are also reflected in intrinsic timescale, which is directly estimated from the knee
frequency (f; ) and exponent (y) of the aperiodic component of the power spectrum. More
specifically, intrinsic timescale is estimated as: t = 1/2nf; , where:

- f« = kY% is the knee frequency, which is the frequency at which a knee or a bend

occurs in the power spectrum density,
-k is the knee parameter, which controls for the bend in the aperiodic component,
-y is the aperiodic exponent.

Hence, as the Reviewer points out, PC1 reflects characteristics of the aperiodic component of
the power spectrum, which are also mathematically related to the intrinsic timescale. To directly
assess the association between PC1 and the aperiodic component of the power spectrum, we



correlated PC1 with the exponent (slope) and the offset of the aperiodic component. As
expected, PC1 was significantly correlated with both measures (Figure below).

We have now modified the manuscript to reflect this analysis (“Results” section, “Topographic
distribution of neurophysiological dynamics” subsection, paragraph #3):

“Given that the intrinsic timescale reflects characteristics of the aperiodic
component of the power spectrum (these measures are mathematically related;
see Methods for details), we also directly assessed the association between PC1
and the exponent and offset of the aperiodic component. The exponent describes
the “curve” or the overall “line” or the slope of the aperiodic component and the
offset describes the overall vertical shift (up and down translation) of the whole
power spectrum (Donoghue et al., 2020). PC1 was significantly correlated with
both measures, suggesting that time-series features captured by PC1 also reflect
properties of the aperiodic component of the power spectrum (Fig. S2).”

r,=-0.88 py, = 0.0013 r,=-0.87 pyyin = 0.0022

aperiodic exponent
aperiodic offset

Minor comments:

1) "Given the hierarchical organization of PC1 and its close relationship with power
spectral features™

What is the hierarchical organization of PC1? This wasn't clear to me

We concur with the Reviewer that the phrasing of this sentence is unclear. The original
sentence referred to the topographic organization of PC1 that varied along an axis from dorsal
attention, somatomotor and visual networks to limbic and default mode networks. However, to
avoid any confusion, we have now rephrased this sentence in the revised manuscript (“Results”
section, “Topographic distribution of neurophysiological dynamics” subsection, paragraph #3):

“Given that the topographic organization of PC1 was closely related to power
spectral features, we directly tested the link between PC1 and conventional
band-limited power spectral measures (Donoghue et al., 2020; Wiesman et al.,
2022; da Silva et al., 2021), as well as the intrinsic timescale (Gao et al., 2020).”



2) The use of a notch filter restricts the range of frequencies that can be used for the
FOOOF fit. What about using iterative zapline to remove line noise? This would allow the
full frequency range to be used.

We would like to note that FOOOF can still fit a wide range of frequencies even when a notch
filter is applied. This can be achieved by FOOOF by "ignoring" a frequency band to skip over
line noise frequencies or by interpolating line noise regions. However, FOOOF struggles with
reliably detecting oscillatory peaks in high frequencies (above 40 Hz), given the lack of clear
power peaks in those ranges (Donoghue et al., 2020; Wiesman et al., 2022). Hence, to avoid
any overfitting and to only focus on clear and reliably detectable oscillatory peaks, we used the
FOOOF algorithm and spectral parameterization for frequencies up to 40 Hz (as recommended
by FOOOF as well). The main goal of this analysis was to ensure that our original findings with
total power (Figure 3) were consistent with the results obtained from the power maps adjusted
for the aperiodic activity (Figure S1) (at least in the frequency range with clear oscillatory
peaks).

We have included an explanation on the choice of frequency range for the FOOOF algorithm in
the manuscript (“Methods” section, “Intrinsic timescale” subsection, paragraph #3):

“Given the lack of clear oscillatory peaks in high frequencies (above 40 Hz), the
FOOOF algorithm struggles with detecting consistent peaks in gamma
frequencies and above (Donoghue et al., 2020; Wiesman et al., 2022). Thus, we
did not analyze band-limited power in gamma frequencies using spectral
parameterization.”

Donoghue, T., Haller, M., Peterson, E. J., Varma, P., Sebastian, P., Gao, R., ... & Voytek, B.
(2020). Parameterizing neural power spectra into periodic and aperiodic components. Nature
neuroscience, 23(12), 1655-1665.

Wiesman, A. |., da Silva Castanheira, J., & Baillet, S. (2022). Stability of spectral estimates in
resting-state magnetoencephalography: Recommendations for minimal data duration with
neuroanatomical specificity. Neuroimage, 247, 118823.

3) The FOOOF algorithm estimates of aperiodic spectral parameters can be sensitive to
the choice of the frequency range used. | have found in some datasets that the lower
frequency bound has to be about 0.1Hz to get an accurate estimate of the aperiodic
slope. | could not find any measures of the model fit reported in the paper.

We thank the Reviewer for pointing this out. In our analysis, the R? of the model fit (goodness of
the fit) ranged between 0.95 and 0.98 (Figure below), suggesting that the FOOOF algorithm
provided good model fits to the power spectra.



We have now updated the supplementary figure 1 (Figure S1) to include the distribution of R?
values. We have also updated the Methods section to reflect this information (“Methods”
section, “Intrinsic timescale” subsection, paragraph #2):

“The performance of model fits by the FOOOF algorithm was quantified as the
“goodness of fit” or R? for each model fitted to a given power spectrum (Fig. S1;
range of R? = [0.95, 0.98]).”

4) Band-limited power in gamma frequencies was not analyzed using spectral
parameterization, but one of the main results from the PCA is that PC1 was highly
correlated with high gamma. So what is high gamma? Related to major comment 5 and
minor comment 4, does this mean it's just the residual of the slope of a bad 1/f fit?

The high gamma power included in the main analysis (e.g., as shown in Figure 3) is the average
power in the range of 60-90 Hz, obtained from the total power spectrum without adjusting for the
aperiodic activity. We have now clarified this in the revised manuscript (“Methods” section,
“Power spectral analysis” subsection, paragraph #1):

“Average power at each frequency band was then calculated for each vertex (i.e.,
source) as the mean power across the frequency range of a given frequency
band.”

However, as mentioned above in response to the Reviewer's minor comment 2, we used the
FOOOF algorithm as a sensitivity analysis to ensure that our original findings with total power



(Figure 3) were consistent with the results obtained from the power spectrum adjusted for the
aperiodic activity (Figure S1). The sensitivity analysis with the spectral parameterization using
the FOOOF algorithm was only performed in the frequency range with clear oscillatory peaks.
Specifically, since the oscillatory peaks in high frequencies (above 40 Hz) are not clear enough
to be reliably detected by the FOOOF algorithm, we used spectral parameterization for
frequencies up to 40 Hz as recommended by the FOOOF algorithm (Donoghue et al., 2020;
Wiesman et al., 2022). In other words, we used the FOOOF algorithm to estimate band-limited
power maps that were adjusted for the aperiodic component of the power spectrum, focusing on
the frequency range with clear and reliably detectable peaks.

We have now included an explanation on the choice of the frequency range for the FOOOF
algorithm in the manuscript (“Methods” section, “Intrinsic timescale” subsection, paragraph #3):

“Given the lack of clear oscillatory peaks in high frequencies (above 40 Hz), the
FOOOF algorithm struggles with detecting consistent peaks in gamma
frequencies and above (Donoghue et al., 2020; Wiesman et al., 2022). Thus, we
did not analyze band-limited power in gamma frequencies using spectral
parameterization.”

Furthermore, following the Reviewer's comment, we have modified the manuscript to
include further explanation on the high correlation between PC1 and high gamma power
from the original analysis. As mentioned above in our response to major comment 4 of
the Reviewer, PC1 is associated with intrinsic timescale and directly reflects properties
of the aperiodic component of the power spectrum. In line with this finding, previous
reports have suggested that broadband gamma activity partly reflects the aperiodic
neurophysiological activity and broadband shifts in the power spectrum (Manning et al.,
2009; Buzsaki & Wang, 2012; Hudson & Jones, 2022). This is consistent with our
findings that PC1 is associated with gamma power and intrinsic timescale, mainly
capturing broad variations in power spectrum and characteristics of the aperiodic
activity. We have modified the manuscript to reflect this explanation (“Results” section,
“Topographic distribution of neurophysiological dynamics” subsection, paragraph #3):

“In addition, previous reports suggest that broadband gamma activity also
partly reflects the aperiodic neurophysiological activity and broadband
shifts in the power spectrum (Manning et al., 2009; Buzsaki & Wang,
2012; Hudson & Jones, 2022). This is consistent with our findings that
PC1 is associated with gamma power and intrinsic timescale, mainly
capturing broad variations in power spectrum and characteristics of the
aperiodic activity.”

Manning, J. R., Jacobs, J., Fried, |., & Kahana, M. J. (2009). Broadband shifts in local field
potential power spectra are correlated with single-neuron spiking in humans. Journal of
Neuroscience, 29(43), 13613-13620.



Buzséki, G., & Wang, X. J. (2012). Mechanisms of gamma oscillations. Annual review of
neuroscience, 35, 203-225.

Donoghue, T., Haller, M., Peterson, E. J., Varma, P., Sebastian, P., Gao, R., ... & Voytek, B.
(2020). Parameterizing neural power spectra into periodic and aperiodic components. Nature
neuroscience, 23(12), 1655-1665.

Wiesman, A. |., da Silva Castanheira, J., & Baillet, S. (2022). Stability of spectral estimates in
resting-state magnetoencephalography: Recommendations for minimal data duration with
neuroanatomical specificity. Neuroimage, 247, 118823.

Hudson, M. R., & Jones, N. C. (2022). Deciphering the code: Identifying true gamma neural
oscillations. Experimental Neurology, 114205.

5) What do the time series look like when projected onto PC1? It would be nice to see the
power spectral densities after this projection

If we understand the Reviewer's comment correctly, the question is how the PC patterns would
be organized spatially if the time-series were projected onto PC1. We apologize in advance if
the Reviewer refers to something else and that we are missing the Reviewer’s point. However if
we understand correctly, we note that our analysis is slightly different, such that we first replace
time-series with time-series features extracted using hctsa. We then apply PCA to the feature-
based representation of the time-series (rather than to the time-series themselves). As a result,
PC weights are estimated for time-series features rather than time points. This will not allow us
to project the time-series onto PC1 and other PCs. Instead, we project the time-series feature
onto PC1 and obtain PC1 spatial distribution as depicted in the manuscript (Figure 2).

6) Why were principal components of the gene expression and neurotransmitter
receptors and transporters data used in the PLS analysis rather than the raw data? Was
it to reduce the number of features? If so, why use 6880 time series features?

We included principal components of gene expression and neurotransmitter receptors and
transporters as they each represent proxy measures of certain molecular properties.
Specifically, the principal component of gene expression (gene expression PC1) provides a
potential proxy for cell type distribution across the cortex (Hawrylycz et al., 2012; Burt et al.,
2018; Hansen et al., 2021) and the principal component of neurotransmitter receptors and
transporters (neurotransmitter PC1) provides a summary measure of protein densities of 18
neurotransmitter receptors and transporters (Hansen et al., 2022a; Hansen et al., 2022b).
However, we also included individual neurotransmitter receptor and transporter maps as well as
cell type-specific gene expression maps to assess their effects separately.

We have now clarified this in the revised manuscript (“Results” section, paragraph #2):



“Note that the microstructure maps include principal gradients of gene expression
and neurotransmitter profiles as they each represent proxy measures of certain
molecular properties. Specifically, the principal component of gene expression
(gene expression PC1) provides a potential proxy for cell type distribution across
the cortex (Hawrylycz et al., 2012; Burt et al., 2018; Hansen et al., 2021) and the
principal component of neurotransmitter receptors and transporters
(neurotransmitter PC1) provides a summary measure of protein densities of 18
neurotransmitter receptors and transporters (Hansen et al., 2022a; Hansen et al.,
2022b). We also included individual neurotransmitter receptor and transporter
maps as well as cell type-specific gene expression maps to assess their effects
separately.”

Hawrylycz, M. J., Lein, E. S., Guillozet-Bongaarts, A. L., Shen, E. H., Ng, L., Miller, J. A, ... &
Jones, A. R. (2012). An anatomically comprehensive atlas of the adult human brain
transcriptome. Nature, 489(7416), 391-399.

Burt, J. B., Demirtas, M., Eckner, W. J., Navejar, N. M., Ji, J. L., Martin, W. J., ... & Murray, J. D.
(2018). Hierarchy of transcriptomic specialization across human cortex captured by structural
neuroimaging topography. Nature neuroscience, 21(9), 1251-1259.

Hansen, J. Y., Markello, R. D., Vogel, J. W., Seidlitz, J., Bzdok, D., & Misic, B. (2021). Mapping
gene transcription and neurocognition across human neocortex. Nature Human Behaviour, 5(9),
1240-1250.

Hansen, J. Y., Shafiei, G., Markello, R. D., Smart, K., Cox, S. M., Ngrgaard, M., ... & Misic, B.
(2022). Mapping neurotransmitter systems to the structural and functional organization of the
human neocortex. Nature Neuroscience, 1-13.

Hansen, J. Y., Shafiei, G., Voigt, K., Liang, E., Cox, S. M., Leyton, M., ... & Misic, B. (2022).
Multimodal, multiscale connectivity blueprints of the cerebral cortex. bioRxiv, 2022-12.



Reviewer #2 (Remarks to the Author):

The paper by Shafiei and colleagues details a novel body of work in which the authors
have established correlative links between neurophysiological phenomena
(predominantly neural oscillations) measured using MEG, and aspects of brain
microstructure gathered from many different open source datasets. The headline finding
of the paper is that the spatial variation in neurophysiological dynamics is correlated
with a number of micro-architectural features, including myeloarchitecture,
neurotransmitter receptor density and metabolism.

| believe that this paper is both novel and an important contribution to the literature in
this area. Neural oscillations are a well established phenomenon that are known to be
involved in critical functionality, including for example, long range connectivity.
Moreover neural oscillations are known to be abnormal in a number of psychiatric and
neurological problems. However their fundamental origins and relationship to tissue
microstructure are poorly understood — this paper sheds significant light on that
important question. | am happy to recommend publication. However before publishing,
the authors may wish to think about the following comments.

1) The way in which the MEG data are processed seems to me to be quite non-standard;
specifically | haven’t before come across ‘highly comparative time series analysis’. This
isnt a criticism! However, because of the way the article is structured with results coming
before the detailed methods, the “6880 time series features” appear a little abstract and
will likely confuse some readers — particularly those unfamiliar with MEG. | wonder if a
paragraph could be added explaining more about what this feature selection process
does. Also, from Figure 1, it seems that whilst there may be 6880 features those features
cluster making the columns of the “regions x features” matrix highly correlated... would
it be possible to better explain what each of the separate clusters in this matruix relate to
— Im aware from the text that some relate to canonical frequencies etc — but a better
explanation of this would, in my opnion, help add clarity and impact.

We have now expanded our explanation on hctsa time-series features of MEG data in the
beginning of the Results section. Specifically, we have included the passage below in the
revised manuscript (“Results” section, paragraph #1):

“Highly comparative time-series analysis (hctsa; (Fulcher et al., 2013; Fulcher &
Jones, 2017)) was then used to perform massive time-series feature extraction
from regional MEG recordings. This procedure provides a feature-based
representation of time-series, where given time-series are represented by time-
series feature vectors (Fulcher & Jones, 2017; Fulcher, 2018). This time-series
phenotyping analysis is a data-driven method that quantifies dynamic repertoire
of neural activity using interdisciplinary metrics of temporal structure of the signal
and yields a comprehensive ‘fingerprint’ of dynamical properties of each brain
region. Applying time-series phenotyping to regional MEG time-series, we



estimated 6880 time-series features for 100 cortical regions from the Schaefer-
100 atlas (Schaefer et al., 2018). The hctsa library contains a vast and
interdisciplinary set of time-series features with potentially correlated values that
span various conceptual properties. The list of time-series features includes, but
is not limited to, statistics derived from the autocorrelation function, power
spectrum, amplitude distribution, and entropy estimates (Fig. 1).”

We have also added the following explanation regarding correlated time-series features
(“Results” section, “Topographic distribution of neurophysiological dynamics”, paragraph #1):

“Since hctsa contains multiple algorithmic variants for quantifying any given time-
series property, the identified time-series features potentially capture related
dynamical behaviour and include groups of correlated properties. Hence, we first
sought to identify dominant macroscopic patterns or gradients of
neurophysiological dynamics using principal component analysis (PCA) (Shafiei
et al., 2020).”

2) For me the “headline” result was in Figure 4D, which showed how the
neurophysiological dynamics loads on each of the aspects of microstructure. However |
found this quite hard to interpret (admittedly not helped because the bars are colour
coded, and Im colour blind!). | wonder if there is a better way to present this — for
example by making a version that simplifies the finding to a bar chart with the 6 summary
measures as well as the current plot?

We thank the Reviewer for bringing this to our attention. We have now made 3 adjustments to
Figure 4 to address this issue:

(1) We have changed the categorical colormap used to color code the microarchitectural
subsets and the corresponding bar charts. We now use the colorblind-friendly colormap
from the Python package Seaborn
(hitps://seaborn.pydata.org/tutorial/color_palettes.html), which displays reasonably better
with colorblind filters (although unfortunately it is still not perfect).

(2) Following the Reviewer’s suggestion, we have also modified the bar charts in Figure 4D,
only displaying the maps with reliable loadings (i.e., with confidence intervals that do not
cross zero). This helps simplify the bar chart. We have also tilted the x-axis labels to
make them more readable.

(3) Following the Reviewer's other suggestion, we have now included a subplot to Figure
4D, depicting the findings in the bar chart with 6 summary measures (Figure 4D, right).
Specifically, we plot the loadings for each of the 6 microarchitectural categories as
scattered points, showing the distribution of loadings for microarchitectural maps.

We have also modified Figure 1 and Figure S10 (and the new Figure S4) to reflect the new
colormap. We thank the Reviewer for flagging this important issue!
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3) In the discussion, the limitations of the MEG aspects of the study were well explained.
However | think it would be good to point out limitations in the microstructure metrics;
for example, myelin wasn’t measured directly but via the ratio of relaxation constants T1
and T2 - whilst a useful indicator this is not a true measure of tissue myelin content. |
suspect similar limitations exist on other measurements. | would be tempted to add a
little discussion of these limitations, just to ensure a reader is aware of what is being
measured directly, and what is inferred based on e.g. imaging etc.



We concur with the Reviewer that microarchitectural maps are by no means direct
measurements of the underlying microstructure, cytoarchitecture, and cellular and molecular
features. At best, they provide proxy measures that are indirectly related to such biological
properties. We have now added a new point to the Discussion section to acknowledge this
limitation (“Discussion” section, paragraph #6):

“Third, we note that the included micro-architectural maps are by no means direct
measurements of the underlying neurobiological features. For example, the
“myelin” map is estimated based on the ratio of T1-weighted to T2-weighted MRI
scans, which is only sensitive to intracortical myelin and is not a true measure of
tissue myelin content (Glasser et al., 2011, Burt et al., 2018). The “cortical layer
thickness” maps are from a deep-learning based layer segmentation of the
BigBrain histological atlas and are not precise measurements of laminar
differentiation of the brain (Amunts et al., 2013; Paquola et al., 2021; Wagstyl et
al., 2020). Although we aimed to select non-invasive modalities that are most
sensitive to microstructure, cytoarchitecture, and cellular and molecular features,
the included maps can only provide proxy, indirect assessments of such
biological properties.”

Glasser, M. F., & Van Essen, D. C. (2011). Mapping human cortical areas in vivo based on
myelin content as revealed by T1-and T2-weighted MRI. Journal of neuroscience, 31(32),
11597-11616.

Burt, J. B., Demirtas, M., Eckner, W. J., Navejar, N. M., Ji, J. L., Martin, W. J., ... & Murray, J. D.
(2018). Hierarchy of transcriptomic specialization across human cortex captured by structural
neuroimaging topography. Nature neuroscience, 21(9), 1251-1259.

Amunts, K., Lepage, C., Borgeat, L., Mohlberg, H., Dickscheid, T., Rousseau, M. E., ... & Evans,
A. C. (2013). BigBrain: an ultrahigh-resolution 3D human brain model. science, 340(6139),
1472-1475.

Paquola, C., Royer, J., Lewis, L. B., Lepage, C., Glatard, T., Wagstyl, K., ... & Bernhardt, B.
(2021). The BigBrainWarp toolbox for integration of BigBrain 3D histology with multimodal
neuroimaging. Elife, 10, e70119.

Wagstyl, K., Larocque, S., Cucurull, G., Lepage, C., Cohen, J. P., Bludau, S., ... & Evans, A. C.
(2020). BigBrain 3D atlas of cortical layers: Cortical and laminar thickness gradients diverge in
sensory and motor cortices. PLoS biology, 18(4), e3000678.



Minor comments:

Strong relationships between tissue myelin and MEG measured signals have been
published previously (e.g. Helbling et al, Neurolmage 2015, and Hunt et al, PNAS, 2016 —
there may be others). Perhaps referencing these past papers would be helpful?

We thank the Reviewer for pointing this out. We have now referenced these two papers in the
revised manuscript (“Discussion” section, paragraph #5):

“Our findings build on previous reports by showing that neurophysiological
dynamics follow the underlying cytoarchitectonic and microstructural gradients. In
particular, our findings confirm that MEG intrinsic dynamics are associated with
the heterogeneous distribution of gene expression and intracortical myelin (Gao
et al., 2020; Demirtas et al., 2019; Helbling et al., 2015; Hunt et al., 2016) and
neurotransmitter receptors and transporters (Hansen et al., 2022).”

Helbling, S., Teki, S., Callaghan, M. F., Sedley, W., Mohammadi, S., Griffiths, T. D., ... &
Barnes, G. R. (2015). Structure predicts function: Combining non-invasive electrophysiology
with in-vivo histology. Neuroimage, 108, 377-385.

Hunt, B. A., Tewarie, P. K., Mougin, O. E., Geades, N., Jones, D. K., Singh, K. D., ... & Brookes,
M. J. (2016). Relationships between cortical myeloarchitecture and electrophysiological
networks. Proceedings of the National Academy of Sciences, 113(47), 13510-13515.

In the discussion, the authors say that higher SNR measures like iEEG and ECoG may be
helpful — however such measures lack whole brain coverage and so its hard to see how
they could be deployed? Wouldn’t on scalp MEG be a better fit?

We thank the Reviewer for their comment. We have modified the manuscript to reflect this point
(“Discussion” section, paragraph #6):

“Second, MEG is susceptible to low SNR and has variable sensitivity to neural
activity from different regions (i.e., sources). Thus, electrophysiological
recordings with higher spatial resolution, such as intracranial
electroencephalography (iEEG and ECoG), may provide more precise measures
of neural dynamics that can be examined with respect to cortical micro-
architecture. However, a major caveat with iEEG and ECoG is that they lack
whole brain coverage, limiting their practical usage in such analysis. An
alternative non-invasive modality is on-scalp MEG, which offers both high SNR
and spatial resolution (Boto et al., 2016; Pfeiffer et al., 2018; Tierney et al., 2019;
Hill et al., 2020).”



Boto, E., Bowtell, R., Kriiger, P., Fromhold, T. M., Morris, P. G., Meyer, S. S., ... & Brookes, M.
J. (2016). On the potential of a new generation of magnetometers for MEG: a beamformer
simulation study. PloS one, 11(8), e0157655.

Pfeiffer, C., Andersen, L. M., Lundqvist, D., Hamalainen, M., Schneiderman, J. F., &
Oostenveld, R. (2018). Localizing on-scalp MEG sensors using an array of magnetic dipole
coils. PLoS One, 13(5), e0191111.

Tierney, T. M., Holmes, N., Mellor, S., Lopez, J. D., Roberts, G., Hill, R. M., ... & Barnes, G. R.
(2019). Optically pumped magnetometers: From quantum origins to multi-channel
magnetoencephalography. Neurolmage, 199, 598-608.

Hill, R. M., Boto, E., Rea, M., Holmes, N., Leggett, J., Coles, L. A., ... & Brookes, M. J. (2020).
Multi-channel whole-head OPM-MEG: Helmet design and a comparison with a conventional
system. Neurolmage, 219, 116995.

Reviewer #3 (Remarks to the Author):

This manuscript identifies how spatial variations of neurophysiological signals derived
from MEG co-localize with a wide set of micro-architecture markers. This study naturally
follows previous works from the same research team that explored how molecular
markers co-localise with the organization of the human cortex (Hansen et al. 2022, Nature
Neuroscience) and with cross-disorder features (Hansen et al. 2022; Nature
Communications), among others.

This study is rigorous and methodologically sound. It expands the previous work with
additional microarchitecture maps and, more importantly, explores in a meticulous way,
thousands of features derived from MEG dynamics. As in previous studies, | have to
congratulate the team for the effort in providing data and code that is curated and ready
to use. The sensitivity section already addressed the only methodological concerns that |
initially had so | recommend this paper for publication.

We thank the Reviewer for their kind words!



Reviewer #1 (Remarks to the Author):

I would like to thank the authors for their thorough and insightful replies to my comments. I am
happy to recommend the manuscript for publication.

- James Bonaiuto

Reviewer #2 (Remarks to the Author):

The authors have now addressed all of my concerns and I believe that this paper should be
published.

My sincere congratulations to the authors on a really nice piece of work!



