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Supplementary Text 
Comprehensive analyses of the characteristics of the PBAONC complex networks 

The PBAONC mechanism can give rise to a range of complex networks of 
different numbers of edges. Since our main focus is complex networks for information 
processing, we consider two relevant measures: one is the clustering coefficient (C*), 
a measure of information segregation (i.e., the degree to which a network is organized 
into local specialized regions), the other is the characteristic path length (L*), a measure 
of information integration (i.e., the ability to rapidly combine pieces of specialized 
information from distributed regions). The contour plots of the landscapes of C* and 
L* as functions of Dmin and Dmax for networks (N=100) generated by the PBAONC 
mechanism are shown in Supplementary Fig. S5a,b with selected isolines of E (the 
expectation of the number of Edges) provided. It is seen that these isolines are almost 
though not strictly perpendicular to the right diagonal Dmax=Dmin along which networks 
are parameterized to form regular connections. The upper right end of the diagonal 
corresponds to the FC network that has routinely been implemented with memristive 
virtual nodes for RC1-4. The gradients of C* and L* in the right diagonal direction (E 
varies monotonically) can be clearly observed. Specifically, sparsely connected 
networks (bottom left region) have long L* and small C*, whereas it is opposite for 
densely connected networks (upper right region). Many complex systems, such as the 
brain network, social network and the Internet, have evolved towards a most 
economical trade-off between minimizing wiring cost and maximizing efficiency5, 6, 
characterized by small L* and large C*7. Supplementary Fig. S5c,d shows the L* and 
C* characteristics of the S-W SW network. This ubiquitous topological feature is 
famously known as the small-worldness. This also accounts for the optimal balance of 
functional segregation and integration in the brain network8. We also use scatter plots 
to visualize more clearly the evolution of C* and L* along given isolines of E. As shown 
in Supplementary Fig. S6, in the case of E=1200 (sparse connectivity), L* decreases 
with increasing difference between Dmax and Dmin along the isoline (Dmax and Dmin vary 
monotonically but oppositely). As the connectivity becomes denser (E=3000), the 
changes of C* and L* along the isoline of E become increasingly flattened out. With 
further increase in the connection density (E=4800), the changes of C* and L* along 
the isoline of E, though still insignificant, show reversed trends, respectively, compared 
to those in sparsely connected network (E=1200). 
 
Small-worldness of the PBAONC complex networks 

To quantify the small-worldness of networks parameterized over the entire (Dmin, 
Dmax) space, we adopt metric S* proposed by Humphries and Gurney9 which is based 
on measuring the trade-off between high local clustering and short path length. As 
shown in Supplementary Fig. S7, the gradient of S* is also most significant in the right 
diagonal direction. In agreement with that9, when the number of nodes is fixed, S* 
decays with increasing number of edges. Along an isoline of E, there is a unique point 
where S* is maximized. For sparse connections (E=600, 1200), this point locates at the 
maximum {Dmax-Dmin} end of the isoline; while for denser connections (E=1800, 2400, 
3000, 3600, 4200), it is midway between the two ends.  



Property comparison between the PBAONC complex network model and several 
canonical complex network models 

In addition to C*, L* and S*, we also quantify the properties of our complex 
network by other indicators and compare them with those of the other canonical 
complex networks, including the Watts–Strogatz (W-S) small-world (SW) network7, 
Erdős–Rényi (E-R) random network10 and Barabási–Albert (B-A) scale-free network11, 
under the condition of same number of nodes (100) and same E, as shown in 
Supplementary Fig. S8. As a common reference, the FC network generated by our 
PBAONC mechanism is also included in each comparison group. It is seen that the FC 
network trivially has the smallest L* and largest C*. Its degree of small-worldness is 
low and comparable to that of the E-R random networks and B-A scale-free networks 
of varying E, from 600 to 4800. Because the FC network is itself a clique, i.e., a network 
that has connections between any two nodes within it, it has the largest ‘maximum 
clique size’. Next to it, the PBAONC networks of different E in each comparison group 
always have the second largest ‘maximum clique size’. This can be understood as due 
to the specific wiring rule in generating the PBAONC network, that is, any one node is 
connected to all its proximal neighbor nodes. For E=600, our PBAONC network has 
the largest C*, and correspondingly, the largest ‘local efficiency’ (an indication of how 
effectively information is integrated between the immediate neighbors of individual 
nodes) among all complex networks. Its L*, and correspondingly, ‘radius’, however, 
are still larger than those of the W-S SW network (the other two complex networks are 
known to have small L*), therefore leading to the second highest degree of small-
worldness next to the W-S SW network. As E increases, the differences in C*, L* and 
S* between our PBAONC network and the W-S SW network become smaller, and the 
characteristics of all complex networks tend to be increasingly similar to that of the FC 
network, as expected. Nevertheless, the former two complex networks still have the 
highest degree of small-worldness. Measuring the efficiency of distant information 
transfer, the ‘global efficiency’ of our PBAONC network also improves as E increases. 
The treewidth measures the similarity between a graph and a tree. The PBAONC 
network has significantly smaller treewidth than any other networks and therefore it is 
the most tree-like network, suggesting that it is more likely to exhibit an intermediate-
scale structure composed of small dense parts, representing clusters, that are sparsely 
interconnected. Again, this is a reflection of its specific wiring behavior that any one 
node is connected to all its proximal neighbor nodes (contributes to cluster formation) 
but forms no connection with any of its distal neighbors (contributes to the formation 
of sparse interconnections among clusters). 
  



 
Fig. S1. Distribution of elements in the device. a Cross-sectional TEM image of the 
fabricated dynamic memristor (scale bar: 30 nm). EDS elemental mapping images of 
the device cross-section area where Pd is denoted in green (b), Hf in blue(c), O in purple 
(d), and Ta in orange (e). 
  



 
Fig. S2. Current–voltage (I–V) characteristics of the device. a Hysteretic I-V curves 
of a 4×4 μm2 device obtained under four consecutive cyclic voltage sweeps between -
5 V and + 5 V. b I-V curves obtained under four consecutive cyclic voltage sweeps 
between 0 V and + 5 V. The conductance of the device increases continuously as the 
number of sweeping cycles increases. c I-V curves obtained under four consecutive 
cyclic voltage sweeps between -5V and 0 V. The conductance of the device decreases 
continuously as the number of sweeping cycles increases. The I-V characteristics 
shown in Figs. S1a-c are not contradictory to the volatile switching characteristics 
obtained under pulse measurements (Fig. 1a in the manuscript) because the pulse 
stimulus is much more brief and therefore nonvolatile memristive changes may not be 
induced. d Single-valued (non-hysteretic) I-V curves obtained under three consecutive 
cyclic voltage sweeps between -3 V and +3 V. The absence of hysteresis in these I-V 
curves indicates that nonvolatile memristive changes do not take place in the device, 
which justifies the use of voltage pulses with the amplitudes of 3 V as the read voltage. 
e Comparison of the I-V curves of the devices with different areas (2×2 μm2, 4×4 μm2, 
8×8 μm2). 
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Fig. S3. The effect of the time-division multiplexing time step on the coupling 
among the virtual nodes. a Virtual nodes with a time interval of 2 s that is larger than 
τmax are independent from each other, as manifested in the (almost) invariant current 
responses to each voltage pulse. b, c Virtual nodes with a time interval of 200 ms that 
is smaller than τmin are dynamically coupled to their respective temporally adjacent 
nodes, as manifested in the different current evolution trajectories in response to 
different voltage pulse sequences. 
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Fig. S4. Probability distribution of the current decay time τ. a-f Probability 
distributions of the decay time of I+ (under 3-V read voltage) obtained under 1000 
independent single-pulse measurements with the amplitudes of the stimulating pulses 
being 4.8 V (a), 4.6 V (b), 4.4 V (c), 4.2 V (d), 4.0 V (e) and 3.8 V (f), respectively. 
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Fig. S5. Characteristic path lengths (L*s) and clustering coefficients (C*s) of the 
PBAONC complex networks and W-S SW networks with 100 nodes. a, b Contour 
plots of L* (a) and C* (b) as functions of Dmax and Dmin for the PBAONC network 
model with 100 nodes. The grey dash lines are the isolines of E (the expectation of the 
number of Edges). c, d Contour plots of L* (c) and C* (d) as functions of the random 
rewiring probability p and the number of connected nearest neighbors k in the baseline 
regular network. The grey dash lines are the isolines of E. 
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Fig. S6. Characteristic path lengths (L*s) and clustering coefficients (C*s) of the 
PBAONC networks. a-h L*s and C*s of PBAONC network model and the E-R 
random network model along the isolines of E=600 (a), E=1200 (b), E=1800 (c), 
E=2400 (d), E=3000 (e), E=3600 (f), E=4200 (g) and E=4800 (h). 
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Fig. S7. Contour plots of S* as functions of the PBAONC network models with 100 
nodes. 
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Fig. S8. Property comparison between the PBAONC complex network model and 
several canonical complex network models with different connection densities. a-
h Radar charts of nine network topology indicators for the PBAONC FC networks, the 
E-R random networks, the W-S SW networks, the PBAONC complex networks and the 
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B-A scale-free networks with connection densities of E=600 (a), E=1200 (b), E=1800 
(c), E=2400 (d), E=3000 (e), E=3600 (f), E=4200 (g) and E=4800 (h). 
  



 
Fig. S9. PBAONC FC network reservoir. Schematic of the PBAONC FC network 
reservoir set for RC based on time multiplexing of the dynamic memristors. 
  



 
Fig. S10. Workflow of the generation of connectivity patterns. 
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Fig. S11. Workflow charts of the training process and the testing process of 
reservoir computing based on the PBAONC complex network. 
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