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2Institut de Nanociència i Nanotecnologia, Universitat de Barcelona (IN2UB), 08028, Barcelona, Spain

3Universität Osnabrück, Fachbereich Physik, Barbarastraße 7, D-49076 Osnabrück, Germany
4Charles University, Faculty of Mathematics and Physics,

Department of Macromolecular Physics, V Holešovičkách 2, CZ-18000 Praha 8, Czech Republic
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SUPPLEMENTARY DISCUSSION 1. DYNAMICS IN THE ZERO-NOISE LIMIT

Suppl. Note 1. Equations of motions and rescaled variables

In the zero-noise limit, the system dynamics is deterministic and periodic. For calculating features of the soliton
dynamics, we consider the traveling-wave potential U(x, t) = (U0/2) cos[2π/λ(x + ωR t)] with x = Rϕ, λ = 2πR/M
along the ring of the M optical traps. When |xi − xj | > σ, the equations of motion for the particle coordinates
xi = Rϕi are

dxi
dt

= −µ ∂

∂xi

(
U0

2
cos

[
2π

λ
(xi + ωR t)

])
= µ

πU0

λ
sin

[
2π

λ
(xi + ωR t)

]
. (1)

Transforming these equations to the corotating frame, where particle have coordinates x′i = xi + ωR t, we obtain

dx′i
dt

= ωR+
µU0π

λ
sin

(
2πx′i
λ

)
= µF ext(x′i) . (2)

Here, F ext(x′) is the time-independent force in the corotating frame.
When particles come into contact, the force conditions given by Eq. (2) in the main text must be taken into account

as well as the fact that n particles with coordinates x′1, x
′
2 = x′1 + σ, . . . , x′n = x′1 + (n − 1)σ moving together have

a velocity v′n(x′1) = µF̄ ext(x′1) = vn(x1) + ωR, where F̄ ext
n (x′1) =

∑n
j=1 F

ext(x′1 + (j − 1)σ)/n is mean force on the
cluster. Here and in the following we specify the position of an n-cluster by the position of its leftmost particle.

Introducing scaled coordinates and time, and a rescaling of the angular velocity,

x′i → yi =
x′i
λ
, t→ λ2

πµU0
t , ωR→ f =

λ

µπU0
ωR , (3)

Eqs. (2) take the form

dyi
dt

= f + sin(2πyi) , (4)

where f < 1 for undercritical tilting of the potential, i.e. we consider 0 ≤ f < 1. The hard sphere constraints between
the y coordinates is given by the rescaled hard sphere diameter

σ → σ

λ
< 1 , (5)

and velocities are rescaled according to

v′ → u =
λ

µπU0
v′ . (6)

The positions of mechanical equilibrium for a single particle are

yeqp =
1

2
+

1

2π
arcsin(f) + p , p = 0, . . . ,M−1 , (7)

where arcsin(.) ∈ [−π/2, π/2].



2

Suppl. Note 2. Cluster velocities and times for traversing intervals

The velocity of an n-cluster is given by the mean force acting on it times the mobility µ. In the scaled variables,
this means that an n-cluster at position y has the velocity

un(y) =
1

n

n−1∑
j=0

(
f + sin[2π(y + jσ)]

)
= f +

sin(πnσ)

n sin(πσ)
sin[2πy + π(n−1)σ] . (8)

The time needed for an n-cluster to traverse an interval [a, b] with un > 0 is

τn(a, b) =

b∫
a

dy

un(y)
=
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−Cn
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artanh
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a

, f2n2 sin2(πσ) < sin2(πnσ) ,

1

fπ [1 + cot(πy + π(n−1)σ/2)]

∣∣∣∣b
a

, f2n2 sin2(πσ) = sin2(πnσ) ,

(9a)

where

Cn =

√
n2 sin2(πσ)∣∣f2n2 sin2(πσ)− sin2(πnσ)

∣∣ . (9b)

Suppl. Note 3. Soliton types

Solving Eq. (4) subject to the force conditions [Eq. (2) in the main text] and an initial condition with one double-
occupied potential well, we find that after a transient time, periodic motions of two soliton types are possible: an
A type given by two subintervals of the movements of an (n+1)- and n-cluster during one period [(n+1)-n-soliton],
and a B type given by four subintervals of cluster movements [(n+1)-n-(n+1)-(n+2)-soliton], see Fig. 1. We define
n as the core size of a soliton. The decrease and increase of a cluster size in the sequences is by detachments and
attachments of a single particle to the cluster [1].

Within one period of motion of an A type soliton with core size n, a single particle detaches at the back end of
an (n+1)-cluster and attaches at the front end of an n-cluster. Back and front end refer to the direction of cluster
motion in the corotating frame, i.e. to the direction of positive x for f > 0. Within one period of motion of a B type
soliton with core size n, a single particle first detaches and attaches as for the A type soliton, and in addition the
detached single particle reattaches at the back end of an (n+1)-cluster and thereafter detaches again.

We denote by yk the positions of a cluster (position of its leftmost particle) at the time instants of the detachment
and attachment events, where k labels the corresponding event, i.e. k = 1, 2 for the A type, and k = 1, 2, 3, 4 for the
B type (see also Fig. 1). These positions yk depend on the core size n of the soliton, but here and in the following we
do not indicate this dependence.

At the position y1, a single particle detaches from an (n+1)-cluster at its back end. At this moment, the particles
of the (n+1)-cluster have coordinates y1, y1 +σ, . . . , y1 +nσ. The detachment can take place between any two optical
traps along the ring. We set y1 ∈ [0, 1[. The condition on the external forces for the detachment yields

f + sin(2πy1) = f +
1

n

n∑
j=1

sin[2π(y1 + jσ)] = f +
sin(πnσ)

n sin(πσ)
sin (2πy1 + π(n+1)σ) . (10)

Solving for y1 ∈ [0, 1[, we obtain

y1 =
1

2
+

1

2π
arccot

[
n sin(πσ)

sin(nπσ) sin[π(n+1)σ]
− cot[π(n+1)σ]

]
, (11)

where arccot(z)∈ ]0, π/2] for z ≥ 0 and arccot(z)∈ ]−π/2, 0[ for z < 0.
For both soliton types, the remaining n-cluster propagates until it attaches to the single particle resting at the

position yeqn . Said differently, the single particle at the resting position yeqn attaches at the front end of the n-cluster.
The position y2 of both the n-cluster and the (n+1)-cluster at the time instant of the attachment is

y2 = yeqn − nσ =
1

2
+

1

2π
arcsin(f) + n(1− σ) . (12)
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Suppl. Fig. 1. Illustration of soliton types. Propagation of solitons is mediated by clusters of particles in contact, where
the cluster size changes by detachments and attachments of single particles. Detachment events are marked by blue arrows
and occur at the back end of clusters (back and front end refer to the cluster’s direction of movement). Attachment events
are marked by red arrows, where bright (dark) red arrows indicate attachments at the front (back) end of a cluster. Framed
circles represent those particles that keep in contact with progressing time. Two types of solitons occur: (a) Type A soliton
with core size n consisting of subsequent movements of an (n+1)- and n-cluster during one period. The (n+1)-cluster changes
to an n-cluster due to the detachment of a single particle, if the (n+1)-cluster is at position y1 ∈ [0, 1[ (the position of a cluster
is always defined by the position of its leftmost particle). The n-cluster propagates until attaching to the resting particle at
position yeqn , by which a new (n+1)-cluster is generated. Both the n- and (n+1)-cluster are at position yeqn −nσ at the moment
of the attachment. The newly formed (n+1)-cluster continues to move until it reaches the position y1 + 1, where one cycle
of the soliton motion is finished and the process starts anew. (b) Type B soliton with core size n consisting of subsequent
movements of an (n+1)- n-, (n+1)- and (n+2)-cluster during one period. Starting with the detachment of a single particle
from the (n+1)-cluster, analogous cluster moves occur as in the case of the type A soliton, until the attachment of the n-cluster
to the resting particle at position yeqn . The newly formed (n+1)-cluster, however, now continues to move until the previously
detached single particle reattaches at its back end. This happens when the (n+1)-cluster is at position y3 and, accordingly,
the single particle at position y3 − σ. The (n+2)-cluster formed by the reattachment moves until reaching position y4, where
the particle at its back end detaches again. The remaining (n+1)-cluster moves until reaching position y1 + 1, by which the
soliton cycle is completed. The duration of the cluster movements is given by the functions τn(a, b) in Eq. (9a), where a and b
denote the initial and final position of the cluster [1].

Note that by the subtraction of nσ from yeqn the position of the leftmost particle in the (n+1)-cluster is obtained, see
Fig. 1. For the type A soliton, the generated (n+1)-cluster moves until one period is finished, i.e. until it reaches the
position y1 + 1.

For the type B soliton, the (n+1)-cluster slows down its motion after it was formed by the attachment of the
n-cluster to the resting particle. The particle having detached before from the n-cluster is reattaching to the (n+1)-
cluster when this cluster is at position y3. The determining equation for y3 is obtained by requiring the duration of
the single particle movement and that of the successive movements of the n- and (n+1)-clusters to be equal,

τ1(y1, y3 − σ) = τn(y1 + σ, y2) + τn+1(y2, y3) . (13)

As for the arguments of the functions τn(., .), note that the detached particle starts its motion at y1 and has the
position y3 − σ at the moment of the reattachment, see Fig. 1. The n-cluster has finished its motion after passing
the interval between positions y1 + σ and y2, and the (n+1)-cluster starts its motion at y2 and has position y3 at
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the moment of the reattachment. Inserting the functions τn(., .) from Eq. (9a) gives a transcendental equation for y3,
which can be solved, e.g., by using the iterative Newton-Raphson method.

After the reattachment of the single particle, the generated (n+2)-cluster propagates until its leftmost particle
detaches again, when the (n+2)-cluster is at position y4. The condition on the external forces for the detachment
give the result analogous to Eq. (11), with n replaced by (n+1),

y4 =
1

2
+

1

2π
arccot

[
(n+1) sin(πσ)

sin[(n+1)πσ] sin[π(n+2)σ]
− cot[π(n+2)σ]

]
. (14)

Suppl. Note 4. Cycle duration, mean velocity, and mean size of solitons, duration of cluster movements

The cycle duration time τAn for a type A soliton of core size n is the sum of the times of the motion of the n- and
(n+1)-cluster,

τAn = τn(y1 + σ, y2) + τn+1(y2, y1 + 1) . (15)

Let us note again here that the yk are dependent on n. Analogously, the cycle duration time τBn for a type B soliton
of core size n is the sum of the times of the motion of the n-, (n+1)-, (n+2)- and (n+1)-cluster,

τBn = τn(y1 + σ, y2) + τn+1(y2, y3) + τn+2(y3 − σ, y4) + τn+1(y4 + σ, y1 + 1) . (16)

With these results, we can calculate the fractions of times that clusters of particular sizes propagate. These time
fractions give also the probabilities pαm of finding a soliton of type α (α = A,B) with core size n in a state where the
motion is due to a cluster of size m (m = n, n+1 for a type A soliton and m = n, n+1, n+2 for a type B soliton with
core size n). We obtain:

pAn =
τn(y1 + σ, y2)

τAn
, pAn+1 =

τn+1(y2, y1 + 1)

τAn
, (17)

pBn =
τn(y1 + σ, y2)

τBn
, pBn+1 =

τn+1(y2, y3) + τn+1(y4 + σ, y1 + 1)

τBn
, pBn+2 =

τn+2(y3 − σ, y4)

τBn
. (18)

These probabilities are presented in Fig. 2(c) of the main text.
In the dimensionless units of the scaled variables, the mean velocity ūαn of a soliton of type α (α = A,B) with core

size n is

ūαn =
1

ταn
. (19)

In the corotating frame, the mean angular velocity ω̄α ′n = v̄α ′n /R is

ω̄α ′n =
v̄α ′n
R

=
µπU0

λR ταn
, (20)

and in the laboratory frame, ω̄αn = ω̄α ′n − ω.
The mean size 〈n〉α of a soliton of type α with core size n is

〈n〉A = npAn + (n+1)pAn+1 = n+
τn+1(y2, y1 + 1)

τAn
, (21a)

〈n〉B = npBn + (n+1)pBn+1 + (n+2)pBn+2 = n+
τn+1(y2, y3) + τn+1(y4 + σ, y1 + 1) + 2τn+2(y2 − σ, y4)

τBn
. (21b)

Figure 2 shows (a) the mean size 〈n〉 and (b) the mean angular velocity ω̄ ′ of solitons as a function of the particle
diameter σ. Note that the core size n and the type of the soliton changes with σ, which leads to the kinks of the
functions plotted in Figs. 2(a) and (b). Remarkably, the equations (5) and (6) of the main text, which were obtained
from intuitive reasoning and give 〈n〉 ∼ ω̄ ′/ω ∼ 1/(1−σ/λ), provide a good approximate description of the functional
dependence on σ.
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Suppl. Fig. 2. Mean sizes and mean velocities of solitons in the zero-noise limit for f = 0.67. (a) Mean size 〈n〉 of
solitons as a function of particle diameter σ. (b) Normalized mean angular velocity ω̄ ′/ω in the corotating frame in dependence
of σ. The black solid lines mark the exactly calculated results in the zero-noise limit, and the dashed red lines the approximate
functional behavior according to equations (5) and (6) of the main text.
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