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Supplementary Note 1 

D-optimal design was used as an initial benchmark with which to compare the performance of 

ARROWS3 on the YBa2Cu3O6.5 (YBCO) synthesis dataset. This approach is commonly used in 

the Design of Experiments (DoE), and it is designed specifically to select the combination of 

experimental parameters that maximize the determinant of the information matrix. For a more 

detailed explanation of optimal design and the information matrix, we refer the reader to previous 

work1. Here we perform D-optimal design under the assumption that the yield of our target phase 

(YBCO) is linearly related to the selection of precursors (𝑃!) and synthesis temperature (𝑇) through 

some coefficients (𝑐!) that can be learned: 

𝑌𝑖𝑒𝑙𝑑 = 	+𝑐!𝑃!

"

!#$

+ 𝑐"%&𝑇 

Where 𝑃! is represented using a one-hot encoding as outlined in Supplementary Note 2 and 𝑁 is 

equal to the number of available precursors (e.g., 11 precursors for YBCO). All temperatures are 

normalized such that values between 600 and 900 °C are mapped onto values between 0 and 1. 

After building the information matrix for this model, the parameters that maximized its 

determinant were identified by using the CVXPY and CVXOPT packages within Python. The 

number of experiments proposed by this approach were progressively increased from one set of 

parameters up to 188 sets of parameters (i.e., all experiments available in the YBCO space). The 

number of optimal synthesis routes (yielding pure YBCO) contained within each batch of proposed 

experiments was identified and used to plot the gray curve shown in Fig. 3 of the main text. 
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Supplementary Note 2 

Bayesian optimization and genetic algorithms were used to evaluate the performance of traditional 

active learning algorithms when applied to the YBa2Cu3O6.5 (YBCO) dataset. For each algorithm, 

precursors were represented using one-hot encoding. Each one-hot vector contained 11 indices 

such that each index corresponded to a distinct precursor. A few examples are given below: 

BaO: [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] 

Y2O3: [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0] 

CuO: [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0] 

Precursor sets were accordingly represented by summing the one-hot encoded vectors of the 

compounds that they contained: 

BaO, Y2O3, CuO: [1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0] 

For the Bayesian optimization process, the correlation between these inputs and the yield 

of YBCO was modeled using a random forest regressor. Training was performed on an initial batch 

of five experiments, after which new precursor sets were iteratively suggested and their outcomes 

were added to the training set in a serial, one-by-one manner. The selection of these precursor sets 

was performed using a purely greedy approach whereby the one with the highest predicted yield 

was chosen at each iteration. Various acquisition functions including Expected Improvement (EI) 

and Upper Confidence Bound (UCB) were also tested but did not give improved results.  

 For optimization with a genetic algorithm, we used a population size of 10 experiments 

each generation. The initial generation was generated by random sampling from all possible 

precursor sets. Uniform crossover was applied between generations with a probability of 75% and 

a mutation rate of 25%. We also used an elitism ratio of 10% to keep the best experiment from 

each generation. The algorithm was halted when all 10 of the most effective synthesis routes 

(yielding pure YBCO) were identified. 
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Supplementary Figure 1: Number of optimal synthesis routes for YBa2Cu3O6.5 (YBCO) that 

were identified as a function of the experimental iterations required by ARROWS3. The blue line 

represents optimization performed throughout the entire search space, while the red line represents 

optimization performed in that space while excluding BaCO3 as a precursor. This test is designed 

to probe the effect of incorporating prior knowledge into the search space, as a domain expert may 

decide to exclude BaCO3 owing to its high decomposition temperature. 
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Supplementary Figure 2: Distributions showing the number of experimental iterations required 

to identify (a) at least one optimal synthesis route for YBa2Cu3O6.5 (YBCO), or (b) all ten optimal 

synthesis routes for YBCO. Results are categorized by the optimization algorithm used to identify 

these routes. In each violin plot, the embedded box extends from lower to upper quartiles of the 

distribution. Black dots are used to denote the mean. Because both Bayesian Optimization (BO) 

and Genetic Algorithms (GAs) are stochastic, the number of iterations required by each method 

varies substantially depending on the random starting seed. In contrast, D-optimal design (D-Opt) 

and ARROWS3 are both deterministic.  
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Supplementary Figure 3: Evolution of pairwise reactions identified in the Y-Ba-Cu-O chemical 

space as more experiments are performed, where each heatmap provides a snapshot of the 

information learned by ARROWS3 after it analyzed 30, 60, and 90 experiments. The squares are 

colored by the temperature (°C) at which a reaction is observed. Inert pairs correspond to phases 

that do not react within the temperature range considered. Pairs without any data are left blank 

(white squares). Yellow stars denote pairs that react to produce YBa2Cu3O6.5 (YBCO). Orange 

circles and red crosses denote pairs that form impurities, Y2BaCuO5 and BaCuO2, respectively. 
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Supplementary Figure 4: Effects of batch size on the optimization of YBa2Cu3O6.5 (YBCO) 

synthesis. (a) Number of optimal synthesis routes identified with respect to the number of samples 

queried by ARROWS3. Each curve represents an optimization campaign performed with a distinct 

batch size. (b) Number of optimal synthesis routes discovered versus the furnace hold for 

evaluating the required number of batches. (c) Number of batches and samples required to identify 

all ten optimal synthesis routes, with each dot symbolizing an optimization campaign for a specific 

batch size. (d) Total furnace hold time required to identify all optimal synthesis routes for each 

batch size. 
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Supplementary Figure 5: X-ray diffraction (XRD) pattern obtained from a synthesis product that 

was made by heating a precursor mixture of Na2O, MoO2, and TeO2 at 430 °C for 8 h. Reference 

patterns extracted from the ICSD are also shown for all phases identified in the product. This result 

serves as a baseline with which to compare the outcome of the optimized precursor set identified 

by ARROWS3 – Na2O, MoO3, and TeO2 – which produced Na2Te3Mo3O16 (NTMO) without any 

detectable impurities by following the same synthesis procedure. 
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Supplementary Figure 6: X-ray diffraction (XRD) pattern obtained from a synthesis product that 

was made by heating a ball milled precursor mixture of TiO2, LiOH, and P2O5 at 700 °C for 4 h. 

Reference patterns extracted from the ICSD are also shown for all phases identified in the product. 

This result serves as a baseline with which to compare the outcome of the optimized precursor set 

identified by ARROWS3 – TiO2, Li2O, and P2O5 – which produced the desired triclinic polymorph 

of LiTiOPO4 (t-LTOPO) without any detectable impurities while using the same heating profile. 
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Supplementary Figure 7: X-ray diffraction (XRD) patterns obtained from the synthesized ternary 

precursors for YBa2Cu3O6.5 (YBCO). Reference patterns extracted from the ICSD are also shown. 
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Supplementary Table 1: All precursor sets tested for the synthesis of YBa2Cu3O6.5 (YBCO). The 

stoichiometry of each set is determined by the composition of YBCO, in addition to gaseous 

byproducts that include O2 and CO2. Of the 47 precursor sets tested, only 10 resulted in the 

formation of YBCO without any detectable impurity phases. These 10 sets are shaded green. 
  

  
Precursor set 

   Stoichiometry 
  

      

BaO2, CuCO3, Y2Cu2O5 4, 4, 1 

Y2(CO3)3, BaO, CuCO3 1, 4, 6 

BaO2, Cu2O, Y2Cu2O5 4, 2, 1 

Y2O3, BaO, BaO2, Cu2O 1, 1, 3, 3 

BaO2, CuO, Y2Cu2O5 4, 4, 1 

Y2(CO3)3, BaO, CuO 1, 4, 6 

BaO, Cu2O, Ba2Cu3O6, Y2Cu2O5 12, 4, 4, 5 

Y2O3, BaO, Cu2O, Ba2Cu3O6 5, 8, 6, 6 

BaO, Ba2Cu3O6, Y2Cu2O5 4, 4, 3 

Y2O3, Ba2Cu3O6 1, 2 

Y2O3, BaO2, CuCO3 1, 4, 6 

Y2O3, BaO, CuCO3 1, 4, 6 

Y2(CO3)3, BaO2, CuCO3 1, 4, 6 

Y2O3, BaCO3, CuCO3 1, 4, 6 

BaO, CuCO3, Y2Cu2O5 4, 4, 1 

Y2(CO3)3, BaCO3, CuCO3 1, 4, 6 

BaCO3, CuCO3, Y2Cu2O5 4, 4, 1 

Y2O3, BaO2, Cu2O 1, 4, 3 

Y2O3, CuCO3, BaCuO2 1, 2, 4 

Y2O3, BaO2, BaCO3, Cu2O 1, 3, 1, 3 

Y2O3, BaO2, CuO 1, 4, 6 

BaO2, BaCO3, Cu2O, Y2Cu2O5 2, 2, 2, 1 

BaO, BaO2, Cu2O, Y2Cu2O5 2, 2, 2, 1 

Y2(CO3)3, CuCO3, BaCuO2 1, 2, 4 

Y2(CO3)3, BaO2, Cu2O 1, 4, 3 

Y2(CO3)3, BaO2, BaCO3, Cu2O 1, 3, 1, 3 
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Y2(CO3)3, BaO, BaO2, Cu2O 1, 1, 3, 3 

Y2(CO3)3, BaO2, CuO 1, 4, 6 

Y2O3, BaCO3, CuO 1, 4, 6 

BaCO3, CuO, Y2Cu2O5 4, 4, 1 

Y2(CO3)3, BaCO3, CuO 1, 4, 6 

Y2O3, BaO, CuO 1, 4, 6 

BaO, CuO, Y2Cu2O5 4, 4, 1 

Y2(CO3)3, BaO2, Cu2O, BaCuO2 1, 2, 2, 2 

BaCO3, Cu2O, Ba2(CuO2)3, Y2Cu2O5 12, 4, 4, 5 

Y2O3, BaCO3, Cu2O, Ba2(CuO2)3 5, 8, 6, 6 

Y2(CO3)3, BaCO3, Cu2O, Ba2(CuO2)3 5, 8, 6, 6 

BaCO3, Ba2(CuO2)3, Y2Cu2O5 4, 4, 3 

Y2(CO3)3, BaO, Cu2O, Ba2(CuO2)3 5, 8, 6, 6 

Y2O3, CuO, BaCuO2 1, 2, 4 

BaCuO2, Y2Cu2O5 4, 1 

Y2(CO3)3, CuO, BaCuO2 1, 2, 4 

Y2(CO3)3, Cu2O, BaCuO2, Ba2(CuO2)3 3, 2, 8, 2 

Y2O3, Cu2O, BaCuO2, Ba2(CuO2)3 3, 2, 8, 2 

Y2(CO3)3, Ba2(CuO2)3 1, 2 

Y2O3, BaO2, Cu2O, BaCuO2 1, 2, 2, 2 

BaO2, Ba2(CuO2)3, Y2Cu2O5 4, 4, 3 
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Supplementary Table 2: All precursor sets considered for the synthesis of Na2Te3Mo3O16 

(NTMO). The stoichiometry of each set is determined by the composition of NTMO, in addition 

to gaseous byproducts that include O2, CO2, NH3, and H2O. The optimal set identified by 

ARROWS3 is shaded green. 
     

  

Precursors Stoichiometry 
     

Na2O, TeO2, MoO3 1, 3, 3 

Na2O, TeO2, MoO2, O2 2, 6, 6, 3 

Na2O2, TeO2, MoO2, O2 1, 3, 3, 1 

NaOH, TeO2, MoO2, O2 4, 6, 6, 3 

TeO2, MoO2, Na2TeO3, O2 4, 6, 2, 3 

Na2CO3, TeO2, MoO2, O2 2, 6, 6, 3 

Na2O2, TeO2, MoO2, MoO3 1, 3, 1, 2 
Na2O2, TeO2, MoO2, N2H8MoO4 1, 3, 1, 2 

Na2O, TeO2, N2H8MoO4 1, 3, 3 

NaOH, TeO2, N2H8MoO4 2, 3, 3 

Na2O2, TeO2, N2H8MoO4 1, 3, 3 

TeO2, MoO2, Na2MoO4, O2 3, 2, 1, 1 

NaOH, TeO2, MoO3 2, 3, 3 

Na2O2, TeO2, MoO3 1, 3, 3 

Na2CO3, TeO2, N2H8MoO4 1, 3, 3 

TeO2, Na2TeO3, N2H8MoO4 2, 1, 3 

TeO2, Na2MoO4, N2H8MoO4 3, 1, 2 

Na2CO3, TeO2, MoO3 1, 3, 3 

TeO2, MoO2, Na2Mo2O7, O2 6, 2, 2, 1 

TeO2, MoO3, Na2TeO3 2, 3, 1 

TeO2, N2H8MoO4, Na2Mo2O7 3, 1, 1 

TeO2, MoO3, Na2MoO4 3, 2, 1 

TeO2, MoO3, Na2Mo2O7 3, 1, 1 
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Supplementary Table 3: All precursor sets considered for the synthesis of LiTiOPO4 (LTOPO) 

in its triclinic polymorph. The stoichiometry of each set is determined by the composition of 

LTOPO, in addition to gaseous byproducts that include O2, CO2, NH3, and H2O. The optimal set 

identified by ARROWS3 is shaded green. 
     

Precursor set Stoichiometry 
      

Li2O, TiO2, P2O5 1, 2, 1 

TiO2, LiOH, N2H8HPO4 1, 1, 1 

Li2O, TiO2, N2H8HPO4 1, 2, 2 

Li4Ti5O12, LiOH, N2H8HPO4 1, 1, 5 

Li2O, Li4Ti5O12, N2H8HPO4 1, 2, 10 

TiO2, Li2CO3, N2H8HPO4 2, 1, 2 

Li4Ti5O12, Li2CO3, N2H8HPO4 2, 1, 10 
Li2TiO3, Li4Ti5O12, N2H8HPO4 1, 1, 6 

Li2TiO3, TiO2, N2H8HPO4 1, 1, 2 

TiO2, NH4H2PO4, LiOH 1, 1, 1 

Li4Ti5O12, Li3PO4, N2H8HPO4 3, 1, 14 

Li2O, TiO2, NH4H2PO4 1, 2, 2 

Li4Ti5O12, NH4H2PO4, LiOH 1, 5, 1 

TiO2, Li2CO3, NH4H2PO4 2, 1, 2 

Li2O, Li4Ti5O12, NH4H2PO4 1, 2, 10 

Li4Ti5O12, Li2CO3, NH4H2PO4 2, 1, 10 

Li2TiO3, Li4Ti5O12, NH4H2PO4 1, 1, 6 

Li2TiO3, TiO2, NH4H2PO4 1, 1, 2 

Li4Ti5O12, Li3PO4, NH4H2PO4 3, 1, 14 

TiO2, Li3PO4, N2H8HPO4 3, 1, 2 

TiO2, Li3PO4, NH4H2PO4 3, 1, 2 

TiO2, P2O5, LiOH 2, 1, 2 

TiO2, P2O5, Li2CO3 2, 1, 1 

Li4Ti5O12, P2O5, LiOH 2, 5, 2 

Li4Ti5O12, P2O5, Li2CO3 2, 5, 1 
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Li2O, Li4Ti5O12, P2O5 1, 2, 5 

Li2TiO3, Li4Ti5O12, P2O5 1, 1, 3 

Li2TiO3, TiO2, P2O5 1, 1, 1 

Li4Ti5O12, P2O5, Li3PO4 3, 7, 1 

TiO2, P2O5, Li3PO4 3, 1, 1 
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