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SUPPLEMENTARY NOTE 1: THEORY

In the following, we discuss hybridisation of two Andreev bound states (ABSs) between three superconducting
leads. The problem has been investigated extensively in the context of the Andreev molecule [1–4]. Here, we treat
hybridisation empirically with a coupling parameter γ introducing an avoided crossing in the spectrum. Assuming
relatively weak coupling between the two ABSs, the spectrum resembles the energy levels of the independent states
except for the points where they would cross, where hybridisation leads to the anticrossing. A simple perturbation
theory can be applied if the energies EL,R are sufficiently larger than γ:
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is the energy of an independent ABS between two superconducting leads with phase difference ϕα and energy gap
∆ in a channel with transmission τ2α. We recall that the perturbation theory is applicable for |Eα(ϕα)| ≫ |γ|: this
condition does not hold if the transmissions of the junctions are large (1− τα ≪ 1) and the phase differences are close
to (2n + 1)π, which is the regime studied in the experiment. Nevertheless, in such experimentally relevant limit we
follow the approach of Refs. [2, 3] and expand the independent ABS energies around ϕα = π:
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with r2α = 1−τ2α ≪ 1 the reflection amplitude squared. In the limit of perfect transmission rL = rR = 0, the equations
derived in Refs. [2, 3] for the ballistic regime can be employed:
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where φα = ϕα − π and δ = γ/∆ is the dimensionless coupling parameter. The formula is applicable for any points
close to (ϕL, ϕR) = [π(2n+ 1), π(2m+ 1)], with n and m integers. The corresponding constant-energy cut plane
of the spectrum at E = −0.01∆ is shown in Supplementary Fig. 1a as a function of the phase differences. Here,
hybridisation of purely ballistic channels introduces avoided crossings along the anti-diagonal direction ϕL = 2π−ϕR.
Moreover, we consider small but finite reflection amplitudes rα ≪ 1 for each channel and use the effective Hamil-

tonian introduced in [2] (by projecting on the low-energy states) to derive the spectrum:
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The constant-energy plane at E = −0.01∆ is displayed in Supplementary Fig. 1b, where we observe that non-zero
reflection amplitudes introduce additional avoided crossings along the diagonal direction ϕL = ϕR.

In order to go beyond the limiting case accessible analytically, valid for weak coupling between the ABSs, we
perform numerical simulations of a comparable system. Andreev states are modelled as two single-level quantum dots
(QDs) coupled to three superconducting terminals. A coupling between the QDs accounts for hybridisation of the
ABSs in the three-terminal junction. The model is schematically shown in Supplementary Fig. 2. For each ABS, the
only relevant parameter is the transmission of the corresponding junction [5], hence we can arbitrarily opt for any
microscopic model. The QD model offers a flexible tool to describe a scattering region and is well suited for numerical
analyses of the system, even for strong coupling between the ABSs, where the analytical approach cannot be used.
The coupling between each QD and the superconducting terminals can be arbitrarily strong, hence this model is also
suited to describe ABSs in the open regime, rather than isolated dots weakly coupled to the leads [6].
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The total Hamiltonian of the system is expressed as:

H = HDD +
∑

α=M,L,R

HS,α +HDS. (6)

Here, HDD is the Hamiltonian of the double QD:

HDD = ϵ1
∑
σ

d†1σd1σ + ϵ2
∑
σ

d†2σd2σ + t
∑
σ

d†1σd2σ + h.c., (7)

where the creation operator d†jσ of the j-th QD, its energy ϵj and the coupling parameter t are defined. The super-

conducting terminals are described by Bardeen–Cooper–Schriffer Hamiltonians [7]:

HS,α =
∑
kσ

ξkc
†
kσ,αckσ,α +

∑
k

(
∆eiϕαc†k↑,αc

†
−k↓,α +∆e−iϕαc−k↓,αck↑,α

)
, (8)

where c†kσ,α is the creation operator of an electron with momentum k and spin σ in lead α ∈ {M,L,R}, ∆ is the

superconducting gap (assumed to be the same for all leads), ϕα the superconducting phase of lead α and ξk the
normal state dispersion in the leads. The tunnel coupling between each QD and the superconductors is expressed by
the term HDS, having the form:

HDS = vM,1

∑
k,σ

d†1σckσ,M + vM,2

∑
k,σ

d†2σckσ,M + vL,1
∑
k,σ

d†1σckσ,L + vR,2

∑
k,σ

d†2σckσ,R + h.c., (9)

where vα,j denotes the coupling of the j-th QD to lead α.
Two superconductor–QD–superconductor junctions are identified: between leads L and M through QD1 and between

leads R and M through QD2. In the absence of coupling between the QDs (t = 0), the ABS energy of QD1(2) depends
only on ϕL(R) − ϕM. For finite coupling (t ̸= 0) the ABSs hybridise, which is the case presented in the Main Text.
We do not consider a direct ballistic channel between terminals L and R due to their larger separation in the device
compared to the L–M and R–M junctions. Nevertheless, the energy of a hypothetical ABS in such channel would
depend on ϕL−ϕR, hence it would be close to the superconducting gap in proximity of the points where ϕL = ϕR = π.
As a consequence, any hybridisation of the additional state with the two included in the model would be suppressed
near those regions of phase space. To evaluate this model in the limit of strong coupling between superconducting
leads and QDs, i.e., Γα,j ≡ πN0v

2
α,j > ∆ (where N0 is the normal density of states in the leads), we calculate the

ABS density of states by determining the Green’s function of the coupled system with the Dyson equation:

GDD = gDD + gDD VDS gSS V
†
DS GDD, (10)

where GDD is the dressed Green’s function of the double QD, gDD the unperturbed Green’s function of the two
QDs, VDS the coupling between the QDs and the superconducting leads and gSS = diag (gSS,M, gSS,L, gSS,R) the
unperturbed Green’s function of the three leads. From this expression, the ABS density of states is calculated as
ρ = − 1

π Im {tr (GDD)} and the eigenenergies are obtained from the poles of GDD, yielding the results shown in
Figs. 3 and 4 of the Main Text. As previously discussed, the only relevant parameters for the hybridised ABSs are
the inter-QD coupling t and the transmission amplitudes, which are related to the QD–lead couplings Γα,j via the
expressions:

T1 =
4ΓM,1 ΓL,1

(ΓM,1 + ΓL,1)
2 , T2 =

4ΓM,2 ΓR,2

(ΓM,2 + ΓR,2)
2 , (11)

valid in the limit of strong lead–QD coupling. These parameters influence the region of the avoided crossing between
the two ABS, as illustrated in Supplementary Fig. 3. In all simulations, a broadening parameter η was assumed in
the Green’s functions. We observe qualitative agreement between the numerical simulations and the analytical study
previously discussed (see Supplementary Fig. 1).

The parameters used for the simulations in the Main Text were: t = 1.1∆, ΓL,1 = 5.5∆, ΓM,1 = ΓR,2 = 6∆,
ΓM,2 = 5∆, corresponding to transmissions T1 ≈ 0.998 and T2 ≈ 0.992, and broadening η = 0.02∆. Moreover, we
recall that the constant-energy planes of Figs. 3b and 4a–c were plotted by introducing a cross-dependence between the
phase differences ϕL−ϕM ≡ ϕL and ϕR−ϕM ≡ ϕR to better represent the experimental data, where a cross-dependence
between the two flux-bias lines was present (see also discussion in Section ). In particular, the cross-coupled phases
ϕ∗
L and ϕ∗

R were defined as linear combinations of ϕL and ϕR with the transformation:(
ϕ∗
L

ϕ∗
R

)
=

(
a b
c d

)
·
(
ϕL

ϕR

)
, (12)

where the coefficients a = 0.9708, b = 0.2400, c = 0.2832 and d = 1.122 were used.
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SUPPLEMENTARY NOTE 2: GATE DEPENDENCE OF DIFFERENTIAL CONDUCTANCE

The transmission between the superconducting probe and the three-terminal Josephson junction (3TJJ) was con-
trolled with two gate electrodes, denoted tunnel gates and set to the same voltage VT ≡ VTL = VTR, and had a finite
dependence on the gates energised by the voltages VProbe and VG, denoted probe gate and global gate respectively
(see Fig. 1a,c). We always kept VProbe = 150 mV. The effect of the gate at voltage VSwitch (switch gate) on the
probe transmission was negligible. The differential conductance G measured as a function of VT and VSD, with VSD

the DC voltage bias applied to the probe, is shown in Supplementary Fig. 4a,b for VG = 50 mV and VG = −150 mV
respectively. In both cases the conductance, hence the probe transmission, decreases with VT, transitioning from
open to tunnelling regime. In the former, we observe a zero-bias conductance peak, corresponding to a remnant of
supercurrent between the probe and the superconducting leads, and several peaks at finite bias, related to multiple
Andreev reflection (MAR) processes. In the tunnelling regime, where the conductance at large |VSD| is substantially
lower than the conductance quantum G0 = 2e2/h, a transport gap of ≈ 310 µV is present in the spectrum, consistent
with a superconducting gap of Al ∆ ≈ 155 µeV. Pronounced features appearing at the edges of the gap correspond
to Andreev bound states (ABSs). As shown in Supplementary Fig. 4b, by further lowering VT the probe could be
completely pinched off. We remark that tunnelling spectroscopy in our devices was performed in a superconductor–
insulator–superconductor (SIS) configuration, hence the G(VSD) traces result from a convolution product between two
relatively complex densities of states [8, 9] and do not provide a direct measurement of the gap hardness. Nevertheless,
since G ≈ 0 across a significant voltage range around VSD = 0 (for any flux-line currents IL and IR, as seen in Fig. 2 of
the Main Text), we consider the gap hardness to be comparable to previous reports [10], where also a density-of-states
broadening to what we noted in the Main Text was observed.

The dependence on the global gate is presented in Supplementary Fig. 4c for VT = −1.07 V. We find that its main
effect on the spectrum is also to change the transmission of the probe, which is progressively reduced for decreasing
VG until the pinch off is reached. Notably, in both the VT and the VG dependence, no sharp conductance peaks
relatable to resonant transport via spurious quantum dots are observed.

Tunnelling spectroscopy measurements were performed on a second device, fabricated on the same chip of the first
and measured in the same cool down. Device 2 was lithographically similar to Device 1, except for the width of the
superconducting probe and the shape of the tunnel and probe gates (see Supplementary Fig. 4d). The dependences on
the tunnel gate voltage VT and on the global gate voltage VG are plotted in Supplementary Fig. 4e and f respectively,
showing features qualitatively very similar to Device 1.

SUPPLEMENTARY NOTE 3: RESULTS FOR DEVICE 2

The main experimental results shown in the Main Text for Device 1 were qualitatively reproduced in Device 2, as
illustrated in Supplementary Figs. 5 and 6. Here, the tunnel gates were set to VT = −1.395 V and VT = −1.42 V
respectively, with the global gate voltage set to VG = −150 mV and the probe gate voltage to VProbe = 100 mV. In
these configurations, the probe was in the tunnelling regime and its transmission was comparable to that of Device 1
for the measurements presented in the Main Text.

In Supplementary Fig. 5, we show the constant-bias planes (i.e., G as a function of IL and IR at fixed values of
VSD) corresponding to Figs. 1d,e, and 4d–l of the Main Text. When the switch junction is in the ON state (defined by
VSwitch = 0), we confirm the presence of avoided crossings between a ΦL-dependent ABS and a ΦR-dependent ABS,
with the resonances associated to one state connecting to those of the other, and phase shifts occurring near the avoided
crossings. The 2D pattern is strongly simplified when the switch is OFF (VSwitch = −1.5 V, Supplementary Fig. 5b),
as the ΦR-dependent ABS disappears and no sign of hybridization is observed. The band structure tomography is
displayed in Supplementary Figs. 5c–k and is compatible with the results presented in the Main Text (see Fig. 4).

Further, we select linecuts of the phase space, indicated by the coloured arrows in Supplementary Figs. 5a,b, along
which we perform bias-dependent spectroscopy (Supplementary Fig. 6, to be compared with Fig. 2). Again, we
observe strong dispersion anisotropy when comparing linecut γ1 to γ2. Incidentally, while we still note a conductance
peak at VSD = ±155 µV, whose position in bias does not vary appreciably with γi and which is attributed to MAR
processes, this device does not reveal a second peak at larger |VSD|. This shows that the peak at VSD = ±175 µV in
Device 1 is a device-specific feature. Since the ABS dispersion of Device 1 is qualitatively reproduced in Device 2, we
corroborate that the peak at ±175 µV in the former does not interact with the ABSs or affect their main properties.
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SUPPLEMENTARY NOTE 4: RESULTS FOR DIFFERENT VG

The measurements of Device 1 shown in the Main Text were obtained in a single gate configuration (except for
the switch gate voltage, set to −1.5 V for Figs. 1e, 2i and to 0 V elsewhere). The main results were reproduced in
different gate configurations, defined by setting a new value of VG and adjusting VT to maintain a comparable probe
transmission, crucially remaining in the tunnelling regime. In Supplementary Figs. 7–12 we show the three cases
VG = −66 mV, VG = −150 mV and VG = −250 mV, as described in the following. Remarkably, all the key features
discussed in the Main Text were qualitatively reproduced in these configurations, highlighting the generality of our
results and further supporting our conclusions. Incidentally, we did not observe a variation in the transmission of the
highly transmissive ABSs as a function of the global gate voltage, namely they approached the edges of the transport
gap at |VSD| ≈ 155 µV very closely for any VG. This was verified in the range −300 mV ≤ VG ≤ 150 mV, noting that
at VG = −300 mV the sub-gap states were at a limit of visibility but still preserved the same dispersion with phase.

� VG = −66 mV: Supplementary Figs. 7a,b, 7c–k and 8 correspond to Figs. 1d,e, 4 and 2a–h respectively. VT is
adjusted to −1.038 V. Interestingly, we observe that the two ABSs have very similar visibility in this regime
(namely, the resonances associated with each state have similar conductance), in contrast to the regime shown
in the Main Text (VG = 50 mV), where the ABS dispersing with ΦL had higher conductance. As a possible
explanation, we hypothesise that, when VG is reduced, the electrostatic potential profile at the tunnelling
barrier shifts slightly, in such a manner that its maximum displaces from left to right. At the optimised value
VG = −66 mV, transport between the probe and either side of the three-terminal region is symmetric, resulting in
similar conductance when tunnelling into either ABS. Furthermore, in the constant-bias planes of Supplementary
Fig. 7, and particularly in panel b, we notice an additional set of resonances with the same dependence on IL
and IR as the left ABS. This is attributed to a very small phase modulation of the MAR peak, i.e., the nearly
flat line at VSD = −155 µV that is visible in Supplementary Fig. 8. These peak, particularly prominent in the
present regime, accounts for a conductance background in the constant-bias maps and its modulation translates
into a phase-periodic background.

� VG = −150 mV: Supplementary Figs. 9a,b, 9c–k and 10 correspond to Figs. 1d,e, 4 and 2 respectively. VT

is adjusted to −1.02 V, where the probe transmission is smaller than in the previous regimes: the differential
conductance at large VSD (near the range limits) is reduced by approximately a factor 2. This results in a lower
signal-to-noise ratio, due to which periodic noise features become visible in the constant-bias measurements
(Supplementary Fig. 9), as long as G is relatively small. At the same time, the conductance resonances at
VSD = ±155 µV and VSD = ±175 µV in the spectra of Supplementary Fig. 10 become substantially less
prominent, and so is their modulation as a function of γi. Visibly, the ABS dispersion is not distorted when the
states cross the horizontal peaks, remaining qualitatively very similar to that observed in Fig. 2. This provides
further support to the absence of an interaction between the peaks at VSD = ±155 µV,±175 µV and the ABSs.
Finally, in this gate configuration, the ABS depending on ΦR shows the highest conductance, consistent with
the argument presented for the case VG = −66 mV.

� VG = −250 mV: Supplementary Figs. 11a,b, 11c–k and 12 correspond to Figs. 1d,e, 4 and 2a,b,d,e,i respectively.
VT is adjusted to −984 mV, where the probe transmission is comparable to the regime VG = −150 mV.

SUPPLEMENTARY NOTE 5: MUTUAL INDUCTANCE MATRIX

As described in the Main Text, our devices feature two flux bias lines where currents IL and IR are injected. Since
IL generates a magnetic field that is stronger over the left superconducting loop than over the right one, it controls
mainly the external magnetic flux ΦL threading the left loop, associated to the superconducting phase difference
between the terminals L and M (see Fig. 1a). Similarly, IR tunes mostly ΦR, thus the phase difference between R
and M, in such a manner that the combination of the two flux lines enables full phase control over a two-dimensional
space. Nevertheless, each flux line has also a finite coupling to the opposite loop, thus ΦL and ΦR depend on both IL
and IR according to the linear relation:(

ΦL

ΦR

)
= M ·

(
IL
IR

)
=

(
MLL MLR

MRL MRR

)
·
(
IL
IR

)
, (13)

where M is the mutual inductance matrix. We calculate M from the constant-bias conductance measurement of
Fig. 1d, plotted again in Supplementary Fig. 13a. First, we observe that the origin (IL, IR) = (0, 0) corresponds to
the origin of the flux space (ΦL,ΦR) = (0, 0). We associate the centres of the adjacent diamond-like regions to the
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addition or subtraction of one superconducting flux quantum Φ0 = h/(2e) to either ΦL or ΦR. By evaluating Eq. 13
in two centre points, for example those related to (Φ0, 0) and (0,Φ0), we write a 4×4 equation system and determine:

M =

(
6.96 pH −1.43 pH
−1.69 pH 5.79 pH

)
. (14)

The ratio MRR/MLL ≈ MLR/MRL ≈ 0.8 approximately corresponds to the ratio between the length of the vertical
segments of the right and left flux line. Knowing M, we can apply the linear transformation of Eq. 13 to convert the
(IL, IR) axes to the (ΦL,ΦR) axes, as illustrated in Supplementary Fig. 13b for the dataset of panel a.

SUPPLEMENTARY NOTE 6: PHASE SHIFTS AND INDUCTANCES IN THE SYSTEM

In the constant-bias measurements showing the dependence on IL and IR with the switch junction ON, such as in
Figs. 1d and 4d–i, we remarked the presence of phase shifts occurring when resonances associated to different states
(i.e., the ΦL- and the ΦR-dispersing ABS) intersect each other. Concomitantly, we noted a slope variation of the
ΦL-dispersing ABS depending on the ON/OFF state of the switch junction (yellow dashed line in Fig. 1e). In this
section, we quantify the shifts and relate them to the different inductive contributions in the device. We find that a
Josephson-like mutual inductive coupling between the two loops accounts for the presence of both the shifts and the
slope difference.

Since a shift is present for both ABSs, it corresponds to a vector (∆ΦL, ∆ΦR) in the space of the two external
magnetic fluxes ΦL and ΦR. For the extraction of this vector, we consider again the dataset of Fig. 4e from the
Main Text, shown also in Supplementary Fig. 13c and, upon applying the basis transformation described in Section
, in Supplementary Fig. 13d as a function of ΦL and ΦR. As a guide for the eye, we overlay lines following the
dips between pairs of ABS resonances. In panel c, we mark the (vector) shifts ∆I∗L and ∆I∗R along the periodicity
directions, while in panel d the shifts ∆ΦL and ∆ΦR are by construction parallel to the axes. These quantities are
linked by the following relations: (

∆ΦL

0

)
= M ·∆I∗L,

(
0

∆ΦR

)
= M ·∆I∗R. (15)

From the data, we find ∆ΦL ≈ ∆ΦR ≈ 0.092 · Φ0 ≡ ∆Φ, showing that the effect is symmetric for the two ABSs.
This phase shift is then expressed as ∆Φ = Mcpl · Icirc, namely as the product between a mutual inductance,

accounting for the coupling between two fluxes, and a circulating current in either loop. Neither Mcpl nor Icirc can
be directly determined from the experimental data (only their product ∆Φ), therefore we estimate the inductive
coupling term considering different origins. The geometric mutual inductance between the two loops of our devices is
Mgeom ≈ 7.3 pH [11]. Since the loops share a strip of epitaxial Al, its inductance, dominated by the kinetic inductance
Lk, has to be added to Mgeom [12, 13]. The kinetic inductance of the strip is estimated as [14]:

Lk =
l

w

h

2π2

R□

∆
≈ 44 pH, (16)

where l = 25 µm and w = 1 µm are the length and width of the strip, R□ ≈ 1.5 Ω the normal state resistivity of
the heterostructure stack measured in a Hall bar geometry (where the Al film was not removed) and ∆ ≈ 180 µeV
the superconducting gap of Al. The geometric and kinetic contribution lead to a combined mutual inductance
Mloops ≈ 51.3 pH. If we assume that Mcpl = Mloops, we require a circulating current Icirc ≈ 3.7 µA for the shift
∆Φ = 0.092 ·Φ0. However, this value is much larger than any reasonable estimate of the critical current between each
pair of terminals, which constitutes an upper bound to the supercurrent circulating in the loops. As a consequence,
Mcpl must be substantially larger than Mloops to limit Icirc.
The only contribution that we have not discussed so far is a Josephson-like coupling due to the 3TJJ. Based on

its geometry, we expect our 3TJJ to have a critical current of the order of 100 nA and a Josephson inductance of
a few nH, which would explain the phase shift to a good degree. We deduce that, in our devices, the phase shifts
derive from a Josephson-like coupling term rather than the geometric and kinetic inductive couplings, in analogy with
existing couplers between superconducting qubits containing Josephson elements [15, 16].

This mutual coupling between ΦL and ΦR is also responsible for the slope difference depending on the state of the
switch junction (see Fig. 1d,e). In the OFF state, no circulating current can flow in the right loop, thus no mutual
effect is present. In the (IL, IR) plane (Fig. 1e of the Main Text), the ABS resonance is parallel to the ΦR axis
(indicated in Fig. 1d). When the switch junction is ON, the slope of the ABSs deviates from the directions of ΦL

and ΦR. This is clearly visible on the (ΦL,ΦR) axes (Supplementary Fig. 13b,d), as the resonances are not vertical
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or horizontal. In fact, due to the mutual coupling, the variation of a flux (for example ΦL) from 0 to Φ0/2 causes
a gradual change in the other (ΦR), up to a maximum shift. Upon crossing ΦL = Φ0/2, the circulating current in
the left loop reverses direction, consequently the induced current in the right loop and the ΦR-shift also flip sign.
Therefore, the finite ABS slopes on the (ΦL,ΦR) axes (corresponding to the slope difference depending on the state of
the switch junction) and the phase shifts are consistent. Both result from the finite Josephson-like mutual inductive
coupling between the two loops.
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SUPPLEMENTARY FIGURES

Supplementary Fig. 1. Analytical calculations. a,b, Constant-energy planes at E = −0.01∆ as a function of the supercon-
ducting phase differences ϕL and ϕR for coupling δ = 0.01, in the fully ballistic regime rL = rR = 0 (a) and with finite normal
reflection amplitudes rL = 0.003, rR = 0.002 (b).

Supplementary Fig. 2. Schematic of the numerical model. Andreev bound states in the three-terminal Josephson junction
are modelled as two single-level quantum dots (QDs) coupled to three superconducting leads with phases ϕL, ϕR and ϕM.
QD1(2) is coupled to leads L (R) and M, as represented by the parameters ΓL,1 and ΓM,1 (ΓR,2 and ΓM,2) respectively. The
parameter t accounts for the coupling between the QDs, enabling their hybridisation.

Supplementary Fig. 3. Numerical simulations. a,b, Density of states at fixed energy E = −0.01∆ as a function of the
superconducting phase differences ϕL−ϕM ≡ ϕL and ϕR−ϕM ≡ ϕR, for coupling energy t = 0.05∆ and broadening η = 5·10−4∆.
In a, ΓM,1 = ΓM,2 = ΓL,1 = ΓR,2 = 5∆, namely perfect transmissions are assumed. In b, ΓL,1 = 4.98∆, ΓM,1 = ΓR,2 = 5∆ and
ΓM,2 = 4.97∆, hence finite reflection amplitudes are considered. In both cases, the effective coupling t/Γ ≈ 0.01 is similar to
that introduced for the analytical case (see Fig. 1).
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Supplementary Fig. 4. Gate dependence of differential conductance. a,b, Differential conductance G as a function of
voltage bias VSD and tunnelling gates voltage VT ≡ VTL = VTR in Device 1, for global gate voltage VG = 50 mV in a and
VG = −150 mV in b. c, G as a function of VSD and VG in Device 1, for VT = −1.07 V. d, False-coloured scanning electron
micrograph of Device 2 in proximity of the three-terminal junction region (see Fig. 1a–c of the Main Text for the colour legend).
e, G as a function of VSD and VT in Device 2, for VG = −150 mV and VProbe = 100 mV. f, G as a function of VSD and VG in
Device 2, for VT = −1.5 V and VProbe = 100 mV.
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Supplementary Fig. 5. Constant-bias planes as a function of the two phases in Device 2. a–k, Differential conductance
G as a function of the currents IL and IR injected into the flux-bias lines at fixed values of voltage bias VSD. a, VSwitch = 0,
VSD = −180 µV. b, VSwitch = −1.5 V, VSD = −180 µV. c–k, VSwitch = 0, VSD varied between −140 µV (c) and −300 µV (k).

Supplementary Fig. 6. Tunnelling conductance along phase space linecuts in Device 2. a–c, Differential conductance
G as a function of voltage bias VSD along the linecuts γi (coloured arrows in Fig. 5a), for VSwitch = 0. d–h, As a–c, but plotted
over restricted ranges of VSD and γi. i, As d–h, but along linecut γ6 (defined in Fig. 6), for VSwitch = −1.5 V. The colourbar
in h applies to d–h.
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Supplementary Fig. 7. Constant-bias planes as a function of the two phases at VG = −66 mV. a–k, Differential
conductance G as a function of the currents IL and IR injected into the flux-bias lines at fixed values of voltage bias VSD. a,
VSwitch = 0, VSD = −170 µV. b, VSwitch = −1.5 V, VSD = −170 µV. c–k, VSwitch = 0, varying VSD.

Supplementary Fig. 8. Tunnelling conductance along phase space linecuts at VG = −66 mV. a–c, Differential
conductance G as a function of voltage bias VSD along the linecuts γi (coloured arrows in Fig. 7a), for VSwitch = 0. d–h, As
a–c, but plotted over restricted ranges of VSD and γi.



12

Supplementary Fig. 9. Constant-bias planes as a function of the two phases at VG = −150 mV. a–k, Differential
conductance G as a function of the currents IL and IR injected into the flux-bias lines at fixed values of voltage bias VSD. a,
VSwitch = 0, VSD = −170 µV. b, VSwitch = −1.5 V, VSD = −170 µV. c–k, VSwitch = 0, varying VSD.

Supplementary Fig. 10. Tunnelling conductance along phase space linecuts at VG = −150 mV. a–c, Differential
conductance G as a function of voltage bias VSD along the linecuts γi (coloured arrows in Fig. 9a), for VSwitch = 0. d–h, As
a–c, but plotted over restricted ranges of VSD and γi. i, As d–h, but along linecut γ6 (defined in Fig. 9b), for VSwitch = −1.5 V.
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Supplementary Fig. 11. Constant-bias planes as a function of the two phases at VG = −250 mV. a–k, Differential
conductance G as a function of the currents IL and IR injected into the flux-bias lines at fixed values of voltage bias VSD. a,
VSwitch = 0, VSD = −170 µV. b, VSwitch = −1.5 V, VSD = −170 µV. c–k, VSwitch = 0, varying VSD.

Supplementary Fig. 12. Tunnelling conductance along phase space linecuts at VG = −250 mV. a–c, Differential
conductance G as a function of voltage bias VSD along the linecuts γi (coloured arrows in Fig. 11a,b). VSwitch = 0 in a, b and
VSwitch = −1.5 V in c. d–f, As a–c, but plotted over restricted ranges of VSD and γi.
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Supplementary Fig. 13. Current-to-flux remapping and phase shift analysis. a, Differential conductance G as a function
of the currents IL and IR injected into the flux-bias lines at fixed voltage bias VSD = −170 µV (repetition of Fig. 1d from
the Main Text). The red and orange arrows indicate the periodicity axes, namely the directions of the external magnetic flux
axes ΦL and ΦR. The white dot and the end points of the red and orange arrows correspond to the (ΦL,ΦR) points (0, 0),
(Φ0, 0) and (0,Φ0), respectively. b, As a, but remapping the (IL, IR) axes to the (ΦL,ΦR) axes by using Eqs. 13 and 14 (see
text for details). c, G as a function of IL and IR at VSD = −165 µV (repetition of Fig. 4e from the Main Text). The red
(orange) lines follow the middle dip between the two resonances of the ΦL(R)-dependent Andreev bound state, on both sides
of the intersection point. The ΦL(R) shift is indicated by the vector ∆I∗L(R), whose direction is parallel to the ΦL(R) axis on
the (IL, IR) plane (see a). d, As c, but remapping the (IL, IR) axes to the (ΦL,ΦR) axes. The phase shifts ∆ΦL and ∆ΦR, by
construction parallel to the axes, are indicated by the arrows.
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