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REVIEWER COMMENTS 

Reviewer #1 (Remarks to the Author):

The manuscript describes the features of a new cheminformatics format, so called SLICES, 

designed to provide an inline representation of non-discrete chemical species (i.e., polymers, non-

molecular crystals ...), thus extending the capabilities of other available, widely spread used 

formats such as INchi or SMILES, which present the important limitation of being restricted to 

molecular entities of finite size. 

I think that this new format could become a potentially powerful tool for the representation of such 

non-discrete species, finding applications in fields such as solid state chemistry, organic polymers 

or metal organic frameworks and hence of interest for a broad audience. The definition and wide-

spread use of a format able to faithfully represent the chemical connectivity in 1D, 2D and 3D 

extended chemical systems without the need of including crystallographic data (unit cell, 

symmetry, coordinates ...) will probably help a lot in the chemical description and informatics 

treatment of such compounds and I think the proposal presented in this work is a very good 

candidate to become such format: its definition is quite simple and clear and, from my point of 

view, its integration in different cheminformatics tools should not be too difficult. 

The manuscript also describes a procedure to regenerate the 3-D crystal structure of a compound 

starting only with the chemical connectivity indicated in a SLICES string, which comprises three 

steps: the generation of the polymeric chemical graph, the creation of a chemically reasonable 3-D 

model using theoretical calculations (GFN-FF) and further optimization of such model with a deep 

learning method. In fact, the explanation of such procedure makes the main body of the 

manuscript. The authors claim a success rate of almost 95% for matching the theoretically 

regenerated structure with that initially used to derive the SLICES string: this is what the authors 

mean by using the word "invertible", as defined in the introduction. I am not sure if this is the best 

word to express the concept, but it is OK if it is generally used with this meaning in the crystal 

engineering research field. 

Another section of the manuscript is devoted to the generation of a very large number of possible 

chemical connectivity schemes, represented as SLICES strings, trying to build theoretical crystal 

structures from them and, if that step succeeds, analysing their predicted properties, in particular 

the band gap to identify potential semiconductors. The analysis ends with a bunch of candidates. 

This is an example of what the SLICES format may be used for. 

As told above, most of the paper is devoted to the procedure for the regeneration of the crystal 

structure from SLICES with just a short section devoted to the description of the format itself. This 

is understandable since the main interest of the authors seems to be the application of the format 

to crystal design of materials ("in silico design") but I think SLICES format could be rather useful 

even just for descriptive applications, I am specially thinking of it as a way to store the chemical 

connectivity in MOF databases. Because of it, I think that the very short section devoted to the 

description of the format (lines 89-97) should be extended, stressing its features. The need for 

specifying the whole set of atoms in the unit cell avoids the inclusion of symmetry codes thus 

simplifying the rules for building the string at the cost of getting a representation that is not very 

compact (for example a cubic MOF with, say Z = 48, even with very few atoms in the asymmetric 

unit would generate a SLICES with several hundred atoms and a even higher number of edges). 

This implies repetition of symmetry-related atoms and bonds but redundant information is for sure 

better than lack of information and nowadays simplicity and reliability of the result are much more 

important than the length of the string. 

It is not clearly told if the software briefly mentioned in "software implementation" (lines 443-447) 

and in "code availability" (lines 454-459) is for generating the SLICES from experimental crystal 

structures, for generating theoretical structures from SLICES or both. Presumably, it is for both 

and, in such case, the pieces of software executing each of the two functions (crystal -> SLICES 

and SLICES -> crystal) should be clearly differentiated. For example, for descriptive purposes, only 



the first part would be necessary. This first part is, with no doubt, much easier than the second but 

perhaps the term "straightforward" (used in line 99) is not fully appropriate and I think that the 

crystal -> SLICES task deserves some extra detail. I guess that this portion of the software is able 

to generate the SLICES from crystallographic information (CIF file???) but this is not explicitly told. 

Also, how is the chemical connectivity generated, just taking the _geom_bond_* items provided 

by the CIF? Calculating all distances between pairs of atoms and deciding which among them 

represent chemical bonds by defining some threshold? The authors just mention "EcoN" and 

"pymatgen" with no further details. 

It is important to say the license under which the software is available (GPL???). Also it should be 

stated the operating system needed for compilation and execution (GNU/Linux, MS Windows, MAC, 

any of them?). 

There is a lot of confusion in the paper between the format and the reconstruction routine, 

sometimes "SLICES" is used to refer to the format, in other places "SLICES" is used to refer to the 

rebuilding procedure. Both are not the same thing and I think the acronym "SLICES" should be 

used exclusively to design just the format and may be some other acronym (I will use "SLItoCry" 

as example from here onwards) to refer to the rebuilding procedure. The authors should set it 

more clear when they are talking about one thing or about the other. 

For example, line 234: "SLICES was unable to be applied to 10.83% due to ...". This is not true. 

SLICES (the format) can be applied without problems to all structures, what cannot be applied is 

SLItoCry. 

Also in line 324: "SLICES representation covers the majority of elements ..." is not correct, the 

representation cover ALL elements of the periodic table. Again, it is SLItoCry or more precisely 

GNFF, what does not present that full coverage. 

Line 26 and line 326: "SLICES reconstructs ...". The format on its own does not reconstruct 

anything: it is just used as the starting point for the reconstruction. 

Line 66 and line 329: "SLICES outperforms past methods ...". SLICES is a format, not a method, 

the method is SLItoCry. 

The success rate of SLItoCry in the chosen benchmark (MP-20) is, in fact, impressively high but it 

must be stressed that the 20 atoms per unit cell limitation is quite restrictive and surely leaves out 

a lot of structures that would be interesting to be tested, more notably those including organic 

portions (COFs, MOFs) that are likely to be underrepresented specially if they are highly 

symmetric, which implies an important bias to the nature of the analysed set. It would be 

interesting to see how SLItoCry works with this kind of compounds maybe testing a set of (say) a 

few hundreds COFs/MOFs with more than 20 atoms in the unit cell. 

A minor question is the appearance of many acronyms that have not been defined (CDVAE, 

GNNFF, FTCP, RNN, ...). They should be defined in parenthesis the first time they appear. Even 

SMILES and SLICES itself are defined in the abstract but not in the body of the paper (the 

definition should be repeated in their first appearance in the introduction). 

Reviewer #2 (Remarks to the Author):

the authors developed a framework to inverse design crystals using an invertible crystallographic 

representation and 3-step structural optimization methods. The representation is a string-based 

crystallographic representation that satisfies both invertibility and symmetry invariances. The 

authors showcase the application of this framework to direct narrow-gap semiconductors. This 

topic is of interest to the material informatics field and the framework showed improvement over 

past studies. However, I have concerns regarding the metrics used to validate the results. 

1.In Table 1 and Table 2, the match rate is used as a tool to demonstrate the effectiveness of the 

3-step structural optimization process and benchmark the framework with other two studies. It is 



not clear how the match rate is calculated. How is it defined? How many data points are used as 

the training data, testing data, and validation data? 

2.Matching rate is a good metric in comparing the reconstruction performance of the generative 

algorithms. However, aside from the reconstruction performance, generation performance, and 

property optimization performance are also important metrics for crystal inverse design 

algorithms. In the FTCP and CDVAE study, the validity rate and success rate are also reported to 

show the generation performance of the models. It will be interesting to see SLICE’s comparison 

with the other two studies. 

Minor point: In Figure 3, it shows that the generated crystals (sampled from the latent space) 

passed through a series of filters to be down-selected as the candidates. Will the addition of a 

property prediction branch to your RNN to shape the latent space make this step more efficient? 

Reviewer #3 (Remarks to the Author):

In their manuscript "An invertible, invariant crystallographic representation for inverse design of 

solid-state materials using generative deep learning" Xiao et al. present a string representation 

method to describe solid state crystal structures. The authors aim to develop a string 

representation as successful as SMILES while overcoming its shortcomings, most importantly, 

inability to represent covalent networks intrinsic to solid state crystal structures. Quotient graphs 

have been used to analyze such structures before (see for example Gao et al., 2020, 

doi:10.1038/s41524-020-00409-0), but for me the most interesting part of the manuscript is the 

employment of a mechanism to invert the representation by reconstructing crystal structures. The 

authors demonstrate an impressive fidelity of such reconstruction, as well as illustrate the usability 

of their representation for the design of novel materials. 

I have the following comments, questions and suggestions about the manuscript: 

1. Why the authors have chosen a string representation with one-hot encoding as input to deep 

learning? When underlying data are graphs, using them directly as inputs in graph neural networks 

seems more natural to me. I believe the manuscript could benefit from an explanation of benefits 

of such choice. 

2. The authors demonstrate a high success rate for structure reconstruction from SLICES. 

However, it would also be interesting to see the analysis of failures, even if just a couple of them. 

3. Coming from crystallographic background I find the usage of some terms confusing. First of all, 

when seeing "symmetry" (for example, line 23) I tend to think about crystal symmetry, but it 

seems that this term is used in other sense in most of the text, except probably in line 295. I 

would suggest explaining the meaning of "symmetry" in more detail. Then in line 324 the authors 

use term "crystallographic representation" where I think "crystal representation" is more 

appropriate. 

4. Some parts of the text present claims that are not very well based, I would suggest rephrasing 

them, or removing them altogether. In the abstract (line 31) and introduction (line 70) the authors 

claim that SLICES has the potential to "become a standard tool", I think it is too early to make 

such a claim. In line 242 the authors talk about computational efficiency of the reconstruction 

scheme. In my opinion, a scheme which requires crystal structure reconstruction with forcefields is 

quite computationally expensive. I believe such claim is appropriate only when comparing 

reconstruction times with other representations. Also I would suggest rephrasing line 321 to avoid 

using word "democratize" which is very unclear in this context. Please as well remove words "user-

friendly" from line 443, as such claim is inappropriate in primary sources. 

5. I applaud the authors' choice to upload the used software and datasets to FigShare, but I 



suggest improving provenance and reproducibility of your research. Versions for all pieces of 

software and datasets have to be indicated. Please cite Git tag or commits for SLICES and the 

modified XTB package. FigShare uploads also have versions, please cite them as well, because 

future uploads may cause ambiguity. 

6. Certain parts of the results section could benefit from more details. It should be explained what 

term "augmented" in line 281 means. In lines 290-291 it should be explained why such a decrease 

happened. When talking about dissimilarity measure in line 299 it would be nice to explain what do 

lower and higher values mean. Figure 3 could include dataset sizes. 

7. Some minor points: 

* It is uncommon to start sentences with "And ...", I suggest avoiding such constructions. 

* Abbreviation "RNN" (line 252 for example) is not explained anywhere in the text. 

* "InChI" is written incorrectly in line 37. 

* Are the URLs in lines 450 and 452 meant to be identical? 

* Please cite git commit in reference 24. 

* Please elaborate references 37 and 44, at least authors and URLs are needed. 

* In Table 2, why is the match rate of SLICES different from the one provided in Table 1? 

* "Euclidian" in line 102 should be spelled as "Euclidean". 

* "Systematically" in line 111 should be spelled as "systematic". 

* Generally I find it difficult to understand where figure captions end and the regular text begins. 

* Chemical formulas are not necessary in figure captions of Figures 4 and 5.



Point-by-point response to the reviewers’ comments 

Reviewer #1 

The manuscript describes the features of a new cheminformatics format, so called SLICES, designed to provide an 

inline representation of non-discrete chemical species (i.e., polymers, non-molecular crystals ...), thus extending the 

capabilities of other available, widely spread used formats such as INchi or SMILES, which present the important 

limitation of being restricted to molecular entities of finite size. 

I think that this new format could become a potentially powerful tool for the representation of such non-discrete species, 

finding applications in fields such as solid state chemistry, organic polymers or metal organic frameworks and hence of 

interest for a broad audience. The definition and wide-spread use of a format able to faithfully represent the chemical 

connectivity in 1D, 2D and 3D extended chemical systems without the need of including crystallographic data (unit 

cell, symmetry, coordinates ...) will probably help a lot in the chemical description and informatics treatment of such 

compounds and I think the proposal presented in this work is a very good candidate to become such format: its definition 

is quite simple and clear and, from my point of view, its integration in different cheminformatics tools should not be 

too difficult. 

The manuscript also describes a procedure to regenerate the 3-D crystal structure of a compound starting only with the 

chemical connectivity indicated in a SLICES string, which comprises three steps: the generation of the polymeric 

chemical graph, the creation of a chemically reasonable 3-D model using theoretical calculations (GFN-FF) and further 

optimization of such model with a deep learning method. In fact, the explanation of such procedure makes the main 

body of the manuscript.  

Response: Thank you very much for your positive remarks and kind suggestions. We improved our work accordingly. 

Please find below our point-to-point responses (in blue) to your comments (in black). The revisions are shown in blue 

color in the revised manuscript.  

1. The authors claim a success rate of almost 95% for matching the theoretically regenerated structure with that initially 

used to derive the SLICES string: this is what the authors mean by using the word "invertible", as defined in the 

introduction. I am not sure if this is the best word to express the concept, but it is OK if it is generally used with this 

meaning in the crystal engineering research field. 



Response: Thank you very much for your insightful comments. “Invertible” and “invertibility” are generally used in 

crystal engineering. For example, (1) “Invertible Image-Based 3D Representations for Crystal Structures” was used to 

describe the image-based crystal representation proposed by Noh et al. (Matter 1.5 (2019): 1370-1384); (2) In a 

minireview titled “Machine-enabled inverse design of inorganic solid materials: promises and challenges” (Chemical 

Science 11.19 (2020): 4871-4881), it was mentioned that “The first two issues (invertibility and invariance) correspond 

to the characteristics of representations, while the third issue, chemical diversity, is related to the training data”. 

2. Another section of the manuscript is devoted to the generation of a very large number of possible chemical 

connectivity schemes, represented as SLICES strings, trying to build theoretical crystal structures from them and, if 

that step succeeds, analysing their predicted properties, in particular the band gap to identify potential semiconductors. 

The analysis ends with a bunch of candidates. This is an example of what the SLICES format may be used for. 

As told above, most of the paper is devoted to the procedure for the regeneration of the crystal structure from SLICES 

with just a short section devoted to the description of the format itself. This is understandable since the main interest of 

the authors seems to be the application of the format to crystal design of materials ("in silico design") but I think SLICES 

format could be rather useful even just for descriptive applications, I am specially thinking of it as a way to store the 

chemical connectivity in MOF databases. Because of it, I think that the very short section devoted to the description of 

the format (lines 89-97) should be extended, stressing its features. The need for specifying the whole set of atoms in the 

unit cell avoids the inclusion of symmetry codes thus simplifying the rules for building the string at the cost of getting 

a representation that is not very compact (for example a cubic MOF with, say Z = 48, even with very few atoms in the 

asymmetric unit would generate a SLICES with several hundred atoms and a even higher number of edges). This implies 

repetition of symmetry-related atoms and bonds but redundant information is for sure better than lack of information 

and nowadays simplicity and reliability of the result are much more important than the length of the string. 

Response: Thank you for your positive evaluation and very valuable suggestions. In response, we expanded the 

description of the SLICES format in the revised manuscript. In addition, we concur with your viewpoint that, “Explicitly 

encoding all atoms in the unit cell avoids the inclusion of symmetry codes thus simplifying the rules for building the 

SLICES strings. Although this results in a less compact representation, the trade-off is justified for simplicity and 

reliability”, and have incorporated this perspective in the revised manuscript.  



We greatly value your enlightening suggestion regarding the potential application of SLICES for storing chemical 

connectivity in MOF databases. Inspired by your input, we evaluated the performance of SLI2Cry on QMOF-21-40 

(see Supplementary Note 3 for details). The match rates of 6.19% under loose criteria and 2.95% under strict criteria 

indicate that the current iteration of SLI2Cry faces challenges for reconstructing MOFs from SLICES strings. To 

develop an invertible representation for MOFs (termed MOFSLICES), we propose encoding structural building units 

(SBUs) like organic ligands and metal clusters as single nodes when constructing quotient graphs. The SBU symbols 

can be represented by their indices in a predefined SBU database. For rebuilding MOFs from their MOFSLICES strings, 

we can build upon the topology-based MOF construction algorithm proposed by Boyd and Woo36. This hierarchical 

graph approach that simplifies SBUs into graph nodes could enable MOF reconstruction. The development of 

MOFSLICES and the reconstruction routine will be a direction for future studies. We have incorporated these 

discussions into the revised manuscript, and the revisions related to these aspects are outlined in the response to your 

query: “It would be interesting to see how SLItoCry works with this kind of compounds, maybe testing a set of (say) a 

few hundred COFs/MOFs with more than 20 atoms in the unit cell.” 

Revisions made on page 6 of the main text: 

A SLICES string always begins with symbols of atoms in the unit cell (Fig. 1b), encoding the chemical composition of 

the corresponding crystal structure. …  

… Edge labels, which specify the translational periodicity of edges, are the defining feature of SLICES. They enable 

the construction of suitable initial guess structures derived from graph theory (Methods). …  

… To disambiguate node indices from edge labels in the string representation, we utilize ‘o’, ‘+’ and ‘-’ to denote ‘0’, 

‘1’ and ‘-1’ in edge labels, respectively. This encoding guarantees that ‘0’ and ‘1’ in SLICES refer exclusively to node 

indices, eliminating potential confusion during model training. 

Encoding all atoms within the unit cell in SLICES eliminates the need to incorporate crystal symmetry groups, 

simplifying the construction rules for SLICES. Although this results in a less compact representation, this trade-off is 

justified given that state-of-the-art natural language processing (NLP) models excel at handling long sequences, 

rendering compactness less important. Owing to its simple and clear definition, SLICES could be useful in chemical 

description and informatics of solid-state materials. 



3. It is not clearly told if the software briefly mentioned in "software implementation" (lines 443-447) and in "code 

availability" (lines 454-459) is for generating the SLICES from experimental crystal structures, for generating 

theoretical structures from SLICES or both. Presumably, it is for both and, in such case, the pieces of software executing 

each of the two functions (crystal -> SLICES and SLICES -> crystal) should be clearly differentiated. For example, for 

descriptive purposes, only the first part would be necessary. This first part is, with no doubt, much easier than the second 

but perhaps the term "straightforward" (used in line 99) is not fully appropriate and I think that the crystal -> SLICES 

task deserves some extra detail. I guess that this portion of the software is able to generate the SLICES from 

crystallographic information (CIF file???) but this is not explicitly told. Also, how is the chemical connectivity 

generated, just taking the _geom_bond_* items provided by the CIF? Calculating all distances between pairs of atoms 

and deciding which among them represent chemical bonds by defining some threshold? The authors just mention 

"EcoN" and "pymatgen" with no further details. 

Response: Thank you for this insightful suggestion. The software mentioned in "Software implementation" is for 

executing both crystal -> SLICES and SLICES -> crystal. In response, we have added a new subsection “Encoding 

crystal structures as SLICES strings” to Results to provide more details for the calculation of chemical connectivity.  

Revisions made on page 7 of the main text: 

Encoding crystal structures as SLICES strings 

Many methods have been developed to analyze the connectivity of crystal structures following Pauling's pioneering 

work in 1929 that introduced the concept of bond strength. For instance, Minimum distance method, Brunner’s method30, 

Hoppe’s method of effective coordination numbers (EconNN)31 and crystal near-neighbor method32 are well-established 

methods for identifying near-neighbor environments, and have been implemented in the “local_env” module of the 

Pymatgen33 package. Among these methods, EconNN31 offers a relatively good compromise between speed, accuracy 

and robustness to atomic perturbation34. Therefore, analyses of the local chemical environments are performed with 

EconNN31 implemented within Pymatgen33 to define edges (bonds) for SLICES. Specifically, encoding a crystal 

structure as a SLICES string involves three steps: (1) Parsing the crystal structure from a file (e.g., Crystallographic 

Information File35) into a Structure object using Pymatgen33; (2) Constructing a structure graph based on the Structure 



object using the EconNN31 algorithm; (3) Extracting the chemical composition, bonding connectivity, and translation 

vectors from the structure graph to generate the corresponding SLICES string. 

4. It is important to say the license under which the software is available (GPL???). Also it should be stated the operating 

system needed for compilation and execution (GNU/Linux, MS Windows, MAC, any of them?). 

Response: Thank you for this valuable suggestion. In response, we have added a description of the license information 

and operating system requirement to the Software implementation section. 

Revisions made on page 30 of the main text: 

… It is published under the GNU Lesser General Public License v2.1, which is an open-source license that is recognized 

by the Open Source Initiative. The operating system needed for compilation and execution is GNU/Linux. … 

5. There is a lot of confusion in the paper between the format and the reconstruction routine, sometimes "SLICES" is 

used to refer to the format, in other places "SLICES" is used to refer to the rebuilding procedure. Both are not the same 

thing and I think the acronym "SLICES" should be used exclusively to design just the format and may be some other 

acronym (I will use "SLItoCry" as example from here onwards) to refer to the rebuilding procedure. The authors should 

set it more clear when they are talking about one thing or about the other. 

For example, line 234: "SLICES was unable to be applied to 10.83% due to ...". This is not true. SLICES (the format) 

can be applied without problems to all structures, what cannot be applied is SLItoCry. 

Also in line 324: "SLICES representation covers the majority of elements ..." is not correct, the representation cover 

ALL elements of the periodic table. Again, it is SLItoCry or more precisely GNFF, what does not present that full 

coverage. 

Line 26 and line 326: "SLICES reconstructs ...". The format on its own does not reconstruct anything: it is just used as 

the starting point for the reconstruction. 

Line 66 and line 329: "SLICES outperforms past methods ...". SLICES is a format, not a method, the method is SLItoCry. 

Response: We apologize for the confusion arising from using the same acronym, SLICES, for both the representation 

and reconstruction method. We fully agree that using distinct names will improve clarity. Following your enlightening 

feedback, we have addressed this issue by denoting the reconstruction routine as "SLI2Cry" instead of SLICES. 



Revisions made on Abstract: 

… The reconstruction routine of SLICES … 

Revisions made on page 4 of the main text: 

… The reconstruction routine of SLICES considerably outperforms past methods in accurately rebuilding input crystal 

structures while maintaining invariances. … 

Revisions made on page 9 of the main text: 

… This reconstruction scheme will be denoted as 'SLI2Cry' throughout the remainder of this text. … 

Revisions made on page 12 of the main text: 

… It is noteworthy that the SLICES representation can cover all elements of the periodic table. However, the modified 

GFN-FF potential employed in step (II) limits the applicability of SLI2Cry to crystal structures containing atoms with 

atomic numbers up to 86. … 

Revisions made on page 13 of the main text: 

Table 1 illustrates the reconstruction performance of SLI2Cry for the filtered MP-20 dataset (40,330 crystals): … 

… This highlights the important role of the optimization targeting modified GFN-FF geometry in step (II) to the success 

of SLI2Cry. … 

Table 1 | Reconstruction performance of SLI2Cry for the filtered MP-20 dataset (40,330 crystals) 

Revisions made on page 14 of the main text: 

Table 2 | Reconstruction performance for the MP-20 dataset (45,229 crystals) under the loose setting 

Method CDVAE FTCP SLI2Cry 

Match rate (%) 45.4323 69.8923 84.66 

The reconstruction performances of previous methods were evaluated for the MP-20 dataset (45,229 crystals) under 

the loose setting23, and their results were compared with SLI2Cry in Table 2. When applied to the 45,229 crystals within 

the MP-20 dataset, SLI2Cry achieved a match rate of 84.66%. This figure is lower than the 94.95% match rate observed 



on the filtered MP-20 dataset comprising 40,330 crystals. This decrease can be attributed to the inapplicability of 

SLI2Cry to 10.83% of the MP-20 dataset, primarily due to either high atomic numbers exceeding 86 or low 

dimensionality. … 

… In contrast, SLI2Cry maintains invariances while achieving higher reconstruction performance than FTCP, primarily 

owing to SLI2Cry's strategy … 

Revisions made on page 23 of the main text: 

… SLI2Cry reconstructs input crystal structures in three steps: … 

… SLI2Cry outperforms past methods in reconstructing input structures … 

Revisions made on page 28 of the main text: 

… used to optimize the non-barycentric embedding in step (II) of SLI2Cry (Fig. 2). 

6. The success rate of SLItoCry in the chosen benchmark (MP-20) is, in fact, impressively high but it must be stressed 

that the 20 atoms per unit cell limitation is quite restrictive and surely leaves out a lot of structures that would be 

interesting to be tested, more notably those including organic portions (COFs, MOFs) that are likely to be 

underrepresented specially if they are highly symmetric, which implies an important bias to the nature of the analysed 

set. It would be interesting to see how SLItoCry works with this kind of compounds maybe testing a set of (say) a few 

hundreds COFs/MOFs with more than 20 atoms in the unit cell. 

Response: We appreciate this insightful suggestion to benchmark on crystals containing more than 20 atoms per unit 

cell. Accordingly, we evaluated the reconstruction capability of SLI2Cry on two additional datasets, the filtered MP-

21-40 and the filtered QMOF-21-40.  

The filtered MP-21-40 comprises 23,560 materials with 21-40 atoms per unit cell from the Materials Project 

(Methods). The match rates under the loose and strict criteria for the filtered MP-21-40 dataset are 87.88% and 83.73%, 

respectively (Table S1). Despite a minor performance decrease compared to that of the filtered MP-20 dataset (Table 

1), SLI2Cry still achieved high reconstruction fidelity on this more challenging dataset. 

The filtered QMOF-21-40 contains 339 MOFs with 21-40 atoms per unit cell from the Quantum MOF database 

(Matter 4.5 (2021): 1578-1597). The match rates of 6.19% under loose criteria and 2.95% under strict criteria for the 



filtered QMOF-21-40 dataset indicate that SLI2Cry faces challenges for reconstructing MOFs from SLICES strings 

(Table S1). This can be primarily attributed to two factors: (1) The barycentric embedding from graph theory, used in 

SLI2Cry's step (I), might not provide suitable initial guesses for the organic components of MOFs. (2) The rotational 

degrees of freedom inherent to the organic linkers in MOFs severely hamper structural matching. While SLICES might 

not be invertible for MOFs, it can still effectively capture and store the chemical connectivity of MOFs.  

To address the limitation of SLI2Cry in MOFs reconstruction, we propose MOFSLICES, encoding structural 

building units (SBUs) like organic ligands and metal clusters in MOFs as single nodes when constructing labeled 

quotient graphs. The SBU symbols can be represented by their indices in a predefined SBU database. For rebuilding 

MOFs from their MOFSLICES strings, we can build upon the topology-based MOF construction algorithm proposed 

by Boyd and Woo (CrystEngComm 18.21 (2016): 3777-3792). This hierarchical graph approach that simplifies SBUs 

into graph nodes greatly streamlines structure reconstruction while avoiding the inclusion of symmetry codes. The 

development of MOFSLICES and the reconstruction routine will be a direction for future studies. We have added these 

useful results to the revised manuscript and the Supplementary Information. 

Revisions made on page 15 of the main text: 

Additionally, we evaluated the performance of SLI2Cry on the filtered MP-21-40, which comprises 23,560 materials 

with 21-40 atoms per unit cell from the Materials Project (Methods). Despite a minor performance decrease compared 

to that of the filtered MP-20 dataset (Table 1), SLI2Cry still accomplished high match rates of 87.88% (loose) and 

83.73% (strict) on the filtered MP-21-40 (Table S1). Notably, crystals with 1-40 atoms per unit cell account for 77.1% 

of all entries in Materials Project database, highlighting the broad applicability of SLI2Cry. 

We also assessed SLI2Cry on 339 MOFs with 21-40 atoms per unit cell from the Quantum MOF database38 (filtered 

QMOF-21-40). The match rates of 6.19% under loose criteria and 2.95% under strict criteria indicate the current 

limitation of SLI2Cry in reconstructing MOFs (Supplementary Note 3). 

Revisions made on page 23-24 of the main text: 

While SLICES can encode the chemical connectivity of MOFs, SLI2Cry faces challenges for reconstructing MOFs 

from SLICES strings. To develop an invertible representation for MOFs (termed MOFSLICES), we propose encoding 

structural building units (SBUs) like organic ligands and metal clusters as single nodes when constructing quotient 



graphs. The SBU symbols can be represented by their indices in a predefined SBU database. For rebuilding MOFs from 

MOFSLICES strings, we can build upon the topology-based MOF construction algorithm proposed by Boyd and Woo37. 

This hierarchical graph approach that simplifies SBUs into quotient graph nodes could potentially enable MOF 

reconstruction, which is planned for future work. 

Revisions made on page 29 of the main text: 

Filtered MP-21-40 dataset 

MP-21-40 comprises 24,959 materials with 21-40 atoms per unit cell from the Materials Project database. In MP-21-

40, we select materials with formation energy smaller than 2 eV/atom and energy above the hull smaller than 0.08 

eV/atom to exclude unstable materials, following Xie et al.23. After excluding crystals containing atoms with atomic 

numbers beyond 86 and those with low-dimensional structural units, the filtered MP-21-40 dataset consists of 23,560 

crystals. 

Revisions made on page 4 of the Supplementary Information: 

Supplementary Note 3. Reconstruction performance of SLI2Cry for the filtered QMOF-21-40 dataset 

QMOF-21-40 contains 928 MOFs with 21-40 atoms per unit cell from the Quantum MOF database38. After excluding 

MOFs containing atoms with atomic numbers beyond 86 and those with low-dimensional structural motifs, the filtered 

QMOF-21-40 dataset consists of 339 MOFs. Only 339 MOFs remained in the filtered QMOF-21-40 dataset, primarily 

owing to a large percentage of MOFs in the database contains low-dimensional components, as identified by the 

EconNN algorithm. 

Table S1 presents the reconstruction performance of SLI2Cry for the filtered QMOF-21-40 dataset. The match rates 

of 6.19% under loose criteria and 2.95% under strict criteria indicate that the current iteration of SLI2Cry faces 

challenges for reconstructing MOFs from SLICES strings. This can be primarily attributed to two factors: (1) The 

barycentric embedding from graph theory, used in SLI2Cry's step (I), might not provide suitable initial guesses for the 

organic components of MOFs. (2) The rotational degrees of freedom inherent to the organic linkers in MOFs hamper 

structural matching. While not presently invertible for MOFs, SLICES can still capture and store the chemical 

connectivity of MOFs. 



Revisions made on page 8 of the Supplementary Information: 

Supplementary Table 1 | Reconstruction performance of SLI2Cry on the filtered MP-21-40 dataset (23,560 

crystals) and the filtered QMOF-21-40 dataset (339 MOFs) 

Setting 
Match rate (%) 

Filtered 
MP-21-40 

Filtered 
QMOF-21-40 

Strict 83.73 2.95 

Loose 87.88 6.19 

 

7. A minor question is the appearance of many acronyms that have not been defined (CDVAE, GNNFF, FTCP, RNN, ...). 

They should be defined in parenthesis the first time they appear. Even SMILES and SLICES itself are defined in the 

abstract but not in the body of the paper (the definition should be repeated in their first appearance in the introduction). 

Response:  

Thank you for this valuable suggestion. Accordingly, we added the missing definition of acronyms in the revised 

manuscript. 

Revisions made on page 3 of the main text: 

… there are several invertible and invariant representations such as simplified molecular-input line-entry system 

(SMILES)8, International Chemical Identifier (InChI)9, … 

… Recently, Crystal Diffusion Variational Autoencoder (CDVAE) was proposed by Xie et al.23 to explore the generation 

of stable materials. … 

Revisions made on page 4 of the main text: 

… simplified line-input crystal-encoding system (SLICES). … 

… (2) optimization based on chemically meaningful geometry predicted with modified Geometry Frequency 

Noncovalent Force Field (GFN-FF)27, … 

Revisions made on page 7 of the main text: 

… Hoppe’s method of effective coordination numbers (EconNN)31 … 



Revisions made on page 11 of the main text: 

… Chen and Ong27 developed a universal interatomic potential for materials based on graph neural networks with three-

body interactions (M3GNet IAP), … 

Revisions made on page 14 of the main text: 

… Fourier-transformed crystal properties (FTCP)20 … 

Revisions made on page 15 of the main text: 

… A general recurrent neural network (RNN)39 was trained … 

Revisions made on page 19 of the main text: 

… using Atomistic Line Graph Neural Network (ALIGNN)45 … 

Revisions made on page 28 of the main text: 

GFN-FF is implemented in the semiempirical extended tight‐binding (XTB)54 package. …  



Reviewer #2 (Remarks to the Author): 

the authors developed a framework to inverse design crystals using an invertible crystallographic representation and 3-

step structural optimization methods. The representation is a string-based crystallographic representation that satisfies 

both invertibility and symmetry invariances. The authors showcase the application of this framework to direct narrow-

gap semiconductors. This topic is of interest to the material informatics field and the framework showed improvement 

over past studies. However, I have concerns regarding the metrics used to validate the results. 

Response: We appreciate your positive comments and kind suggestions. We improved our work accordingly. Please 

find below our point-to-point responses (in blue) to your comments (in black). The revisions are shown in blue color in 

the revised manuscript. 

1. In Table 1 and Table 2, the match rate is used as a tool to demonstrate the effectiveness of the 3-step structural 

optimization process and benchmark the framework with other two studies. It is not clear how the match rate is 

calculated. How is it defined? How many data points are used as the training data, testing data, and validation data? 

Response: We are sorry for causing this confusion. We divided this comment into two parts so that our response can be 

more clearly understood.  

First, the performance of SLICES’s reconstruction routine (denoted as SLI2Cry to avoid confusion, per the 

suggestion of Reviewer #1) is evaluated by the similarity between the reconstructed and original crystal structures. The 

match rate is defined as the percentage of those structures that meet the matching criteria of Pymatgen's 

StructureMatcher algorithm. In response, we revised the description of the match rate in the manuscript to make it clear. 

We also added a description of the StructureMatcher algorithm in Supplementary Note 1. 

Second, SLI2Cry is universally applicable across datasets without the need of training. This is attributed to 

SLI2Cry’s rule-based steps (I) and (II) that require no training, along with the pre-trained, transferable interatomic 

potential employed in step (III). Therefore, all data points in MP-20 dataset (45229 crystals) can be used as testing data. 

However, the modified GFN-FF potential employed in step (II) of SLI2Cry limits its applicability to crystal structures 

containing atoms with atomic numbers up to 86. Additionally, Eon's method applied in step (I) of SLI2Cry, is not 

applicable for low-dimensional (0D, 1D, or 2D) structures. These restrictions leave us with 40,330 crystals of the MP-



20 dataset (89.17%), denoted as the filtered MP-20 dataset. We employed the filtered MP-20 dataset (40,330 crystals) 

to evaluate the reconstruction performance of SLI2Cry under the loose/strict criteria (Table 1). 

The reconstruction performances of CDVAE and FTCP were evaluated in MP-20 dataset (45,229 crystals) under 

the loose setting. To compare with previous methods, we employed the MP-20 dataset (45,229 crystals) to evaluate the 

reconstruction performance of SLI2Cry (Table 2). In response, we revised the description of the (filtered) MP-20 dataset 

to make it clear. 

Revisions made on page 12 of the main text: 

The reconstruction performance of SLI2Cry is evaluated by the similarity between the reconstructed and original crystal 

structures. To evaluate the similarity, we utilized the StructureMatcher function of Pymatgen33 (Supplementary Note 1). 

The reconstructed and original crystal structures are deemed similar if they satisfy the matching criteria of 

StructureMatcher. …  

… The loose/strict match rate for a dataset is defined as the percentage of reconstructed crystal structures that meet the 

corresponding loose/strict matching criteria when compared to the original structures in the dataset. … 

… It contains 45,229 structurally and chemically diverse crystal structures, … 

SLI2Cry is universally applicable across datasets without the need of training. This is attributed to SLI2Cry’s rule-

based steps (I) and (II) that require no training, along with the pre-trained, transferable interatomic potential employed 

in step (III). Therefore, all data points in MP-20 dataset can be used as testing data. It is noteworthy that the SLICES 

representation can cover all elements of the periodic table.  However, the modified GFN-FF potential employed in step 

(II) limits the applicability of SLI2Cry to crystal structures containing atoms with atomic numbers up to 86. … 

Revisions made on page 13 of the main text: 

Table 1 illustrates the reconstruction performance of SLI2Cry for the filtered MP-20 dataset (40,330 crystals): … 

Table 1 | Reconstruction performance of SLI2Cry for the filtered MP-20 dataset (40,330 crystals) 

Revisions made on page 14 of the main text: 

Table 2 | Reconstruction performance for MP-20 dataset (45,229 crystals) under the loose setting  



Revisions made on page 2 of the Supplementary Information: 

Supplementary Note 1. StructureMatcher algorithm 

The StructureMatcher1 algorithm first reduces the input crystal structures to their primitive cells and rescales them to 

equivalent volumes. The algorithm then searches for a valid affine mapping between the two cells, within predefined 

fractional length and angle tolerances. Finally, the maximum root-mean-square displacement between aligned structures 

normalized by the average free length per atom is computed. If below the site tolerance, the algorithm classifies the 

structures as similar based on the optimal lattice transformation found via permutation search. 

2. Matching rate is a good metric in comparing the reconstruction performance of the generative algorithms. However, 

aside from the reconstruction performance, generation performance, and property optimization performance are also 

important metrics for crystal inverse design algorithms. In the FTCP and CDVAE study, the validity rate and success 

rate are also reported to show the generation performance of the models. It will be interesting to see SLICES’s 

comparison with the other two studies. 

Response: Thank you for this very valuable suggestion. We fully agree that it is important to compare the validity rate 

and success rate of SLICE-based inverse design method with FTCP and CDVAE. We divided this comment into two 

parts so that our response can be more clearly understood.  

First, to compare the generation performance of SLICES-based inverse design scheme with FTCP and CDVAE, we 

trained an unconditional RNN (termed as ucRNN) on the filtered MP-20 dataset. We evaluated the material generation 

performance of the SLICES-based ucRNN model using structural and compositional validity metrics proposed by Xie 

et al. (Bull. Am. Phys. Soc. 67, (2022).) That is, a structure is deemed valid if the minimal atomic distance exceeds 0.5 

Å, and compositional validity requires overall charge neutrality as determined by SMACT (Journal of Open Source 

Software 4.38 (2019): 1361). We sampled 10,000 SLICES strings using the ucRNN model and evaluated the validity 

metrics on 9,428 reconstructed crystals to evaluate SLICES's generation performance (Table 3). Our method achieves 

a higher validity than FTCP, while achieving a similar validity as CDVAE.  

Second, to compare the property optimization performance of SLICES-based inverse design scheme with FTCP 

and CDVAE, we trained a conditional RNN (referred to as cRNN) on the filtered MP-20 dataset. We evaluated the 

property optimization performance of the SLICES-based cRNN model using the success rate proposed by Xie et al. 



(Bull. Am. Phys. Soc. 67, (2022).) That is, the success rate (SR) is defined as the percentage of crystals achieving 5, 10, 

and 15 percentiles of the formation energy distribution of the training set. We sampled 1000 SLICES strings using the 

cRNN model and evaluated the SR on 782 reconstructed crystals to assess SLICES 's property optimization performance 

(Table 3). Our method significantly outperforms CDVAE and FTCP, highlighting the potential of the SLICES 

representation for inverse design of solid-state materials.  

In response, we added a new subsection “Benchmarks on material generation and property optimization” to Results 

to compare SLICES’s performance with the other two studies. We added a new subsection “ucRNN/cRNN Models for 

SLICES String Generation” to Methods. Besides, we added Fig. S2 to the Supplementary Information to describe the 

conditional RNN model for controlled generation of crystals with desired formation energy. We included Table S2 in 

the Supplementary Information to outline the parameters and training sets utilized in the RNN models. 

Revisions made on page 4 of the main text: 

… Additionally, SLICES-based inverse design framework significantly outperforms past approaches in generating 

materials with a desired property. … 

Revisions made on page 21-22 of the main text: 

Benchmarks on material generation and property optimization 

To compare the generation and property optimization performance of SLICES-based inverse design frameworks with 

FTCP20 and CDVAE23, we trained an unconditional RNN (termed as ucRNN) and a conditional RNN (denoted as cRNN) 

on the filtered MP-20 dataset (Methods and Table S2). 

Table 3 | Generation performance and property optimization performance 

Method 

Generation performance (%) Property optimization performance (%) 

Structural 

validity 

 Compositional 

validity  
SR5 SR10 SR15 

FTCP20,23 1.55 48.37 2.00 4.00 5.00 

CDVAE23 100.0 86.70 78.0 86.0 90.0 

SLICES 99.72 84.43 97.4 99.2 99.6 



We evaluated the material generation performance of the SLICES-based ucRNN model using structural and 

compositional validity metrics proposed by Xie et al.23 Specifically, a structure is deemed valid if the minimal atomic 

distance exceeds 0.5 Å, while compositional validity requires overall charge neutrality as determined by 

Semiconducting Materials from Analogy and Chemical Theory49. We sampled 10,000 SLICES strings using the ucRNN 

model and evaluated the validity metrics on 9,428 reconstructed crystals (Methods). Our method achieves a higher 

validity than FTCP, while achieving a similar validity as CDVAE (Table 3). 

We evaluated the property optimization performance of the SLICES-based cRNN model using the success rate 

proposed by Xie et al.23 Specifically, the success rate (SR) is defined as the percentage of crystals achieving 5, 10, and 

15 percentiles of the formation energy distribution of the training set. The goal of property optimization is to minimize 

the formation energy per atom for the generated materials. We sampled 1000 SLICES strings using the cRNN model 

and evaluated the SR on 782 reconstructed crystals (Methods). Our method considerably outperforms CDVAE and 

FTCP (Table 3), showcasing the potential of SLICES for inverse design of solid-state materials. 

Revisions made on page 23 of the main text: 

… Moreover, SLICES-based inverse design framework considerably outperforms past approaches in generating 

materials with a desired property. 

Revisions made on page 29-30 of the main text: 

ucRNN/cRNN Models for SLICES String Generation 

The ucRNN model was trained on the filtered MP-20 dataset (40,330 SLICES). We applied data augmentation to the 

filtered MP-20 dataset, resulting in 2,009,115 SLICES strings. The RNN architecture applied here is the same with the 

RNN models used in the inverse design of direct narrow-gap semiconductors (Table S2). The ucRNN was trained for 

10 epochs. We sampled 10,000 SLICES strings using the ucRNN model. However, the majority of these SLICES strings 

contained repeated edges that impeded reconstruction by SLI2Cry, owing to the difficulties of RNNs in learning the 

complex syntax of long SLICES strings. Using advanced NLP architectures like Transformer44 could help address this 

challenge and is planned for future work. A simple workaround applied in this study was removing all duplicate edges 

to correct syntax errors, enabling successful reconstruction of 9,428 materials from the 10,000 sampled strings. We then 

evaluated the validity metrics on these 9,428 generated structures to assess the ucRNN's performance. 



The cRNN model was also trained on the filtered MP-20 dataset for controlled generation of crystals with desired 

formation energy. The model schematic of cRNN for training and generation is given in Fig. S2a. For training, formation 

energies of crystals in MP-20 were passed as conditions alongside the SLICES string. The architecture of the cRNN 

model is illustrated in Fig. S2b. To enable conditional generation, we extended the ucRNN with an additional dense 

layer that transforms the user-specified formation energy into a tensor. The concatenation of this tensor with the 

embedding tensor of SLICES is fed into a 3-layer stacked gated recurrent unit (GRU). The cRNN was also trained for 

10 epochs (Table S2). 

For generation, we input a desired formation energy to the model to sample crystals. To generate crystals with 

minimal formation energy, we sampled 1000 SLICES strings for each of the formation energy targets (-3.0, -4.0, -4.5, 

-5.0, and -6.0 eV/atom). After removing duplicate edges in sampled strings, we used SLI2Cry to reconstruct the 

corresponding crystals. The distribution of formation energy (predicted by M3GNet) of reconstructed crystals under 

these targets are depicted in Fig. S2c. As seen in Fig. S2c, the distribution of formation energy with target = -3.0, -4.0, 

-4.5 eV/atom is generally centered around the desired value, when taking into account the deviations between M3GNet 

predictions and PBE calculations. However, setting the target to lower values (-5.0, -6.0 eV) had an adverse impact, 

owing to the scarcity of training data samples exhibiting formation energies below -4.5 eV/atom (Fig. S2c). In summary, 

the lowest mean formation energy predicted by M3GNet was achieved using a target of -4.5 eV/atom. Based on this 

observation, formation energies (at PBE level) of crystals generated with a target of -4.5 eV/atom were used to evaluate 

the success rate of property optimization. 

Revisions made on page 7 of the Supplementary Information: 



 

Supplementary Fig. 2 | Conditional RNN model for controlled generation of crystals with desired formation 

energy. a, Pipeline for training and controlled generation using the conditional RNN model. b, The conditional RNN 

model architecture. c, Distribution of formation energy of generated crystals under various user-specified targets ([-3.0, 

-4.0, -4.5, -5.0, -6.0] eV/atom), compared with the formation energy distribution of the MP-20 dataset.  

Normal distribution curves are fitted and included for the top six histograms. For the top five histograms, the formation 

energies were predicted using the M3GNet model. For M3GNet-predicted formation energies, the minimal mean value 

was obtained with a target of -4.5 eV/atom. For the second histogram from the bottom, the formation energies were 

calculated using PBE functional. 

Revisions made on page 9 of the Supplementary Information: 

Supplementary Table 2 | Parameters used in the models 



Model Key parameters Tasks trained for Notes 

General RNN Vocabulary size = 96, 
Embedding dimension = 
128, GRU units = 512  

Generating crystals as 
SLICES 

Trained on Materials Project 
crystals with 𝑁 ∈ 1,  10  
and 𝐸 0 for 10 epochs 

(30,085 SLICES; Augmented 
dataset: 764,546 SLICES) 

Specialized 
RNN 

Vocabulary size = 96, 
Embedding dimension = 
128, GRU units = 512  

Generating crystals 
with direct narrow-gap 
as SLICES 

Trained on direct bandgap 
semiconductors in Materials 
Project with 𝐸 ∈
0.1,  0.55 , 𝑁 ∈ 1,  10  

and 𝐸 0 for 8 epochs 

(364 SLICES; Augmented 
dataset: 11,373 SLICES) 

Unconditional 
RNN 

Vocabulary size = 106, 
Embedding dimension = 
128, GRU units = 512 

Generating crystals as 
SLICES for evaluating 
structural validity and 
compositional validity 

Trained on the filtered MP-20 
for 10 epochs (40,330 
SLICES; Augmented dataset: 
2,009,115 SLICES) 

Conditional 
RNN 

Vocabulary size = 106, 
Embedding dimension = 
128, Dense layer 
dimension = 64, GRU 
units = 512    

Generating crystals 
with desired formation 
energy as SLICES for 
evaluating success rate 

Trained on the filtered MP-20 
for 10 epochs (40,330 SLICES 
with 𝐸 ; Augmented 

dataset: 2,009,115 SLICES 
with 𝐸 ) 

 

3. Minor point: In Figure 3, it shows that the generated crystals (sampled from the latent space) passed through a series 

of filters to be down-selected as the candidates. Will the addition of a property prediction branch to your RNN to shape 

the latent space make this step more efficient? 

Response: Thank you for this enlightening suggestion. Unlike VAE-based methods such as FTCP and CDVAE, which 

employ machine learning models as encoders, our inverse design routine features a rule-based encoder, eliminating the 

need for a latent space in our architecture. In our approach, the SLICES representation itself effectively serves as the 

"latent space". Inspired by your valuable feedback, we trained a conditional RNN (cRNN) model, as mentioned above. 

The architecture of the cRNN model is illustrated in Fig. S2b. To enable conditional generation, we extended our 

unconditional RNN model with an additional dense layer that transforms the user-specified formation energy into a 

tensor. This tensor is then concatenated with the SLICES embedding tensor, and the combined input is fed into a 3-

layer stacked gated recurrent unit (GRU). We have described this cRNN model in both the revised manuscript and the 

Supplementary Information.  



Reviewer #3 (Remarks to the Author): 

In their manuscript "An invertible, invariant crystallographic representation for inverse design of solid-state materials 

using generative deep learning" Xiao et al. present a string representation method to describe solid state crystal 

structures. The authors aim to develop a string representation as successful as SMILES while overcoming its 

shortcomings, most importantly, inability to represent covalent networks intrinsic to solid state crystal structures. 

Quotient graphs have been used to analyze such structures before (see for example Gao et al., 2020, 

doi:10.1038/s41524-020-00409-0), but for me the most interesting part of the manuscript is the employment of a 

mechanism to invert the representation by reconstructing crystal structures. The authors demonstrate an impressive 

fidelity of such reconstruction, as well as illustrate the usability of their representation for the design of novel materials. 

Response: Thank you very much for your positive evaluation and kind suggestions. We improved our work accordingly. 

Please find below our point-to-point responses (in blue) to your comments (in black). The revisions are shown in blue 

color in the revised manuscript. 

I have the following comments, questions and suggestions about the manuscript: 

1. Why the authors have chosen a string representation with one-hot encoding as input to deep learning? When 

underlying data are graphs, using them directly as inputs in graph neural networks seems more natural to me. I believe 

the manuscript could benefit from an explanation of benefits of such choice. 

Response: Thank you for this very valuable comment. We agree that graph-based approaches embody a more natural 

representation of crystal structure. However, string-based methods allow us to leverage the extensive and rapidly 

evolving field of natural language processing (NLP). For example, state-of-the-art NLP models like Transformer44 have 

shown promising results in de novo molecular discovery, as demonstrated by Bagal et al.47 with MOLGPT, a GPT48-

style decoder for generating novel molecules with desired properties. Following this analogy, representing crystals as 

strings could enable GPT decoders to inversely design new solid-state materials, which is planned for future work. This 

motivated our design choice of a string representation over graph-based approaches in the current study. The SLICES's 

reconstruction scheme is denoted as SLI2Cry in the revised manuscript to avoid confusion, per the suggestion of 

Reviewer #1. In response, we have added these discussions to the revised manuscript. 

Revisions made on page 6-7 of the main text:  



While graph-based representations are more intuitive for crystal structures, string-based representation allows us to take 

advantage of the extensive and rapidly evolving field of NLP. Based on this consideration, we opted for a string 

representation over graph-based approaches in this work. 

2. The authors demonstrate a high success rate for structure reconstruction from SLICES. However, it would also be 

interesting to see the analysis of failures, even if just a couple of them. 

Response: Thank you for this very valuable suggestion. In response, we analyzed four representative cases where 

SLI2Cry was unable to reconstruct crystal structures (Fig. S1). We have added these results to the revised manuscript 

and the Supplementary Information. 

Revisions made on page 14 of the main text:  

Furthermore, we analyzed four representative cases where SLI2Cry faced challenges in reconstructing original crystal 

structures (Supplementary Note 2 and Fig. S1). The findings indicate that further improving the accuracy and robustness 

of modified GFN-FF in step (II) could enhance the performance of SLI2Cry. 

Revisions made on page 3 of the Supplementary Information: 

Supplementary Note 2. Analysis of unsuccessful structure reconstruction by SLI2Cry 

We analyzed four representative cases where SLI2Cry was unable to reconstruct original crystal structures (Fig. S1). 

(1) For TbSm3 (mp-1187379), the rescaled and 𝑍𝐿∗-optimized structure (②, ③) matches the original structure, but the 

M3GNet IAP optimization on 𝑍𝐿∗-optimized structure (③) encountered an “Exception encountered when calling layer 

spherical_bessel_with_harmonics” error. (2) For Cu2O3 (mp-755040), atomic collisions in the barycentric embedding 

led to a problematic rescaled structure (②), causing reconstruction failure. (3) CdPb2(ClO)2 (mp-1077904) exhibited 

underestimated bond lengths of 𝑍𝐿∗-optimized structure (③), affecting the reconstruction with M3GNet IAP. (4) For 

Sm(HO)3 (mp-625409), the EconNN algorithm overestimated the coordination of certain Hydrogen atoms, resulting in 

a poor 𝑍𝐿∗-optimized structure (③) and subsequent reconstruction failure. In summary, further improving the accuracy 

and robustness of modified GFN-FF in step (II) could enhance SLI2Cry's reconstruction performance. 

Revisions made on page 6 of the Supplementary Information: 



 

Supplementary Fig. 1 | Analysis of four failure cases of SLI2Cry for crystal structure reconstruction. The original 

⓪, rescaled ②, 𝑍𝐿∗-optimized ③, and IAP-refined ④ structures of TbSm3 (a), Cu2O3 (b), CdPb2(ClO)2 (c), Sm(HO)3 

(d). The lattice parameters are provided for each structure. Red error marks in the figure represent failed structural 

refinements using M3GNet-IAP. The original structures are marked in black. Structures that match the original ones are 

marked in green, while those failing to match the original ones are marked in red. 

3. Coming from crystallographic background I find the usage of some terms confusing. First of all, when seeing 

"symmetry" (for example, line 23) I tend to think about crystal symmetry, but it seems that this term is used in other 



sense in most of the text, except probably in line 295. I would suggest explaining the meaning of "symmetry" in more 

detail. Then in line 324 the authors use term "crystallographic representation" where I think "crystal representation" is 

more appropriate. 

Response: We appreciate your insightful suggestions. We replaced “symmetry-invariances” in abstract with 

“translational, rotational, and permutational invariances” to avoid the confusion in understanding "symmetry". We also 

removed all “symmetry” placed before “invariances” in the manuscript. As a result, the “symmetry” in the revised 

manuscript only refers to the crystal symmetry. In addition, we agree that “crystal representation” is more appropriate 

than "crystallographic representation". We replaced "crystallographic representation" with "crystal representation" in 

our revised manuscript. 

Revisions made on the title of this work:  

An invertible, invariant crystal representation for inverse design of solid-state materials using generative deep learning 

Revisions made on page 2 of the main text:  

… the lack of an invertible crystal representation that satisfies translational, rotational, and permutational 

invariances. … 

…, which is a string-based crystal representation that satisfies both invertibility and invariances. … 

… SLICES guarantees invariances. … 

… and invariant crystal representation, … 

Revisions made on page 3 of the main text:  

… there are several invertible and invariant representations such as simplified molecular-input line-entry system 

(SMILES)8, … 

…, whereas invariances indicate that representation after rotation, … 

… A representation that satisfies both invertibility and invariances is necessary to enable general and property-driven 

inverse design using GMs. … 



…, owing to the lack of an invertible, invariant and periodicity-aware crystal representation that covers the majority of 

elements across the periodic table. 

… Crystal graph is an invariant representation … 

Revisions made on page 4 of the main text:  

… Utilizing the invariant multi-graph representation, … 

… In short, no work has demonstrated an invertible crystal representation that satisfies full invariances. 

… we propose a string-based invertible crystal representation that guarantees invariances, … 

… The reconstruction routine of SLICES considerably outperforms past methods in accurately rebuilding input crystal 

structures while maintaining invariances. … 

Revisions made on page 7 of the main text: 

… to obtain Euclidean embeddings of periodic graph with the maximum acceptable crystal symmetry. … 

Revisions made on page 8 of the main text: 

Note that the barycentric embedding is an embedding with maximum acceptable crystal symmetry. … 

Revisions made on page 13 of the main text: 

… Given that SLICES maintains invariances … 

Revisions made on page 14 of the main text: 

… In contrast, SLI2Cry maintains invariances … 

Revisions made on page 23 of the main text: 

We present SLICES, a string-based, invertible and invariant crystal representation. … 

… SLI2Cry outperforms past methods in reconstructing input structures while still preserving invariances. … 

… To our knowledge, SLICES is the first invertible crystal representation that satisfies full invariances. … 

Revisions made on page 24 of the main text: 



… and invariant crystal representation, … 

4. Some parts of the text present claims that are not very well based, I would suggest rephrasing them, or removing 

them altogether. In the abstract (line 31) and introduction (line 70) the authors claim that SLICES has the potential to 

"become a standard tool", I think it is too early to make such a claim. In line 242 the authors talk about computational 

efficiency of the reconstruction scheme. In my opinion, a scheme which requires crystal structure reconstruction with 

forcefields is quite computationally expensive. I believe such claim is appropriate only when comparing reconstruction 

times with other representations. Also I would suggest rephrasing line 321 to avoid using word "democratize" which is 

very unclear in this context. Please as well remove words "user-friendly" from line 443, as such claim is inappropriate 

in primary sources. 

Response: Thank you for this very valuable suggestion. To address these issues, (1) We rephrased "become a standard 

tool" as “shows promise as a useful tool”. (2) We removed "SLICES’s reconstruction scheme is computationally 

efficient ". (3) We rephrased “has the potential to democratize” as “showcases potential as a useful tool for”. (4) We 

removed "user-friendly" from the Software implementation section.  

Revisions made on page 2 of the main text:  

… SLICES shows promise as a useful tool for in silico materials discovery. 

Revisions made on page 15 of the main text:  

… The reconstruction of the filtered MP-20 database (40,330 crystals) was completed within one hour on a workstation 

with 2 Xeon E5-2699v4 processors (2x22 cores, 2.2 GHz), indicating SLICES is suitable to be integrated into inverse 

design pipelines of crystals. 

Revisions made on page 19 of the main text:  

A workstation with dual Xeon E5-2699v4 CPU (2x22 cores, 2.2 GHz) and a NVIDIA RTX 2080 Ti GPU was employed 

to run the inverse design scheme (Supplementary Note 4). In total, 14 potentially synthetically accessible direct narrow-

gap semiconductors with unique compositions and structures were inversely designed in less than 11 days on this 

workstation. 

Revisions made on page 24 of the main text:  



… SLICES showcases potential as a useful tool for the inverse design of functional crystalline materials. 

Revisions made on page 30 of the main text: 

SLICES has been implemented as a Python package. … 

Revisions made on page 5 of the Supplementary Information: 

Supplementary Note 4. Sampling speed of SLICES-based inverse design scheme 

A workstation with dual Intel Xeon E5-2699v4 CPU (2x22 cores, 2.2 GHz) and a NVIDIA RTX 2080 Ti GPU was 

employed to run the inverse design scheme. The training of RNN models took ~ 14 hours, while sampling 10 million 

SLICES strings took ~6 hours. The reconstruction of approximately 3.4 million crystals from SLICES took under 6 

days. Additionally, the screening process for identifying promising candidates took around 4 days. In total, 14 

potentially synthetically accessible direct narrow-gap semiconductors with unique compositions and structures were 

inversely designed in less than 11 days on this workstation. 

5. I applaud the authors' choice to upload the used software and datasets to FigShare, but I suggest improving 

provenance and reproducibility of your research. Versions for all pieces of software and datasets have to be indicated. 

Please cite Git tag or commits for SLICES and the modified XTB package. FigShare uploads also have versions, please 

cite them as well, because future uploads may cause ambiguity. 

Response: Thank you for this valuable suggestion. In response, (1) We specified the Git tag and commit ID for both 

the SLICES and modified XTB packages in the Software implementation and Code availability sections. (2) We 

included the FigShare version numbers for the data uploads in the Data availability and Code availability sections. 

Revisions made on page 30 of the main text: 

… , a Docker image with pre-installed SLICES v1.4 package, modified XTB (commit: 0fcba9e)54, … 

Revisions made on page 31 of the main text: 

The inverse design data of direct narrow-gap semiconductors and the data for reconstruction, material generation, and 

property optimization benchmarks can be accessed on Figshare (https://doi.org/10.6084/m9.figshare.22707472, Version 

2). 



The SLICES source code is available on GitHub (https://github.com/xiaohang007/SLICES). The SLICES 

documentation is hosted at https://xiaohang007.github.io/SLICES/. SLICES v1.0 was used for the reconstruction 

benchmark on the MP-20 dataset and inverse design of direct narrow-gap semiconductors. SLICES v1.4 (with no 

changes applied to SLI2Cry) was used for the reconstruction benchmark on the filtered MP-21-40 and filtered QMOF-

21-40 datasets, the material generation and property optimization benchmark. A Docker image containing pre-installed 

SLICES and dependencies is available on Docker Hub (docker pull xiaohang07/slices:v3) and Figshare 

(https://doi.org/10.6084/m9.figshare.22707946, Version 1) to facilitate reproducibility. The modified XTB package 

(commit: 0fcba9e) can be found at https://github.com/xiaohang007/xtb. 

6. Certain parts of the results section could benefit from more details. It should be explained what term "augmented" in 

line 281 means. In lines 290-291 it should be explained why such a decrease happened. When talking about dissimilarity 

measure in line 299 it would be nice to explain what do lower and higher values mean. Figure 3 could include dataset 

sizes. 

Response: Thank you for this valuable feedback. In response, (1) We expanded the description of data augmentation 

in the revised manuscript. (2) We have revised the relevant statement in the manuscript to better explain the cause of 

this decrease. (3) We added an explanation of the structural dissimilarity to the revised manuscript. (4) We have added 

the dataset sizes to Figure 3. 

Revisions made on page 16 of the main text: 

 



Revisions made on page 17 of the main text: 

… Arús-Pous et al.43 demonstrated that using randomized SMILES improves generative model performance over 

canonical SMILES. Therefore, we applied SLICES randomization (data augmentation) to both the general dataset 

(30,085 SLICES) and the transfer dataset (364 SLICES), resulting in 764,546 and 11,373 SLICES strings respectively. 

The randomization was achieved by arbitrary permutations of atom order and edge order in SLICES strings. … 

Revisions made on page 18 of the main text: 

… . Among them, ~3.4 million strings were decoded into crystal structures, while reconstruction was unsuccessful for 

~6.6 million strings. This is primarily due to duplicated edges within these strings. This underscores the difficulties of 

RNNs in learning the complex syntax of long SLICES strings. State-of-the-art NLP architectures like Transformer44 

could help address this challenge, and is planned for future study. … 

Revisions made on page 18-19 of the main text: 

… We evaluated structural uniqueness between designed and training crystals using a dissimilarity value based on site 

coordination information32. Values near zero signify identical structures, whereas values surpassing 1 represent 

substantial structural differences. … 

7. Some minor points: 

* It is uncommon to start sentences with "And ...", I suggest avoiding such constructions. 

Response: Thank you for this valuable suggestion. In response, we rephrased sentences starting with "And ..." in the 

revised manuscript. 

Revisions made on page 3 of the main text: 

…, whereas invariances indicate that representation after rotation, … 

Revisions made on page 16 of the main text: 

… Moreover, … 

Revisions made on page 28 of the main text: 



… Moreover, … 

…, and outputs equilibrium bond lengths/angles … 

* Abbreviation "RNN" (line 252 for example) is not explained anywhere in the text. 

Response: Thank you for this suggestion. In response, we have added the definition for “RNN” to the revised 

manuscript. 

Revisions made on page 15 of the main text: 

… A general recurrent neural network (RNN)39 was trained …  

* "InChI" is written incorrectly in line 37. 

Response: We appreciate the reviewer pointing out this misspelling. In the revised manuscript, we have corrected it to 

"InChI". 

Revisions made on page 3 of the main text: 

… International Chemical Identifier (InChI)9, … 

* Are the URLs in lines 450 and 452 meant to be identical? 

Response: We appreciate the reviewer noticing these duplicate Figshare URLs. The reviewer makes an excellent point 

that this could lead to reader confusion. To address this issue, we have combined these two sentences into one, and 

included the version number for the Figshare dataset link. 

Revisions made on page 31 of the main text: 

The inverse design data of direct narrow-gap semiconductors and the data for reconstruction, material generation, and 

property optimization benchmarks can be accessed on Figshare (https://doi.org/10.6084/m9.figshare.22707472, Version 

2). 

* Please cite git commit in reference 24. 

Response: Thank you for this suggestion. In response, we have cited the git commit in reference 24. 

Revisions made on page 34 of the main text: 



24. Xie, T. & Fu, X. MP-20 dataset (commit 73874c4). https://github.com/txie-93/cdvae. 

* Please elaborate references 37 and 44, at least authors and URLs are needed. 

Response: Thank you for this suggestion. In response, we have added authors, URLs and commit/version to these two 

references. 

Revisions made on page 36 of the main text: 

46. Choudhary, K. & DeCost, B. Pre-trained ALIGNN models (commit c698dcf). https://github.com/usnistgov/alignn/ 

(2023). 

Revisions made on page 37 of the main text: 

54. Atkinson, P. et al. Semiempirical Extended Tight-Binding Program Package v6.6.1. https://github.com/grimme-

lab/xtb (2023). 

* In Table 2, why is the match rate of SLICES different from the one provided in Table 1? 

Response: We are sorry for causing this confusion. In response, we revised the explanation of this difference in the 

manuscript to make it clear. 

Revisions made on page 14 of the main text: 

… When applied to the 45,229 crystals within the MP-20 dataset, SLI2Cry achieved a match rate of 84.66%. This figure 

is lower than the 94.95% match rate observed on the filtered MP-20 dataset comprising 40,330 crystals. This decrease 

can be attributed to the inapplicability of SLI2Cry to 10.83% of the MP-20 dataset, primarily due to either high atomic 

numbers exceeding 86 or low dimensionality. Nevertheless, the achieved match rate of 84.66% still … 

* "Euclidian" in line 102 should be spelled as "Euclidean". 

Response: We appreciate the reviewer pointing out this misspelling. In the revised manuscript, we have corrected it to 

"Euclidean". 

Revisions made on page 7 of the main text: 

… to obtain Euclidean embeddings of periodic graph with the maximum acceptable crystal symmetry. … 



* "Systematically" in line 111 should be spelled as "systematic". 

Response: Thank you for this suggestion. In response, we have corrected it to "systematic" in the revised manuscript. 

Revisions made on page 8 of the main text: 

… Eon’s method enables systematic optimization of initial guess structures … 

* Generally I find it difficult to understand where figure captions end and the regular text begins. 

Response: We apologize for the confusion caused. To address this concern, we have added an empty line below each 

figure caption to ensure clarity. 

* Chemical formulas are not necessary in figure captions of Figures 4 and 5. 

Response: Thank you for this suggestion. In response, we have removed the chemical formulas in figure captions of 

Fig.4 and Fig. 5. 

 

 



REVIEWER COMMENTS

Reviewer #1 (Remarks to the Author):

In my opinion, the authors have satisfactorily addressed my comments on the first version, hence 

I consider that the actual version is acceptable for publication. 

Reviewer #2 (Remarks to the Author):

The authors made significant efforts to address my concerns. The generation performance of 

SLICE is validated with the cRNN model. I don't have any further questions. 

Reviewer #3 (Remarks to the Author):

The authors have considerably improved their manuscript answering all my previous suggestions 

and comments. I have the following new observations, mostly related to the newly added 

material: 

1. In line 231 of the manuscript the authors describe the usage of StructureMatcher software, 

which was not mentioned in previous manuscript version. Please cite version of StructureMatcher 

used in this study as different versions may produce different matching results. 

2. Similarly in line 398 the authors mention the usage of SMACT software. Please cite its version 

number as well. 

3. "Repeated edges" (line 551 of the main text) could probably be better expressed as "duplicated 

edges", as is done on line 357 of the main text. If this is the same situation, I think it would be 

better to use "duplicated" instead of "repeated" in all occurrences. 

4. Why different versions of SLICES were used for the reconstruction of MP-20 dataset (v1.0) and 

filtered MP-21-40 dataset (v1.4) (lines 594-596 of the manuscript)? Why cannot both datasets be 

analyzed with SLICES v1.4? Is the end user supposed to use different versions of SLICES for 

different types of materials? 

5. In Supplementary Figure 1 steps are numbered as 0, 2, 3 and 4, is this intentional? If yes, such 

numbering might confuse the reader as there is not step 1. I may assume the step numbers 

correspond to the manuscript's Figure 2, but such correspondence should probably be indicated 

explicitly. 

6. I personally find cross reference "(Methods)" confusing (see lines 100 and 300 of the 

manuscript for example, but there might be more occurrences). I think it would be better to write 

"(see Methods section for details)". Other references like "(Supplementary Note 2 and Fig. S1)" 

are easier to intuitively understand for me. 

7. In line 119 of the manuscript "Minimum distance method" should start with lowercase letter (as 

"crystal near-neighbor method" does). 

8. In line 27 of Supplementary Information "Hydrogen" is written in capital letter. I believe it 

should start with lowercase letter ("hydrogen"). 

9. Different apostrophes are used in Xi'an city name in manuscript lines 5, 6, 720 and 722.



Point-by-point response to the reviewers’ comments 

Reviewer #1 (Remarks to the Author): 

In my opinion, the authors have satisfactorily addressed my comments on the first version, hence I consider that the 

actual version is acceptable for publication. 

Response: We would like to express our sincere gratitude for your thorough review of our manuscript and for providing 

valuable feedback. Your input has been instrumental in the refinement of our paper. 

 

Reviewer #2 (Remarks to the Author): 

The authors made significant efforts to address my concerns. The generation performance of SLICE is validated with 

the cRNN model. I don't have any further questions. 

Response: We would like to express our appreciation for your careful review of our manuscript and for your valuable 

feedback. Your suggestions have played an indispensable role in improving our paper. 

  



Reviewer #3 (Remarks to the Author): 

The authors have considerably improved their manuscript answering all my previous suggestions and comments. I have 

the following new observations, mostly related to the newly added material: 

Response: Thank you very much for your positive evaluation and kind suggestions. We improved our work accordingly. 

Please find below our point-to-point responses (in blue) to your comments (in black). The revisions are shown in blue 

color in the revised manuscript. 

1. In line 231 of the manuscript the authors describe the usage of StructureMatcher software, which was not mentioned 

in previous manuscript version. Please cite version of StructureMatcher used in this study as different versions may 

produce different matching results. 

Response: Thank you for this valuable suggestion. The StructureMatcher function used in this work was implemented 

in Pymatgen package v.2022.11.7. In response, we have added the version of Pymatgen package to the revised 

manuscript. 

Revisions made on page 12 of the main text: 

…, we utilized the StructureMatcher function of Pymatgen33 v.2022.11.7 … 

Revisions made on page 2 of the Supplementary Information: 

The StructureMatcher algorithm in Pymatgen1 v.2022.11.7 first reduces … 

2. Similarly in line 398 the authors mention the usage of SMACT software. Please cite its version number as well. 

Response: Thank you for this valuable suggestion. The version number of SMACT software used in this work is v2.5.2.  

In response, we have added the version number of SMACT software to the revised manuscript. 

Revisions made on page 21 of the main text: 

… as determined by Semiconducting Materials from Analogy and Chemical Theory49 v2.5.2. … 

3. "Repeated edges" (line 551 of the main text) could probably be better expressed as "duplicated edges", as is done on 

line 357 of the main text. If this is the same situation, I think it would be better to use "duplicated" instead of "repeated" 

in all occurrences. 



Response: Thank you for this insightful suggestion. In response, we have replaced “repeated” with “duplicated” in the 

revised manuscript. We also replaced “duplicate” with “duplicated” in the revised manuscript. 

Revisions made on page 29 of the main text: 

… the majority of these SLICES strings contained duplicated edges that … 

… A simple workaround applied in this study was removing all duplicated edges to correct syntax errors, … 

Revisions made on page 30 of the main text: 

… After removing duplicated edges in sampled strings, … 

4. Why different versions of SLICES were used for the reconstruction of MP-20 dataset (v1.0) and filtered MP-21-40 

dataset (v1.4) (lines 594-596 of the manuscript)? Why cannot both datasets be analyzed with SLICES v1.4? Is the end 

user supposed to use different versions of SLICES for different types of materials? 

Response: Thank you for raising this important point. We sincerely apologize for the confusion caused by mentioning 

different SLICES versions. In the previous version of the revised manuscript, we stated that v1.0 was used for 

reconstructing the MP-20 dataset. This reference was made because, at the time of conducting this benchmark, SLICES 

was in its v1.0 version. Subsequently, during the significant revision phase of our work, SLICES underwent an update 

to v1.4. We fully agree that this description could cause confusions. 

It is essential to note that the core reconstruction algorithm of SLICES, SLI2Cry, remained unaltered between 

versions v1.0 and v1.4. The difference between the two versions lies in the addition of utility functions 

("get_canonical_SLICES", "check_SLICES", and "check_structural_validity") and the addition of python scripts for 

reproducing new benchmarks. We have verified that analyzing MP-20 dataset with SLICES v1.4 yields results identical 

to those from SLICES v1.0. Therefore, end users need not worry about using different versions of SLICES for various 

material types. Per your insightful suggestion, we have simplified the statement in code availability section to "SLICES 

v1.4 was used to generate all results in this work" to avoid misconceptions about version dependencies. 

Revisions made on page 31 of the main text: 

… SLICES v1.4 was used to generate all results in this work. … 



5. In Supplementary Figure 1 steps are numbered as 0, 2, 3 and 4, is this intentional? If yes, such numbering might 

confuse the reader as there is not step 1. I may assume the step numbers correspond to the manuscript's Figure 2, but 

such correspondence should probably be indicated explicitly. 

Response: Thank you for this valuable suggestion. Indeed, the numbering scheme in Supplementary Figure 1 was 

intentionally designed to align with the labeling in the manuscript's Figure 2. We agree that this choice may have raised 

potential confusions with the absence of step 1. In response, we added a description of such correspondence to the 

caption of Supplementary Figure 1. 

Revisions made on page 6 of the Supplementary Information: 

… The numbering scheme for structures in this figure is the same with that of Fig. 2 in the main text to ensure structural 

correspondence. Structure ①, the barycentric embedding, is not depicted here. … 

6. I personally find cross reference "(Methods)" confusing (see lines 100 and 300 of the manuscript for example, but 

there might be more occurrences). I think it would be better to write "(see Methods section for details)". Other references 

like "(Supplementary Note 2 and Fig. S1)" are easier to intuitively understand for me. 

Response: Thank you for this valuable suggestion. In response, we have replaced “(Methods)” with “(see Methods 

section for details)” in the revised manuscript.  

Revisions made on page 6 of the main text: 

… They enable the construction of suitable initial guess structures derived from graph theory (see Methods section for 

details). … 

Revisions made on page 15 of the main text: 

… materials with 21-40 atoms per unit cell from the Materials Project (see Methods section for details). … 

Revisions made on page 21 of the main text: 

… and a conditional RNN (denoted as cRNN) on the filtered MP-20 dataset (see Methods section and Table S2 for 

details). … 

… and evaluated the validity metrics on 9,428 reconstructed crystals (see Methods section for details). … 



Revisions made on page 22 of the main text: 

… SR on 782 reconstructed crystals (see Methods section for details). … 

7. In line 119 of the manuscript "Minimum distance method" should start with lowercase letter (as "crystal near-neighbor 

method" does). 

Response: Thank you for this valuable suggestion. In response, we have replaced “Minimum distance method” with 

“minimum distance method” in the revised manuscript.  

Revisions made on page 7 of the main text: 

… For instance, minimum distance method, … 

8. In line 27 of Supplementary Information "Hydrogen" is written in capital letter. I believe it should start with lowercase 

letter ("hydrogen"). 

Response: Thank you for this valuable suggestion. In response, we have replaced “Hydrogen” with “hydrogen” in the 

revised Supplementary Information.  

Revisions made on page 3 of the Supplementary Information: 

… the EconNN algorithm overestimated the coordination of certain hydrogen atoms, … 

9. Different apostrophes are used in Xi'an city name in manuscript lines 5, 6, 720 and 722. 

Response: Thank you for pointing out this discrepancy. In response, we have replaced “Xi'an” with “Xi’an” in the 

revised manuscript.  

Revisions made on page 1 of the main text: 

1School of Chemical Engineering, Northwest University, Xi’an, 710069, China 

Revisions made on page 38 of the main text: 

School of Chemical Engineering, Northwest University, Xi’an, 710069, China 
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