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Supplementary Note 1: DSTAR-based High-throughput Virtual 

Screening Pipeline 

 As shown in Figure S1, DSTAR-based high-throughput screening begins by (i) 

converting all surfaces in the dataset into active motif-based representations, which are then 

used as fingerprints to train regression models. The representation includes positional 

information of the active motif, which is divided into three sites: the first nearest neighbor 

(FNN) atoms of the adsorbates, the second nearest neighbor atoms in the surface layer 

(SNNsame), and the sublayer (SNNsub). Then, it incorporates their weighted average elemental 

properties (Atomic number, Block, Ionic radius, Oxidation state, Electronegativity, Row, 

Group, Thermal conductivity, Boiling point, Melting point, First ionization energy) and the 

number of atoms of each site. (ii) The regression model is trained using the active motif 

representations and their corresponding binding energy. (iii) All active motif representations 

are converted into prototypes of active motifs that only contains positional information without 

any elemental details. This is to remove duplicates and collect unique active motifs. (iv) To 

expand the chemical space, new elemental combinations that are outside the original domain 

are inserted into the prototype of unique active motifs, resulting in a new set of active motif 

representations. The number of active motifs generated per elemental combination is the same 

as the number of prototypes of unique active motifs. (v) The trained regression model predicts 

the binding energies of the new set of active motifs. The predicted binding energies are plotted 

on a 3D selectivity map to calculate the product selectivity of a specific elemental combination. 



 

Figure S1. Schematics of high-throughput virtual screening using DSTAR. 

 

  



Supplementary Note 2: Reaction Mechanism of CO2RR    

 The initial protonation step of CO2 reduction can proceed through two pathways; 

formation of an O-H bond to produce COOH* (reaction (i)) and formation of a C-H bond to 

produce HCOO* species (reaction (ii)).  

CO2 (g) + H+ + e− + * → COOH* (i) 

CO2 (g) + H* → HCOO* (ii) 

 Reaction (i) results in the production of CO*/CO (g), which is a key intermediate that 

can be further reduced to produce C1 or C2+ products, while reaction (ii) typically leads to the 

production of HCOOH production. We note that reaction (ii) is a chemical step which requires 

a prior surface protonation stp (reaction (iii)), so-called the Volmer step.  

H+ + e− + * → H* (iii) 

 We will also consider the possibility of surface poisoning by OH* when the binding 

energy of OH* is strong enough to inhibit its protonation to water (reaction (iv)).  

OH* + H+ + e− + * → H2O + * (iv) 

 The boundary conditions for the competition between HCOO* vs COOH* pathways, 

as well as the two additional reactions that determine surface adsorption states, can be 

expressed by following equations: 

∆𝐺!"#
(%)  = ∆𝐺!"#

(%%)  (1) 

∆𝐺!"#
(%%%) = 0 eV (2) 

∆𝐺!"#
(%') = 0 eV (3) 

 After the production of CO* following the COOH* pathway, protonation of CO* can 

proceed to two possible intermediates, either CHO* or COH*. In this study, we referred to the 

results of energetic and kinetic investigations on both CO* protonation pathways performed by 



Tang et al.1 These investigations suggested that the COH* pathway (reaction (v)) is more 

energetically accessible than the CHO* pathway due to the kinetically locked nature of the 

CHO* pathway at the negative potential. As the direct protonation of CO* to CHO* (CO* + 

H+ + e- → CHO*) is significantly sluggish compared to COH* formation, CHO* formation 

primarily relies on the thermal coupling of CO* and adsorbed H* (CO* + H* → COH*), 

requiring the preceding Volmer reaction (H+ + e− + * → H*). However, the coupling barrier of 

CO* and H* remains independent of the applied potential, rendering the COH* pathway more 

favorable at the operating potential regions. Consequently, in this study, we will exclusively 

focus on the COH* pathway for the generation of C1+ products. 

CO* + H+ + e− → COH* (GCO* < 0) 

CO(g) + H+ + e− + * → COH* (GCO* > 0) 

(v) 

 For the further reduction of COH* toward C1+ products, the protonation of CO* to 

form COH* is known to be the rate-determining step2. Thus, we used the reaction Gibbs energy 

of CO* protonation as a boundary condition to determine its further protonation. The criterion 

was set as follows.  

Δ𝐺!"#
(')  = 0.75 eV (4) 

 The reaction Gibbs energy was used as the criterion instead of the activation energy, 

since the former was found be slightly lower than the latter for Cu (100), and much more 

efficient to calculate.1 

 To establish boundary conditions for CO2RR against hydrogen evolution reaction 

(HER), we refer to the theoretical results by Tang et al. regarding CHx* formation. It was 

suggested that the protonation of CH* to CH2* is the most unfavorable step after the 

electroreduction of CO* to C*. The competition between CH* + H+ + e- → CH2* vs. * + H+ + 

e- → H* is identical to the potential independent condition as follows: 



CH* + H* → CH2* + * (vi) 

 Further protonation of H*, also known as Heyrovsky reaction, produces H2, (reaction 

(vii)). 

H* + H+ + e− → H2 + * (vii) 

 Thus, two boundary conditions for determining HER selective region are  

Δ𝐺!"#
('%) = 0 eV (5) 

Δ𝐺!"#
('%%) = 0 eV (6) 

 The thermodynamic boundary conditions are represented by three binding energy 

descriptors (∆ECO*, ∆EH* and ∆EOH*) using linear scaling relationships between these 

descriptors and other intermediates of CO2RR. We note that the applied potential term, eU, in 

boundary conditions demonstrates its potential-dependency. The details of the scaling lines, 

free energy diagram, boundary conditions represented by energetic descriptors and applied 

potential are enumerated Figure S3, Figure S4 and Table S3, respectively. 

 

  



 

 

Figure S2. Periodic table highlighting the elements used in this work. 

 

 

 

 

 

 

Figure S3. Average binding energy prediction error of CO* (Red), H* (Green) and OH* (Blue) 

when specific elements are included in local surface. Dashed line indicates MAE of ML for 

each adsorbate. A large error means that the model is likely to incorrectly predict the binding 

energy of surface containing the corresponding element.  

 



 

Figure S4. The Gibbs free energy diagram of CO2RR on Cu (111) at U = 0.0 V and -1.4 V vs. 

RHE. The pathways for four products are shown: H2 (Purple), HCOOH (Green), CO (Red) and 

CH4 (Blue) 



 

Figure S5. The scaling relations between adsorption energies of different reaction 

intermediates and combinations of descriptors (ΔECO* and ΔEOH*), along with their 

corresponding linear equations, mean absolute error (MAE) and R2 scores. (a) ΔECOOH*, (b) 

ΔEHCOO*, (c) ΔECOH*, (d) ΔECH* and (e) ΔECH2*. 



 

 

Figure S6. Parity plots of (a) the estimated (∆EH*,ML+Scaled) and DFT calculated (∆EH*,DFT) H* 

binding energy, and (b) directly predicted (∆EH*,ML) and DFT calculated (∆EH*,DFT) H* binding 

energy. The estimation is based on the ML predicted CO* binding energy (∆ECO*,ML) and the 

scaling relation between ∆ECO* and ∆EH*. 



 

Figure S7. The example of utilizing selectivity map. (a) All unique active motifs are scattered 

in the map. Each point is converted into a cuboid volume, considering MAE of ML predictions. 

(b) The thermodynamic boundary conditions are applied and the volume in the map that each 

active motif occupies is identified. (c) The active motifs that do not satisfy the reaction energy 

condition (∆GMAX < 0 eV at the applied potential) are removed (grey). The remaining active 

motifs are used to calculate productivity of each product. 



 

Figure S8. Productivity heatmap visualizing the normalized productivity; Formate (green, top), 

CO (red, right), C1+ (blue, bottom), H2 (purple, left) at U = −1.0 VRHE.  

 



 

Figure S9. Heatmap visualizing electrochemical CO2RR products (Formate : Green, CO : Red, 

C1+ : Blue, H2 : Purple, Unknown : Gray) of metal alloys reported in literatures when searching 

for the keyword: “Carbon dioxide reduction catalyst” in Web of Science. 



 

Figure S10. ML-predicted product selectivity of pure Ag. At potentials more positive than −1.3 

VRHE, the product selectivity for formate is dominant. 

 

 

Figure S11. Productivity of (a) pure Cu and (b) masked Cu-Al without normalization. The 

active site, composition and CN conditions were applied in the case of masked Cu-Al. 



 

Figure S12. (a) Composition and (b) coordination number distribution of unique active motifs 

in the dataset.  

 

Figure S13. Predicted binding energies of Cu-Ga alloy scattered on 2D selectivity map at two 

applied potentials of (a) -1.0 VRHE and (b) -1.4 VRHE. Boundary condition 1, 2 and 3 (BC1, BC2 

and BC3) are shown. The 2D selectivity map and the boundary conditions are derived using a 

fixed ∆ECO* value of 0 eV to help intuitive understanding. The area colored as green indicates 

the region selective for formate. Some of the scattered points, originally located in the formate 

selective area at U = -1.0 VRHE, move out of the area at U = -1.4 VRHE due to the line shift by 

the potential change.  



Supplementary Note 3: CO2RR Evaluation on Cu-Ga Electrode 

The Cu-Ga catalyst was prepared by one-step electroplating over a polished Cu foil 

substrate. In brief, the electropolished Cu foil was placed in a solution containing 20 mM 

gallium sulfate, 10 mM cupric sulfate, 0.5 M potassium pyrophosphate, and 0.1 M 

nitrilotriacetic acid. The plating bath pH was adjusted to ca. 8.5 using 0.1 M KOH solution. 

The Cu-Ga film was prepared by electrochemical deposition at -1.6 V vs. Ag/AgCl for 100 s 

in a stirred above-mentioned electrolyte. The as-plated films were rinsed with copious amounts 

of deionized water and dried by the nitrogen stream for subsequent measurements. 

 

Figure S14. The electrochemical pre-reduction curve of Cu-Ga electrode at a fixed potential 

of -0.6 V vs. RHE in 0.1 M Ar-saturated CsHCO3 solution for 1200 s. 

 

 



 

Figure S15. Ex situ SEM image of Cu-Ga electrode (a) before and (b) after two hours CO2 

electrolysis. In contrast to the relatively flat surface of polished Cu, the electroplated Cu-Ga 

electrode consists of densely packed nanoparticles. 

 

 

Figure S16. (a) Ex situ SEM image of polished Cu foil, (b) enlarged version from panel (a). 

 



 

Figure S17. Electrochemical double layer capacitance measurements for (a, b) polished Cu 

foil and (c, d) Cu-Ga electrode after CO2RR electrolysis at -0.95 V vs. RHE for 5400 s. The 

roughness factor of the Cu-Ga electrode is 2.67 times than the polished Cu electrode. 

 

Prior to CO2RR measurements, the Cu-Ga electrode was subjected to a pre-reduction at -0.6 

V in 0.1 M Ar-saturated CsHCO3 for 1200 s toward a stable surface state (Figure S14). Typical 

SEM images in Figure S15a and S15b depict the morphology of Cu-Ga catalyst before and 

after CO2RR electrolysis, respectively. In contrast to the relatively flat surface of polished Cu 

(Figure S16), the electroplated Cu-Ga consists of densely packed nanoparticles, which 

contributes to the 2.67-times higher surface roughness compared to bare Cu (Figure S17).  



 

Figure S18. Comparison of the XPS spectra over Cu-Ga electrode before and after CO2RR 

electrolysis. (a) XPS survey spectra, (b) core-level Ga 3d spectra overlapped with O 2s, (c) Cu 

2p and (d) LMM Auger spectra. Partially oxidized Cu surface species noted in the LMM spectra 

are probably arisen from the exposure to air during sample transfer process.  

 

X-ray photoelectron spectroscopy (XPS) measurements were then carried out to probe the 

near-surface componential evolution. As shown in Figure S18, only C, O, Cu and Ga signals 

were observed in the ex situ XPS survey spectra, where the atomic ratio of Cu to Ga decreased 

from 2.1:1 to 5.3:1 after electrochemical reduction (Table S8), probably due to the liquid nature 

of metallic Ga that leaches away from electrode surface into electrolyte under CO2RR 

conditions. Noteworthy, this near-surface Ga content is much higher than the bulky ratio as 

probed by energy dispersive spectroscopy (EDS), suggestive the surface enrichment of Ga in 

the Cu-Ga electrode (Figure S19).  

 



 

Figure S19. The EDS mapping and spectrum of Cu-Ga electrode after CO2RR electrolysis. (a) 

SEM image, (b) Mixing element, (c) Cu element, (d) Ga element, and (e) EDS spectrum. 

Noteworthy, this near-surface Ga content is much higher than the bulky ratio (Table S9) as 

probed by energy dispersive spectroscopy (EDS), suggestive the surface enrichment of Ga in 

the Cu-Ga electrode. 



 

Figure S20. GI-XRD patterns of (a) pristine and (b) spent Cu-

Ga electrode after CO2RR electrolysis. Rietveld refinement has been applied to quantitively

 probe the crystalline structure (Table S9). In line with the reference of Cu0.85Ga0.15 ICS

D#10-2892, both pristine and spent Cu-Ga electrodes share the same Fm-3m space group

, reinforcing the alloying structure. The spent Cu-Ga electrode exhibits a smaller cell vol

ume compared to that for pristine Cu-Ga, as due to the gradually leaching of metallic G

a content during CO2RR and in good harmony with our previous XPS and EDS results. 

 

Grazing-incidence X-ray diffraction (GI-XRD) at α = 0.5o has been carried to better 

characterize the alloying structure for the Cu-Ga electrodes before and post CO2RR electrolysis. 

As shown in Figure S20, two major peaks at 42.7o and 49.8o are noted for both the pristine and 

spent Cu-Ga electrodes deposited on glassy carbon substrates, corresponding to the (111) and 

(200) diffraction features of Cu0.85Ga0.15 (ICSD#10-2892) alloy, respectively. Additionally, bo

th pristine and spent Cu-Ga electrodes share the same Fm-3m space group, reinforcing th

e alloying structure. The spent Cu-Ga electrode exhibits a smaller cell volume compared 

to that for pristine Cu-Ga (Table S9), as due to the gradually leaching of metallic Ga co

ntent during CO2RR and in good harmony with our previous XPS and EDS results.  

 



 

Figure S21. (a) Steady-state current densities, together with (b) the Faradaic efficiency of 

formate, (c) the selectivity ratio of oxygenates to the sum of H2 and hydrogenates, and (d) the 

partial current density of oxygenates on polished Cu versus plated Cu-Ga electrodes under 

different applied potentials.  

 

 

Figure S22. Faradaic efficiency for CO2 electroreduction products at different applied potential 

for polished Cu and Cu-Ga electrodes. (a) H2, (b) CH4, (c) C2H4, (d) CO, (e) C2H5OH, (f) other 

products for polished Cu electrode.  



The CO2RR performance was then screened in 0.1 M CO2-saturated CsHCO3 electrolyte for 

polished Cu and plated Cu-Ga, with the gaseous and the liquid products quantitively analyzed 

by online gas chromatography and 1H nuclear magnetic response (NMR) spectroscopy, 

respectively. As plotted in Figure S21, similar steady-state current densities were noted on 

those two electrodes throughout the potential window of interest, however, the selectivity of 

products is quite different (Figure S22). A higher H2 Faradaic efficiency (FE) was observed on 

Cu over Cu-Ga at small overpotential regime, whereas at more negative potentials below -0.95 

V, Cu electrode delivers a lower H2 FE but significantly higher hydrocarbon generation of CH4 

and C2H4 compared to those on Cu-Ga. In contrast, Cu-Ga catalyst favors the liquid oxygenates 

generation including formate and ethanol. As shown in Figure S21b, Cu-Ga delivers a 

maximum formate FE of ~38.4% at -1.05 V vs. RHE, which is 4 times as high as that on bare 

Cu. Figure S21c plots the ratio of oxygenates to the sum of H2 and hydrocarbons as a function 

of cathodic potential, highlighting the promoted oxygenates selectivity on Cu-Ga alloy. 

Moreover, Figure S21d depicts the potential dependence of oxygenates partial current density, 

in which Cu-Ga delivers ~7 times higher joxygenates than bare Cu at -1.15 V, experimentally 

confirming ML-predicted and DFT-calculated results. Considering the mass transport 

limitation of CO2 in aqueous solution, we did not continue to measure CO2RR products 

distribution below -1.2 V.  

 

  



 

Figure S23. The contact angel of (a) polished Cu and (b) plated Cu-Ga electrodes. Compared 

to bare Cu, the slightly lower contact angel on plated Cu-Ga electrode suggests its enhanced 

surface hydrophilicity. 

 

Last but not least, we considered the potential surface hydrophilic effect on formate 

selectivity. As shown in Figure S23, a slightly lower contact angel was noted on Cu-Ga 

compared to bare Cu, suggesting an enhanced surface hydrophilicity of the former which may 

synergistically contribute to enhance the CO2-to-formate selectivity arisen from the surface 

hydride mechanism.3, 4 Nevertheless, the similar potential dependence of CO selectivity on Cu 

and Cu-Ga, as well as the difference in products distribution of hydrocarbons and ethanol 

highlights the dominant effect of Ga-doping in tuning CO2RR pathways. 

 

 

 



 

Figure S24. Parity plot of bulk and active motif composition. The lighter color indicates a high 

density of points. 

 

 

Figure S25. Composition-dependent C1+ productivity of Cu-Pd and formate productivity of 

Cu-Ga at -1.4 VRHE when compositions were derived from bulk structures. 

  



 

Figure S26. Ex situ SEM image of Cu-Pd electrode (a) before and (b) after 2-h CO2 electrolysis. 

 

 

 

Figure S27. Electrochemical double layer capacitance measurements for (a, b) Cu-Pd electrode. 

Given the EDLC of 0.048 mF/cm2 for polished Cu foil (Figure S22), the roughness factor of 

Cu-Pd electrode is 12.16 times as high as that of polished Cu. 

 



 

Figure S28. Depth profile of TOF-SIMS measurement on as-prepared Cu-Pd electrode. Insert 

shows the overlapped distribution of Cu (reddish) and Pd (blue) components. 

  



 

Figure S29. Comparison of the XPS spectra over Cu-Pd electrode before and after CO2RR 

electrolysis. (a) XPS survey spectra, (b) core-level Pd 3d spectra, (c) Cu 2p and (d) LMM Auger 

spectra. Partially oxidized Cu surface species noted in the LMM spectra probably arose from 

the exposure to air during sample transfer process. The near surface ratio of Cu:Pd slightly 

increases from 4:1 for pristine electrode to ~ 4.5:1 after CO2RR electrolysis, suggesting a 

relatively stable feature of Cu-Pd alloy. 

 



 

Figure S30. GI-XRD pattern of as-deposited Cu-Pd electrode with Rietveld refinement. Both

 metallic Cu (ICSD#67-0301) and Cu2O (ICSD#26-1853) components were observed, but

 at the absence of Cu-Pd alloy phase. 



 

Figure S31. SEM image and relevant EDS mapping for Cu-Pd electrode after CO2RR. (a) SEM 

image, (b) mixed element distribution, (c) Cu and (d) Pd element mapping, and (e) EDS 

spectrum. 

 



 

Figure S32. Faradaic efficiency for CO2 electroreduction gas products at different applied 

potential for polished Cu and Cu-Pd electrodes. (a) CH4 (b) CO. 

 

 

 

Figure S33. Faradaic efficiency for CO2 electroreduction liquid products at different applied 

potential for polished Cu and Cu-Pd electrodes. (a) ethanol, (b) 1-propanol, (c) formate, (d) 

acetate, (e) acetaldehyde, (f) propionaldehyde. 

 



 

Figure S34. One and two-dimensional diagrams to illustrate how the maximum reaction energy 

(∆GMAX) for (a) H2, (b) formate, (c) CO and (d) C1+ production changes in terms of three 

binding energy descriptors at 0 VRHE of the applied potential. 

  



 

Figure S35. An example of uncertainty contribution for a point near the boundary condition in 

the 2D projections (right) of 3D selectivity map (left). The uncertainty caused by the ML 

prediction is represented as a volume based on the MAE of each ML model. Since the volume 

intersects with the boundary condition, the active motif also contributes to the productivity of 

the product from another pathway (COOH*) along with the predicted pathway (HCOO*). 

 

 

 

 

 

  



Table S1. The mean absolute errors (eV) of each split of 5-fold cross validation.     

 Split 1 Split 2 Split 3 Split 4 Split 5 Avg. Std. 

CO 0.121 0.118 0.118 0.115 0.119 0.119 0.002 

H 0.105 0.104 0.110 0.109 0.105 0.107 0.003 

OH 0.241 0.227 0.220 0.218 0.231 0.227 0.009 

 

Table S2. Top 20 active and selective elemental combination and corresponding productivity 
for each product. 

 Formate Selective CO Selective C1+ Selective H2 Selective 

Alloy Productivity Alloy Productivity Alloy Productivity Alloy Productivity 

1 In-Sn 1.000 Ag-Ag 1.000 Cu-Pd 1.000 Mn-Ru 1.000 

2 Pb-Sn 0.996 Ag-Au 0.929 Mn-Pd 0.784 Rh-Ru 0.974 

3 Pb-Zn 0.985 Ag-Sb 0.901 Cr-Pd 0.770 Mn-Rh 0.970 

4 Ag-Sn 0.982 Au-Au 0.879 Cu-Ni 0.715 Co-Ru 0.969 

5 In-Pb 0.971 Au-Sb 0.862 Au-Pd 0.691 Co-Mn 0.963 

6 Sb-Sn 0.969 Au-Ge 0.788 Cu-Pt 0.687 Ni-Ru 0.959 

7 Ag-In 0.955 Au-Pb 0.688 Ni-Pd 0.665 Co-Rh 0.957 

8 Ga-Sn 0.953 Au-Sn 0.679 Pd-Pd 0.647 Fe-Ru 0.935 

9 In-In 0.952 Ag-Pb 0.616 Cu-Cu 0.640 Co-Ni 0.932 

10 Sn-Zn 0.941 Au-Zn 0.613 Cr-Pt 0.638 Co-Co 0.931 

11 In-Sb 0.937 Au-In 0.607 Pd-Ti 0.629 Fe-Rh 0.928 

12 Ge-Pb 0.934 Ag-As 0.593 Mn-Pt 0.628 Fe-Mn 0.926 

13 Ag-Ga 0.931 Ni-Se 0.535 Pd-Re 0.624 Ru-Ru 0.919 

14 Sb-Zn 0.923 Ag-Sn 0.530 Pd-V 0.623 Mn-Ni 0.918 

15 In-Zn 0.912 As-Se 0.514 Pt-Pt 0.618 Ni-Rh 0.915 

16 Ag-Zn 0.907 Au-Se 0.510 Cr-Cu 0.615 Mn-Re 0.906 

17 Ag-Pb 0.905 Au-Ga 0.502 Ag-Pd 0.602 Mn-Os 0.899 

18 Ga-Pb 0.903 Al-Au 0.484 Pt-Si 0.584 Ir-Mn 0.895 

19 Ge-In 0.903 Co-Se 0.479 Pd-Rh 0.582 Co-Ir 0.888 

20 Pb-Pb 0.897 Ag-Se 0.477 Pt-Ti 0.581 Co-Fe 0.885 

 



Table S3. The equation of boundary conditions expressed using binding energy descriptors and 
the applied potentials. 

Boundary Condition Expression 

Δ𝐺!"#
(%) 	= Δ𝐺!"#

(%%)  0.601 ΔECO* − 0.740 ΔEOH* + ΔEH* + 1.343 + eU = 0 

Δ𝐺!"#
(%%%) = 0 ΔEH* + 0.178 + eU = 0 

Δ𝐺!"#
(%') = 0 ΔEOH* − 0.22 − eU = 0 

Δ𝐺!"#
(')  = 0.75 

0.563 ΔECO* + 0.857 + eU = 0 (ΔECO* + 0.32 < 0) 

1.563 ΔECO* + 1.222 + eU = 0 (ΔECO* + 0.32 ≥ 0) 

Δ𝐺!"#
('%) = 0 0.507 ΔECO* + ΔEH* + 0.89 = 0 

Δ𝐺!"#
('%%) = 0 ΔEH* + 0.178 − eU = 0 

 

Table S4. The atomic contents distribution in Cu-Pd electrode prior to and after electrolysis.  

Electroplated Cu-Pd Cu at.% Pd at.% Cu : Pd 

before electrolysis  XPS 79.95 20.05 3.98:1 

 EDS 98.76 1.24 79.64:1 

after electrolysis 
XPS 81.94 18.06 4.53:1 

EDS 99.00 1.00 99:1 

 

  



Table S5. The Gibbs free energy correction values for gaseous molecules. For all calculations, 

temperature was set to 298.15 K. 

Species 
Fugacity 

(Pa) 
Ezpe (eV) ∫Cp d (eV) – TS (eV) Egas (eV) Gcorr (eV) 

H2O 3,534 0.572 0.110 – 0.676 0.010 0.016 

H2 101,325 0.269 0.090 – 0.402 - – 0.043 

CO2 101,325 0.304 0.098 – 0.662 0.460 0.200 

CO 101,325 0.130 0.090 – 0.610 0.070 – 0.320 

HCOOH 101,325 0.885 0.124 – 0.830 0.270 0.449 

 

Table S6. The Gibbs free energy correction values for adsorbates. 

Species Ezpe (eV) ∫Cp d (eV) – TS (eV) Esolv (eV) Gcorr (eV) 

H* 0.160 0.005 – 0.007 - 0.158 

CO* 0.179 0.085 – 0.230 – 0.100 – 0.066 

COOH* 0.567 0.103 – 0.270 – 0.250 0.150 

HCOO* 0.583 0.097 – 0.220 - – 0.460 

COH* 0.472 0.080 – 0.151 – 0.250 0.151 

CH* 0.368 0.025 – 0.038 - 0.347 

CH2* 0.651 0.042 -0.069 - 0.624 

 

 

  



Table S7. The hyperparameters of ML regression algorithms determined by Bayesian 
optimization.  

Model Hyperparameters 

Gradient Boost 

Regressor 

n_estimators = 4000, learning_rate = 0.15, max_depth =17, 

min_samples_leaf = 28, min_samples_split = 24 

 

Table S8. The atomic contents distribution in Cu-Ga electrode prior to and after electrolysis.  

Electroplated Cu-Ga Cu at.% Ga at.% Cu : Ga 

before electrolysis (XPS) 67.2 32.8 2.1:1 

after electrolysis 
XPS 84.1 15.9 5.3:1 

EDS 92.0 8.0 11.9:1 

 

 

Table S9. Structural information, including space group, lattice parameters, occupancy, 

discrepancy factor (Rwp), and goodness fit factor (χ2), derived from the Rietveld refinement of 

XRD spectra and Cu0.85Ga0.15 (ICSD :102892) standards. 

Sample Space group Cell 
parameter Occupancy Cell 

volume Rwp c2 

Cu0.85Ga0.15 

(ICSD#10-
2892) 

Fm-3m 

a: 3.6573 
Cu: 0.850 

Ga: 0.150 
48.919 - - b: 3.6573 

c: 3.6573 

Pristine 

Cu-Ga 

a: 3.6620 
Cu: 0.727 

Ga: 0.273 
49.108 0.021 1.293 b: 3.6620 

c: 3.6620 

Spent 

Cu-Ga 

a: 3.6515 
Cu: 0.876 

Ga: 0.124 
48.687 0.031 2.563 b: 3.6515 

c: 3.6515 
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