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Editorial Note: This manuscript has been previously reviewed at another journal that is not 
operating a transparent peer review scheme. This document only contains reviewer comments and 
rebuttal letters for versions considered at Nature Communications . 

 

REVIEWER COMMENTS 

 

Reviewer #1 (Remarks to the Author): 

 

I thank the authors for carefully going through the raised points and correcting them. In detail 

 

1) Has been answered satisfactorily. Due to the changes this is now more convincing. 

2) The provided github link is helpful for reproducibility and increases the understanding of the paper. 

3) I appreciate that the authors already determined the prediction error. With this in mind, I would 

suggest to include error bars in all the figures of the manuscript which could highly increase the 

trustability of the results. 

4) Ok. 

5) Ok. 

6) Looks great, I think it is good that the authors found another candidate. I would appreciate only if the 

authors can add one sentence about the matching of a theoretically predicted structure with an 

experimentally synthesized one. How difficult is this? What are the challenges? Is this always expected 

to work out perfectly? This will be important for the community who is going to use the predicted 

selective systems to reproduce them experimentally. 

7) Ok. 

8) 

- I do not quite understand why the productivity of a particular configuration should be scaled with the 

volume which corresponds to the error. This would mean that more erroneous predictions are 

contributing more? How does this make sense? 

- The equations should be all labeled with numbers 

- The equation pk = ... the sum introduced sums over what? Should be explained. 

 

9) Ok. 

10) Convincing. 



11) Ok. 

 

 

 

Reviewer #2 (Remarks to the Author): 

 

In the present manuscript entitled “From data to discovery: Machine learning enables the identification 

of active and selective CO2 reduction electrocatalysts”, the authors have established novel high-

throughput virtual screening strategy to suggest active and selective catalysts for CO2RR without being 

limited to a database. 

In the revised manuscript, the authors have done a substantial revision to the previously submitted 

version, which I highly appreciate. Therefore, I recommend the acceptance of this manuscript for 

publication in Nature Communications. 

 

Reviewer #3 (Remarks to the Author): 

 

The revised manuscript included discussion about the model details, uncertainty quantification, and 

further validation of Cu/Pd catalysts. Most of the concerns were addressed. 

1. CuGa stability might be a concern. Authors claimed that the CuGa is in metal state, but the bulk 

pourbiax diagram with an arbitrary 0.5 eV threshold is not sufficient. Is there dissolution or Ga oxide 

formation in reaction conditions? 

2. In terms of referencing to prior work, particularly by Sargent Cu-Al, the selectivity to CO2 reduction 

was considered. 

3. For the graph models, authors were indicating that the optimized structures are used which is not 

true. Authors need to revise and accurately reflect the state of the art and their benchmarks. 



 
 
 

Reviewer #1 (Remarks to the Author) 

 

I thank the authors for carefully going through the raised points and correcting them. In detail 

1) Has been answered satisfactorily. Due to the changes this is now more convincing. 

2) The provided github link is helpful for reproducibility and increases the understanding of the paper. 

3) I appreciate that the authors already determined the prediction error. With this in mind, I would suggest 

to include error bars in all the figures of the manuscript which could highly increase the trustability of the 

results. 

 

We appreciate for your comment. Below, we have compared two versions of parity plots, one with error 

bars and the other with density-based color gradients. The one with error bars is less visible than the latter, 

thus we decided to use the latter in the manuscript (Figure R1). Furthermore, the productivity figures 

already account for prediction uncertainty through the productivity equations. You can find more details 

in the answer to the 8th comment, which is related to the uncertainty of our method. 

 

 
Figure R1. Parity plots with points and error bars (left) and with only hexagonal density-based 

color gradients (right). 

4) Ok. 

 

5) Ok. 

 

6) Looks great, I think it is good that the authors found another candidate. I would appreciate only if the 

authors can add one sentence about the matching of a theoretically predicted structure with an 

experimentally synthesized one. How difficult is this? What are the challenges? Is this always expected to 

work out perfectly? This will be important for the community who is going to use the predicted selective 

systems to reproduce them experimentally. 

  

We appreciate this valuable comment. The primary challenge in data-driven catalyst discovery using DFT 

and ML is the synthesizability of the proposed catalysts in specific crystal structures. Since several factors 



influence a material's synthesizability, it is possible that the proposed crystal structures may not be realized 

in practice. While our method can suggest more reliable elemental combinations, it does not guarantee the 

formation of stable alloys. Thus, our method should be used as a tool for prioritizing candidate 

combinations. We added this perspective as follows: 

 

Line 317- 321 in Page 18: 

We note in passing that, given that several factors influence a material's synthesizability, it is 

possible that the proposed crystal structures may not be realized in practice. While our method can 

suggest more reliable elemental combinations to achieve the desired catalytic activity and 

selectivity, it does not guarantee the formation of stable alloys. Thus, our method should be used 

as a tool for prioritizing candidate combinations. 

 

7) Ok. 

 

8) 

- I do not quite understand why the productivity of a particular configuration should be scaled with the 

volume which corresponds to the error. This would mean that more erroneous predictions are 

contributing more? How does this make sense?  

 

 
Figure S35. An example of uncertainty contribution for a point near the boundary condition in 

the 2D projections (right) of 3D selectivity map (left). The uncertainty caused by the ML 

prediction is represented as a volume based on the MAE of each ML model. Since the volume 

intersects with the boundary condition, the active motif also contributes to the productivity of the 

product from another pathway (COOH*) along with the predicted pathway (HCOO*). 

 

As pointed out by the reviewer in the previous review, we acknowledge that the uncertainty of the ML 

predictions and the discontinuity of the boundary conditions could lead to incorrect predictions, especially 



when the predicted points are near the boundary for different selectivities. For instance, the white point 

representing predicted binding energies in Figure S35 would be identified as selective for the HCOO* 

pathway. However, considering the ML errors, there is a possibility that the actual energies for that point 

are selective for the COOH* pathway. 

 

To address this issue, we represented each predicted point (i) as a 3D volume (vi,k), where the intersected 

volume contributes to each reaction pathway leading to product (k). In Figure S35, 80 % of the volume is 

occupied by the HCOO*-selective region, allowing its contribution to be calculated. 

 

- The equations should be all labeled with numbers 

We labeled the equations with numbers in method section. 

 

- The equation pk = ... the sum introduced sums over what? Should be explained. 

For clarity, we have added further details as copied below. 

 

Line 448-452 in Page 25: 

For the given data point on the 3D selectivity map, we convert the predicted point into a cuboid volume, 

where the twice prediction errors of ∆EH*, ∆EOH* and ∆ECO* correspond to the length, width and height of 

the cuboid, respectively. These cuboid volumes, which partially occupy the product region, are 

utilized to calculate the productivity, where the contribution of each volume to each product is 

calculated considering its energetics. From the Gibbs free energy diagram toward certain 

products, we calculated the maximum reaction barrier (∆GMAX) at the applied potential as 

 ∆GMAX = 𝑚𝑎𝑥
𝑖

(∆𝐺𝑟𝑥𝑛
𝑖 ) (1) 

, where ∆𝐺𝑟𝑥𝑛
𝑖  is a reaction Gibbs energy of an elementary step i in the reaction pathway (Figure S34). 

Only ∆GMAX < 0 eV is further considered, which corresponds to the spontaneous 

thermodynamics.  To ensure that points with lower ∆GMAX have a higher contribution to the overall 

activity, a weighted ∆GMAX value was obtained as follows: 

 ∆𝑤𝐺𝑚𝑎𝑥 = 𝑒−∆𝐺𝑚𝑎𝑥  (2) 

Eventually, the productivity (pk) of a specific elemental combination for a given product k (formate, CO, 

C1+ and H2) is determined by summing over ∆𝑤𝐺𝑚𝑎𝑥,𝑖,𝑘 multiplied by vi,k. 

 
𝑝𝑘 =  

∑ ∆𝑤𝐺𝑚𝑎𝑥,𝑖,𝑘 ∗ 𝑣𝑖,𝑘 𝑁
𝑖

𝑁
 𝑓𝑜𝑟  ∆𝑤𝐺𝑚𝑎𝑥,𝑖,𝑘 > 1 

(3) 

Here, vi,k represents the partial volume of the cuboid for the i th active motif toward product k. This 

accounts for potential issues stemming from the uncertainty in ML predictions and the discontinuity of 

the boundary conditions, which could result in incorrect predictions (Figure S35). N represents the total 



number of unique active motifs, which remains identical within the monometallic system and the 

bimetallic system. After calculating the productivities, they were normalized using the MinMaxScaler 

across all elemental combinations. 

 

 

9) Ok. 

 

10) Convincing. 

 

11) Ok. 



Reviewer #2 (Remarks to the Author): 

 

In the present manuscript entitled “From data to discovery: Machine learning enables the identification of 

active and selective CO2 reduction electrocatalysts”, the authors have established novel high-throughput 

virtual screening strategy to suggest active and selective catalysts for CO2RR without being limited to a 

database. 

In the revised manuscript, the authors have done a substantial revision to the previously submitted 

version, which I highly appreciate. Therefore, I recommend the acceptance of this manuscript for 

publication in Nature Communications. 

 

 

 

 

  



Reviewer #3 (Remarks to the Author): 

 

The revised manuscript included discussion about the model details, uncertainty quantification, and 

further validation of Cu/Pd catalysts. Most of the concerns were addressed. 

 

1. CuGa stability might be a concern. Authors claimed that the CuGa is in metal state, but the bulk 

pourbiax diagram with an arbitrary 0.5 eV threshold is not sufficient. Is there dissolution or Ga oxide 

formation in reaction conditions? 

 

Figure R2. (a-b) The calculated 2D Pourbaix diagrams of (a) GaCu3 (mp-1183995) and (b) 

Ga4Cu9 (mp-1197621). The color bar indicates the Pourbaix decomposition energy (∆Gpbx) of 

each compound, where a lower ∆Gpbx corresponds to higher stability. The compounds shown in 

the diagrams represent the stable phases at the given potential and pH. (c-d) The 1D Pourbaix 

diagrams of (c) GaCu3 and (d) Ga4Cu9 at pH 8.6. The red solid lines are ∆Gpbx of each compound 

as a function of the potential, and the areas under the lines indicate the most stable phase within 

that potential range. The gray dashed horizontal line indicates the ∆Gpbx criteria for metastable 

phases (10.1021/acs.chemmater.7b03980). The experimental validation was performed from -

0.75 to -1.15 VRHE (green area). 

 



We apologize for not providing a sufficient explanation of the Pourbaix diagram. To help understanding, 

we have included a 2D Pourbaix diagram and additional details in the figure (Figure R1). 

Both the 1D and 2D Pourbaix diagrams indicate that GaCu3 and Ga4Cu9 become metastable with a 

stability of under 0.5 eV/atom after reaching -0.5 VSHE. Furthermore, from potentials ranging from -0.8 

VSHE to -1.5 VSHE, the Pourbaix stability values of CuGa alloys (Ga4Cu9, GaCu3 and Ga2Cu) are nearly 0 

eV/atom, signifying their status as the most stable phases. 

 

2. In terms of referencing to prior work, particularly by Sargent Cu-Al, the selectivity to CO2 reduction 

was considered. 

In prior work by Sargent, CO2 reduction selectivity was determined based on the H* binding energy, 

where a weak H* binding energy inhibits the competitive hydrogen evolution reaction, thus increasing 

selectivity towards CO2RR.  

 

In our method, we have also accounted for selectivity using boundary conditions. The competition 

between HER and CO2RR was considered through boundary condition 5, which determines whether 

CH* protonation for CO2RR or surface protonation for HER is more favorable. Additionally, using the 

boundary conditions, we have explored the selectivity between various CO2RR products, which was not 

addressed in Sargent's work. 

 

3. For the graph models, authors were indicating that the optimized structures are used which is not true. 

Authors need to revise and accurately reflect the state of the art and their benchmarks. 

 

We appreciate your comment. The graph-based approach mentioned in the main text originally referred 

to the corresponding author's previous method (The Journal of Physical Chemistry Letters 10 (15), 4401-

4408). However, this method is no longer considered state of the art. Therefore, we have made changes to 

the sentence, removing the comparison part, as the current mainstream focus is on structure-to-

energy/force (S2EF) rather than predicting binding energies. 

 

Line 99-102 in Page 6: 

The active motif representation in DSTAR does not require time-consuming steps such as slab 

structure generations, binding site identifications and iterative optimizations, allowing for the 

exploration of a wide chemical space, thus facilitating a discovery of novel catalysts. 

 

 

 

 



REVIEWERS' COMMENTS 

 

Reviewer #1 (Remarks to the Author): 

 

All open points have been answered. I recommend the manuscript for publication. 

 

 

Reviewer #3 (Remarks to the Author): 

 

Authors addressed the comments very well. 
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