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REVIEWER COMMENTS 

 

Reviewer #1 (Remarks to the Author): 

 

General comments 

In the article “Early warning signals are hampered by a lack of critical transitions in empirical lake data”, 

the authors use time series from 9 lakes and different trophic levels (zooplankton, phytoplankton) to 

test and compare the ability of various early-warning indicators to predict critical transitions. The tested 

EWSs belong to three groups: classical univariate indicators, multivariate indicators and machine 

learning-based classification. In addition, the performance of the indicators was evaluated in 

combination with different preprocessing approaches for detrending and deseasoning and different 

computational approaches (rolling window, expanding window). 

 

I find the manuscript is of general interest since the value and applicability of EWSs are still under 

debate. The contribution of this manuscript to the debate lays particular in the inclusion of different 

trophic levels, true positive and true negative transitions, different groups of EWSs, and the systematic 

investigation of the influence of different preprocess and computational approaches on the 

performance of the EWSs. 

However, in the present form, I also have several points of criticism regarding the manuscript. 

Most importantly, this regards the definition and used approach to identify critical transitions, which 

uses only one necessary but not sufficient criterium. Thus the critical transitions are not uniquely 

identified here, and the proclaimed ground truth in itself thus is highly uncertain. It is difficult for most 

rapid regime shifts found in empirical time series to rigidly differentiate between "State thresholds" and 

"Driver-state hysteresis" (following the terminology used by Andersen et al., 2009, Ecological thresholds 

and regime shifts: approaches to identification) and, in fact, is impossible without the presence of 

several shifts (see, for example, Scheffer et al. 2003 Catastrophic regime shifts in ecosystems: linking 

theory to observation). 

Further, the author's claim to identify the ubiquity of critical transition needs to be toned down 

considerably since, firstly, as stated above, the authors can not claim to have identified critical 

transitions uniquely. Secondly, in the face of an estimated 304 million lakes (sensus Downing et al. 

2006), 9 lakes, not even covering all climate zones, lake types etc., are nowhere near showing the 

ubiquity or none ubiquity of critical transitions. 

 

Finally, the manuscript is not always easy to follow and evaluate. This is mainly due to a fuzzy use of core 

terminology, gaps in the method part and the distribution of information on the used method between 

the result and method section. 

 



Therefore the authors should take care of a stringent definition early in the text of the core terminology 

around (rapid) regime shifts, bifurcation and critical slowing down. Preferably this definition is based on 

an accepted use in the community. I suggest, for instance, Boettinger et al., 2013, Early warning signals: 

the charted and uncharted territories. After such a definition, it is helpful for the reader and avoids 

misunderstandings to use this terminology consistently throughout the text. Here it could be helpful to 

add an accompanying diagram showing how terms relate, e.g. in the style of Boettinger et al. Fig. 1. I 

acknowledge some attempts to provide definitions by the authors (e.g. L49 ff, L74 ff); however, the 

definitions are not stringent in themselves and are not consistently used throughout the text. To 

exemplify the above point, I list some of the plethora of terms appearing in this text: abrupt non-linear 

changes, regime shifts, critical transitions, type of transition, whole ecosystem change, different forms 

of abrupt change, bifurcation-theory, process-driven regime shifts, tipping points, critical point, positive 

feedback loops, critical slowing down, alternative stable state, pulse events, step changes, smooth 

transition, step change/transient. 

 

Regarding the deficits in the methods section, I would like a more detailed and differentiated description 

of the pre-processing steps carried out regarding the monthly and annual time series. In addition, it 

remains unclear how the breakpoints identified in the annual resolution are applied to the monthly time 

series. In this context, I am also missing a critical discussion of why regime shifts have been identified at 

the zooplankton and phytoplankton level rather than the genera level and how this may have affected 

the ability to detect regime shifts, particularly because regime shifts do not necessarily affect all 

species/genera with the same quality, as the authors themselves state. 

Moreover, although testing the expanding windows approach is an important aspect of the manuscript, 

details on the method remain unclear, even after following the given citations. 

Most importantly, details are missing on how the authors derive the central success/failure data table, 

which would be necessary for reproducibility. In particular, it is unclear how results from univariate EWS 

indicators, with one result per genus level, were made comparable to results from multivariate EWS 

indicators, which return one result for multiple time series (system). 

 

Finally, the discussion is extensive and should be shortened to make room for critical assessments of 

assumptions made in the methods part (see, for instance, the points raised above). 

See the specific comments section for minor comments and examples of the main criticisms above. 

 

Specific comments 

Abstract 

L27: “… often inaccurate…” This is a strong claim since most EWSs have a solid theoretical grounding. So 

the question would be: inaccurate in which regard? 

L31: From theory, it is clear that EWSs derived from CSD are not expected to predict all types of (rapid) 

regime shifts. Already here, I found the fuzzy use of terminology confusing. 



 

L32,L35: “… identify the type of transitioning ..”, “…. different forms of abrupt change…”. Be more 

precise. What transitions (group of transitions) do you distinguish (critical transition vs no critical 

transition, Table S1) 

 

L37-38: Given that which group of EWS indicators performs best seems highly dependent on the 

temporal resolution of the time series and the chosen preprocessing and calculation approach, I don't 

see how you arrive at this general summary/conclusion. 

 

L40: “… predict change …” This is very generic - better “abrupt regime shifts” (see general comments 

regarding terminology). 

 

Introduction 

 

L76-78: No, this is a necessary but not sufficient criterium. 

L84: Be more precise. Which ones? 

L89: “uses” instead of “users” 

L94: I had trouble finding this statement in the cited article; however, if this is the case, this also leads to 

uncertainty in your transition type classification, which needs to be critically discussed. 

L123-125: Given that you are investigating only 9 lakes and your applied classification method can not 

uniquely determine a critical transition, it is necessary to tone down this statement. 

L 125-126 Given the versatility of your results regarding preprocessing, temporal resolution, true 

positives, and true negatives, I would strongly recommend refraining from such generic, off-hand 

summaries. 

Methods 

 

L382: How do downstream deseasoning and detrending apply to yearly data? 

 

L383-384: The disappearance of a species can be seen as an important change in community 

composition and can possibly also depict an abrupt change. How does the technical need to exclude 

those time series bias your data against (sudden) changes? Please critically discuss how some of your 

data processing steps could have affected your conclusions. 

 



L385-386: Add: “The two final datasets on a monthly and yearly temporal resolution for each lake …..” 

 

L390-391: How does this statement relate to yearly data? 

 

L410-412: This is a necessary but not sufficient criterium! 

 

L414, L154: If you identify a transition on yearly resolution, how did you divide the monthly time series 

into pre-and post-transitioning phases? 

 

L416: How were plankton densities derived from the genius-level time series? As sums? How could this 

affect your ability to detect an abrupt shift (critical or otherwise), e.g. due to portfolio effects and not all 

genera might be affected equally by a regime shift? Also, here a critical discussion would be required. 

 

L450-451: Over which group of time series where this averaged, zooplankton vs phytoplankton, i.e. 

trophic level? What is, in your case, the “system”? 

 

L463-464: The calculation stays unclear, despite also following the cited articles since it is unclear how, 

e.g. autocorrelation at time t is calculated. 

 

L473: Define "smooth transition". How did you map this to your “ground truth” (Table S1) for the 

performance evaluation? 

 

L494: To follow this section, I would find it helpful if you would refer to the corresponding tables in the 

supplementary material. 

 

L484-485, L491-L492: How exactly was it handled that for the univariate measures, there is one success/ 

failure result for every genius level time series, while for multivariate methods, which are calculated 

across multiple time series representing "the system" (Table S2), there is only one. 

 

L507: 15 levels. 

 



L516-518: I can not fully reconcile this information to the one given in L171-172, particularly because 

also in tables S3-S7 there seems to be no factor level “none-none”, even so in the table headers 

“assessments made on raw data” is mentioned. 

 

Supplementary material 

 

A table of content would be helpful to navigate the material and get an overview of the various tests. 

 

What is the temporal resolution of the time series for the results in tables S3-S7. 

 

Results 

 

L130 A map depicting the location of the lake would be appropriate. In addition, a table summarizing 

under which temporal resolution and type of grouping (overall, true positive, true negative) which group 

of EWS + preprocessing performed best would be helpful for the reader to keep track of the specific 

results. 

 

L145-147, L150-151: As mentioned before, this is a necessary but not a sufficient criterium. 

 

L185: Add reference to table S8, i.e. “ cross-method comparisons (table S8) …”. 

 

L184-185: How does this apply to the yearly resolution time series? 

 

L192: "..tables S8-S13". 

 

L208: According to Figure 3, it should be “decreased”. 

 

L225-231: Refer to the appropriate tables in the supplementary in this section. 

L233: Specify “this”. 

 



L234: Specify “the method”. 

 

Discussion 

The discussion in the present state should be shortened, and critical discussion to potential influences of 

methodological decisions added, particularly on the used “ground truth”, which was established on 

necessary but not sufficient criterium only. 

 

L256-257: I do not see how you come to this clear conclusion, seeing the very mixed results. The 

performance and appropriate pre-processing seems situation dependent, e.g. temporal resolution of 

data; maybe a more differentiated recommendation would add value. 

 

L340-342: Citation with evidence in regard to this. 

 

Reviewer #2 (Remarks to the Author): 

The paper by O’Brien et al “Early warning signals are hampered by a lack of critical transitions in 

empirical lake data”, as stated by the title and abstract, discusses observed variables from nine lakes, 

and compares multiple early warning signals. 

 

The paper obviously contains a lot of results, but when the authors claim that this or that indicator 

performs better or worse in terms of detecting transitions, this is based on statistical characteristics 

rather than on ground truth information about transitions – this can be caused by parameters of fitted 

models and pre-trained setups. 

 

Furthermore, many of the indicators may contain issues by construction: for example, multivariate 

indicators aggregate variables in a simple way, and some of those may have opposite dynamics, while 

others may be cross-correlated and lead to a bias in estimates such Kendall’s tau. This can affect the 

resulting multivariate indicators to such extent that any conclusion about its results may be misleading. 

 

I wonder if the authors are familiar with works of Killick and their R package “changepoint”? 

https://cran.r-project.org/web/packages/changepoint/index.html If the authors aim to distinguish 

abrupt transitions, this is a suitable tool for such analysis. Furthermore, I cannot see references to true 

multivariate analysis (i.e., not just aggregates or averages) developed by Williamson and Lenton (Chaos, 

2015). For comprehensive comparison, the authors should include these methods, in my opinion. 

 



When the authors say that most published papers contain detected ecological transitions, this is an 

obvious effect of publication process: publishable are the results that contain a phenomenon of interest 

rather than those that do not. Publishing an absence of something is more difficult and is of marginal 

interest. I am sure the researchers in this community shelved lots of results where they detected 

nothing. I agree that such results can also be useful, but not necessarily for a broad research readership. 

In this context, in my opinion, the current manuscript is more suitable for a specialized ecological 

journal. 

 

I always start reading a new paper by looking at its figures to see the data under study, and then at the 

obtained results, to see if they are non-trivial. With this paper, I started searching for the main data and, 

to my surprise, found it in the supplement (figure S1). I think this figure should be in the main text. Then, 

I looked carefully at the top panels of figure S1 and placed the ticks in the panels where I could detect 

some transitions by eye. These were panels 1, 2, 6 and 8 (lakes Kasumiguara, Kinneret, Monona, and 

Washington). Curiously, after reading the paper in full, I found that the authors’ analyses detected 

critical transitions in the same datasets (Table S1). On the one hand, it is a good confirmation, on the 

other hand, it means that some less visible transitions may still be non-detectable by the applied 

methods. Therefore, modelled data is still of importance in studying such systems: it provides sufficient 

statistics and, more importantly, ensures controlled experiments with ground-truth comparison. I think 

the authors should change the title of their paper, as in its current form it sounds dismissive to the 

above issues. The title could be “Analysis of EWS in empirical lake data”. 

 

The paper from the start discusses ideas that are clearly defined only later (critical transitions and 

abrupt changes in lines 405-410, 415-420). I think such blocks of text should appear much earlier, in case 

if readers are not familiar with the topic. 

When the authors distinguish “univariate, multivariate and machine learning” indicators, this may be 

misleading for people in the ML community, because they are aware of ML methods that can be both 

univariate and multivariate. It looks like the authors developed their own language in this context, but it 

is not widely accepted and is better to be avoided in a peer-review publication. 

 

When the authors claim that they disentangle critical transitions from regime shifts (lines 292-295), this 

is well-known in the EWS community for years and usually is addressed by using different 

indicators/techniques. This is not a novel conclusion. 

It would be useful to include a table with full description of the variables, sampling rates, durations, etc. 

Such a summary is important for overview of data. Also, include information about number of points in 

the original and processed data (monthly, yearly). 

 

I do not agree that non-recorded points should be replaced by zeros (lines 375-376). This processing 

changes auto-correlations in the data, which is the basis of early warning signal indicators. Such pre-

processing will change the indicator slopes. 



It would be good to see a multi-panel figure of monthly data. In fact, detection of transitions in monthly 

data is more challenging and interesting, because noise would mask obvious transitions visible in yearly 

data – can the authors include such results? The provided panels with state variables are of less interest, 

in my opinion. 

 

In lines 113-115, the authors mention nine lake datasets and refer to figure 1, which, in fact, does not 

contain real data (there are schematics). The sentence should be modified. 

 

There are some terms and abbreviations that are not explained, like mgcv, brmc. I understand it is 

technical, but in that case, it can be in the supplement. There are acronyms that are defined multiple 

times (CSD, for example). It may be worth including a nomenclature. 

 

In the Supplement, there are many plots with time series of chains (four overlapping records that are 

difficult to distinguish). I am not sure how useful is this, but it can remain in the supplement for 

information. The captions of figures S2-S7 mention monthly and yearly data, but it is not clear what lake 

is where – is data from all lakes combined? The y-axes labels are merged and unreadable. I think the 

label tick/label step should be changed when mapping the labels (there should be much fewer of them). 

In the right-hand-side panels, top labels are wider than the panels. 

 

In tables S3-S13, why are effective sample sizes are not integer? Why in these panels Rhat is included, 

which is equal to 1 everywhere, - isn’t it better to mention this in the text or caption instead of dragging 

the same value in a separate column in all tables? 

 

The main text does not have page numbers, and the supplement has three pages numbered as 1. 

 

While I appreciate the effort of processing data and applying multiple indicators in this manuscript, I 

think it requires further work and is more suitable for an ecological magazine. 

 

Reviewer #3 (Remarks to the Author): 

 

Summary of work 

 

The authors conduct an analysis of early warning signals in empirical lake data. They obtain plankton 

densities and abiotic drivers from 9 lakes that have publicly available data, and assess whether a critical 



transition occurs by fitting TGAMs and looking for break points in both the plankton and abiotic driver 

data. From a total of 244 time series, they find that 35 undergo a critical transition, by their definition. 

They test three different groups of early warning signals (EWS) on this data: univariate EWS; multivariate 

EWS; and EWSNet, a machine learning method. They also test a variety of different preprocessing steps 

(detrending and deseasoning), data resolutions (monthly and yearly averages), and EWS computation 

methods (rolling vs expanding window). They find that univariate EWS with an expanding window obtain 

the highest average performance in yearly data, and multivariate EWS with an expanding window obtain 

the highest average performance on monthly data. They found that other combinations of EWS were 

not much better than chance. They conclude that EWS based on bifurcation theory are not particularly 

useful in lake data, and that focus should turn to resilience indicators and methods that are specific to 

lake ecosystems. 

 

 

Summary of evaluation 

 

I applaud the others on conducting a thorough evaluation of a multitude of different EWS and 

preprocessing methods. It has already been demonstrated that EWS are not consistent in freshwater 

ecosystems (e.g. Gsell et al. PNAS, 2016), but this study builds on this work by proposing a new way to 

identify critical transitions in lake data, increasing the number of lakes analysed, testing EWS on 

transitioning and non-transitioning time series, and testing a wider range of EWS, including a recently 

developed machine learning method (EWSnet). I’ve since taken a look at the data myself, and I don’t 

think it’s surprising that the EWS do not perform well, based on the number of missing data points, the 

seasonality, and the relatively small number of data points prior to the transitions, but nonetheless, I 

think its a useful contribution to the field, and an important word of caution to the use of generic EWS in 

empirical data. 

 

I was able to download the code and data files from the Github repository, which is well documented. 

The code looks well organised, although I have not attempted to reproduce the results. The methods 

seem sufficiently detailed to follow the same steps as the authors. I think that the work is suitable for 

Nature Communications, although I have a few main comments and a few minor comments that I think 

should be addressed. 

Main comments 

- The processed dataset includes 35 ‘transitioning’ and 209 ‘non-transitioning’ time series. It’s important 

to bear in mind that this is an unbalanced dataset. If a classifier/EWS picked non-transitioning every 

time, it would have a very high correct prediction probability of 209/244=0.86. Therefore I don’t think 

that correct prediction probability (which is used in the results section line 190-204) is a good measure 

of performance. Something like the F1-score may be more appropriate, which strikes a balance between 

the true positive rate and the true negative rate. ROC curves are also a great way to get performance 



measures on a binary classification task (using the area under the curve). I would like to see which EWS 

perform best with a metric that is more suitable for an unbalanced dataset. 

 

- It is mentioned throughout the manuscript that multivariate EWS outperformed univariate EWS 

(abstract, line 124, line 251, line 306). Can the authors explain how this statement is supported by the 

results? Line 190 seems contradictory to this: “univariate EWS estimated using expanding windows 

displayed the highest average probability of correct classification”. To me, what seems most noteworthy 

is the fact that the expanding window improves performance regardless of whether you use 

uni/multivariate data. This may be due to large number of missing data points in the plankton time 

series, and the relatively small amount of pre-transition data for a given lake. 

 

- The time series are split into ‘transitioning’ and ‘non-transitioning’. Where do the time series with a 

regime shifts but no critical transition go? I think into the `non-transitioning' category, but this should be 

made more clear in the manuscript. If this is the case, when the authors compute EWS in these non-

transitioning time series, are they including the section with the regime shift, or trimming the data to 

just before the regime shift? If the former, one would expect a spike in variance during the regime shift, 

which could trigger false positives in this analysis. I think it would make sense to also trim the regime 

shift (non-transitioning) time series so the regime shift is not included in the EWS computation. 

 

Minor comments 

- The Github repository is well organised and well documented. However, I didn’t find any indication as 

to what each data file represents? There are 4 files in the data directory. I suggest that the authors 

indicate this somewhere in a readme file. 

 

- It’s not clear to me what the difference is between the scaled and unscaled weights of the ML 

classifier. Please explain this somewhere, and why it has such a large impact on the EWSNet predictions. 

 

- Am I right in thinking that break points were computed using total plankton densities? Did the authors 

consider EWS in total plankton densities instead of individual densities? Given that there were many 

zeroes in the individual plankton time series, I’d be curious to know if EWS have higher performance on 

the aggregated time series. 

 

- There is more recent relevant work on machine learning for EWS that could be cited on line 315: 

Patel and Ott, Using machine learning to anticipate tipping points and extrapolate to post-tipping 

dynamics of non-stationary dynamical systems, Chaos 2023. 

Dylewsky et al., Universal early warning signals of phase transitions in climate systems, Interface, 2023. 



 

- Fig 1B: what data is being shown here? Real lake data? 

 

- How is the scaled metric score in Figure 2 computed? I didn’t see it in the methods - sorry if I missed it. 

 

- Line 62: CSD does not increase as such, it is the phenomena of an increasing return time following 

perturbations. 

 

- Abstract: “recently developed machine learning techniques”. I think this is too broad, since only a 

single machine learning technique was tested. I think it should read “a recently developed machine 

learning technique”. 

 

 

Typographical changes/suggestions 

 

- Line 60: “bifurcation theory which states that a….” → “bifurcation theory which describes how a…” 

 

- Line 102: “machine learning exploits” 

 

- Line 753: “machine learning is limited to univariate time series” → “machine learning is applied to 

univariate time series” (there are techniques to apply it to multivariate time series) 

 

- Figure 2: x-axis “Explanatory variable” 

 

 

(Thomas Bury) 
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Reviewer responses 

 

Reviewer #1 
 
General comments 
 
In the article “Early warning signals are hampered by a lack of critical transitions in 
empirical lake data”, the authors use time series from 9 lakes and different trophic 
levels (zooplankton, phytoplankton) to test and compare the ability of various early-
warning indicators to predict critical transitions. The tested EWSs belong to three 
groups: classical univariate indicators, multivariate indicators and machine learning-
based classification. In addition, the performance of the indicators was evaluated in 
combination with different preprocessing approaches for detrending and deseasoning 
and different computational approaches (rolling window, expanding window). 
 
I find the manuscript is of general interest since the value and applicability of EWSs are 
still under debate. The contribution of this manuscript to the debate lays particular in 
the inclusion of different trophic levels, true positive and true negative transitions, 
different groups of EWSs, and the systematic investigation of the influence of different 
preprocess and computational approaches on the performance of the EWSs. 
 
However, in the present form, I also have several points of criticism regarding the 
manuscript. 
 
1) Most importantly, this regards the definition and used approach to identify critical 
transitions, which uses only one necessary but not sufficient criterium. Thus the critical 
transitions are not uniquely identified here, and the proclaimed ground truth in itself 
thus is highly uncertain. It is difficult for most rapid regime shifts found in empirical 
time series to rigidly differentiate between "State thresholds" and "Driver-state 
hysteresis" (following the terminology used by Andersen et al., 2009, Ecological 
thresholds and regime shifts: approaches to identification) and, in fact, is impossible 
without the presence of several shifts (see, for example, Scheffer et al. 2003 Catastrophic 
regime shifts in ecosystems: linking theory to observation). 
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The reviewer raises a critical consideration regarding the differentiation between state 

thresholds and driver-state hysteresis and agree that in its original form, but we believe our 

threshold generalised additive model (TGAM) approach is capable of identifying hysteresis 

when fitted in the environmental state space due to the flexibility of GAM shapes. While a 

second/third shift may appear necessary, the overlap in GAM fits is indicative of when 

considered in combination with the time series trend and, following the reviewers’ 

comments, bimodality in state, even if a second shift has not yet occurred. We have 

consequently added an additional figure (Figure 2) to visualise the hypothesised TGAM 

behaviour across various transition types following Scheffer and Carpenter (2003) and 

Bestelmeyer et al (2011). 

 

 
‘Figure 2. Hypothesised behaviour of each possible system dynamics under three 

complementary analyses used to classify the fate of a time series. These analyses fulfil the 

criteria of Scheffer and Carpenter 28 and Bestelmeyer et al. 29 for identifying alternative 

stable states in empirical data through i) time series shifts , ii) a hysteresis response to the 

control parameter and iii) multimodal distributions. Analyses i) and ii) are performed using 

threshold generalised additive models (TGAMs) of plankton density against time and 

environmental driver respectively. Thresholds/breakpoints are only permitted to occur 
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between adjacent time points. Analysis iii) identifies unimodal vs bimodal distributions of 

plankton density across the entire time series. We expand these analyses over 28,29 to identify 

other forms of transition and provide a qualitative description for each transitions expected 

behaviour in the three analyses. In the first two columns, thick lines represent mean TGAM fit 

with shaded regions the confidence interval. Dotted lines are discontinuities between 

breakpoints. In the third column, lines represent the density of observations.’ 

 

 

That’s not to say out approach is infallible and so we have caveated our ground truthings as a 

‘best guess’ given the available data and the need for generic EWS ability. 

 

2) Further, the author's claim to identify the ubiquity of critical transition needs to be 
toned down considerably since, firstly, as stated above, the authors can not claim to 
have identified critical transitions uniquely. Secondly, in the face of an estimated 304 
million lakes (sensus Downing et al. 2006), 9 lakes, not even covering all climate zones, 
lake types etc., are nowhere near showing the ubiquity or none ubiquity of critical 
transitions.  
 

We agree and did not intend ‘ubiquity’ to mean ‘universal’ rather ‘very common’. Most 

abrupt shifts are assumed to be critical transitions when practitioners apply EWSs to their use 

case and so we aimed to caveat that assumption. We have removed this statement regarding 

ubiquity and hope the resubmission better frames our findings from that perspective. 

 

3) Therefore the authors should take care of a stringent definition early in the text of 
the core terminology around (rapid) regime shifts, bifurcation and critical slowing 
down. Preferably this definition is based on an accepted use in the community. I 
suggest, for instance, Boettinger et al., 2013, Early warning signals: the charted and 
uncharted territories. After such a definition, it is helpful for the reader and avoids 
misunderstandings to use this terminology consistently throughout the text.  
 

This is a key point we neglected to sufficiently cover. Consequently, we have added an 

additional glossary in Box 1 with referenced definitions.  
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References: 
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2. Scheffer, M. & Carpenter, S. R. Catastrophic regime shifts in ecosystems: linking theory to observation. Trends in Ecology & 

Evolution 18, 648–656 (2003). 

Box 1  

 
Figure 1. Classification tree relating the primary transition types and system dynamics 
relevant to early warning signals (EWSs) and regime shift detection. Terms are colour 
coded by their expectation to exhibit critical slowing down (the phenomenon quantified 
by EWSs). 
 
In its simplest form, a regime shift is ‘the process whereby an ecosystem suddenly changes from one alternative stable state to 
another’ 23 whereas critical transitions (A) are but one possible mechanism of regime shift which can only be inferred (though not 
confirmed) from observational data if a number of criteria are satisfied 12,24–26. These criteria include: 1) an abrupt shift in time 
series, 2) driven by positive feedback mechanisms, 3) in response to an incremental increase in control parameter, and 4) results in a 
multimodal distribution of state values (alternative stable states). Alternative regime shift mechanisms are possible (B) and will 
display multiple criteria required for identifying a critical transition but will not include all of them. These mechanisms include 
stepwise changes in state resulting from a stepwise change in the control parameter (exhibits criteria 1 and 4), or noise-induced 
transitions that occur despite no changes in control parameter (exhibits criteria 1, 2, and 4) 1.  
 
Glossary 
Regime shift: Sudden or abrupt shift to an alternative attractor resulting from the influence of an external control parameter/driver 
or by the system’s internal dynamics. A regime shift may be associated with bifurcations (after crossing control parameter 
thresholds), step changes in state (in response to step changes in control parameter) or limit cycles (cyclic changes due to the 
system’s internal dynamics). These abrupt shifts may also occur across different trophic levels 8,78–80.  
Bifurcation: Gradual changes in a control parameter drive ‘qualitative’ change in the behaviour of an equilibrium point in a 
dynamical system following the transgression of a bifurcation/tipping point 78,81. 
Tipping point: A threshold value at which a dynamical system undergoes a sudden shift from one stable state to another alternative 
stable state in response to small stochastic perturbations 82.  
Critical transition/catastrophic bifurcation: A sudden shift from one steady state of a dynamical system to an alternate state via a 
fold/saddle-node bifurcation (a first-order or discontinuous transition). A discontinuous response follows incremental change in the 
control parameter crossing a critical value/bifurcation point. All critical transitions are regime shifts but the reverse is not 
necessarily true 8,9,82.  
Non-critical transition/bifurcation: A non-catastrophic transition (a second-order or continuous transition) can occur via a 
transcritical, pitchfork or Hopf bifurcation and may not involve alternate stable states. However, bifurcation points are still present 
within the system 8,9.  
Smooth transition: Continuous response to the control parameter in the absence of bifurcation points 9.  
Critical slowing down: The phenomenon whereby the real part of the dominant eigenvalue of the system approaches to zero in the 
vicinity of a bifurcation point (and eventually goes to zero at the bifurcation point) while the return/recovery rate to equilibrium upon 
perturbation becomes increasingly slow. At the tipping or bifurcation point there is no chance of recovery 10,81. 
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3. Dakos, V., Carpenter, S. R., van Nes, E. H. & Scheffer, M. Resilience indicators: prospects and limitations for early warnings of 

regime shifts. Philosophical Transactions of the Royal Society B: Biological Sciences 370, 20130263 (2015). 

4. Boettiger, C., Ross, N. & Hastings, A. Early warning signals: the charted and uncharted territories. Theoretical Ecology 6, 255–

264 (2013). 

5. Strogatz, S. H. Nonlinear dynamics and chaos: with applications to physics, biology, chemistry, and engineering. (CRC Press, 

2015). 

6. Scheffer, M. et al. Anticipating critical transitions. Science 338, 344 LP – 348 (2012). 

7. Kéfi, S., Dakos, V., Scheffer, M., Van Nes, E. H. & Rietkerk, M. Early warning signals also precede non-catastrophic transitions. 

Oikos 122, 641–648 (2013). 

8. Wissel, C. A universal law of the characteristic return time near thresholds. Oecologia 65, 101–107 (1984). 

 

This being said, this ambiguity in definitions is one that we believe is a current challenge to 

practical users of early warning signals, and so we have added an additional sentence in both 

the Introduction and Discussion to explore this. 

 

Lines 73-78 

‘Major concerns of EWSs include their focus on ‘transitioning’ systems 20, data pre-

processing 14, and, in our opinion, the assumption that critical transitions are common in 

natural systems 21. Crucially, there is a difference in definition between ‘regime shifts' and 

‘critical transitions' (Box 1), but the two are often assumed the same 18,19,22. This synonymity 

leads to confusion regarding whether most ecological regime shifts are critical transitions 

and, if not, are EWSs appropriate for generic regime shift assessment.’ 

 

Lines 266-283 

 

‘Generic EWS predictive ability is limited as it appears some system specific knowledge is 

necessary. Namely, understanding the potential for a critical transition/multiple stable states 

and identifying a mechanistic driver of transition are particularly key. These are not new 

arguments 1,20 but are worth reiterating to avoid the conflation of critical transitions with any 

form of abrupt change/regime shift. The TGAM used here, when combined with bimodality 

quantification, identifies the same regime shifts as previous studies 49,53–55 but only some of 

these were classifiable as critical transitions. We suggest it may be prudent to consider that 

temporal dynamics of driver variables (e.g. nutrient concentration) are themselves non-linear 
56 and display pulse events 57 which can influence the mechanisms of regime shifts. For 

example, an anomalous year may push a system away from equilibrium in to a long transient, 

as potentially occurred during 1985 in Windermere’s zooplankton (Figure 2), or a step 

change in environmental conditions can result in novel communities 1,58. Consequently, 
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critical transitions can occur earlier, later, or not at all, even if a regime shift occurs. This is 

compounded further as the disambiguation of critical transitions from other regime shifts 

mechanisms is extremely complicated in empirical data 28,29,59, and the classifications we 

have made here are ultimately a ‘best guess’ given the data availability. We therefore 

encourage empirical regime shift and EWS researchers to consider the mechanisms driving 

shifts 1,28,29 to maximise their reliability and appropriateness, and to not solely use EWSs as 

evidence of approaching tipping points.’ 

 

 
4) Here it could be helpful to add an accompanying diagram showing how terms relate, 
e.g. in the style of Boettinger et al. Fig. 1. I acknowledge some attempts to provide 
definitions by the authors (e.g. L49 ff, L74 ff); however, the definitions are not stringent 
in themselves and are not consistently used throughout the text. To exemplify the above 
point, I list some of the plethora of terms appearing in this text: abrupt non-linear 
changes, regime shifts, critical transitions, type of transition, whole ecosystem change, 
different forms of abrupt change, bifurcation-theory, process-driven regime shifts, 
tipping points, critical point, positive feedback loops, critical slowing down, alternative 
stable state, pulse events, step changes, smooth transition, step change/transient. 
 

We agree this is a sensible addition and resultantly we have replaced Figure 1 in this 

resubmission with Box1 which contains a decision tree depicting the relationships between 

the various terms, and the aforementioned separate glossary. We thank the reviewer for the 

elegant solution.  

 
5) Regarding the deficits in the methods section, I would like a more detailed and 
differentiated description of the pre-processing steps carried out regarding the monthly 
and annual time series. In addition, it remains unclear how the breakpoints identified in 
the annual resolution are applied to the monthly time series. In this context, I am also 
missing a critical discussion of why regime shifts have been identified at the 
zooplankton and phytoplankton level rather than the genera level and how this may 
have affected the ability to detect regime shifts, particularly because regime shifts do 
not necessarily affect all species/genera with the same quality, as the authors themselves 
state. 
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We apologise for the lack of clarity involving the pre-processing steps as we had believed our 

reporting in the Materials and Methods was sufficient. We have expanded the description on 

lines 447-465: 

 

‘Prior to early warning signal (EWS) assessment, each plankton time series was pre-

processed via detrending and deseasoning using a range of techniques. Detrending is 

considered important for improving the reliability of EWS assessments 51, so we applied three 

commonly used methods (linear detrending, LOESS smoothing, and gaussian smoothing) and 

compared assessments made to those based upon the raw time series. Linear detrending fits a 

linear model between time and plankton density, with the residuals of this model representing 

the detrended time series 79. LOESS, or local polynomial regression smoothing, subtracts a 

smooth curve fitted by local polynomial regression of span 0.5 from the raw time series 37, 

while gaussian kernel smoothing applies a linear filter, by subtracting the weighted moving 

average from the raw time series 79. Additionally, monthly time series were deseasoned as 

monthly plankton data is inherently seasonal 80, and the repeated non-linear cycles can 

hinder EWS capability 81. We therefore applied three deseasoning techniques (averaging, 

additive decomposition, and STL) factorially with the detrending methods to identify the 

optimal combination. Averaging simply subtracts the average value for a given month from 

the current data point of that month 70, additive decomposition estimates the seasonal cycle 

from moving averages which is then subtracted from the raw time series 82, and STL 

(seasonal trend estimation using loess) which also estimates the average seasonal cycle but 

uses local polynomials rather than linear/moving averages 83. All data pre-processing was 

performed using the EWSmethods R package v1.1.2 68.’ 

 

Our primary focus in this research was the loss of functioning/change of system state - a 

typical management aim for freshwater bodies, particularly those used as water resources. 

Consequently, we are interested in regime shifts at the system/community level. As this is the 

case, we focussed our classifications at the trophic level as, typically, ecosystem modelling 

compartmentalises observed communities in to functional groupings, most notably trophic 

levels (Cox, P., Betts, R., Collins, M. et al. Amazonian forest dieback under climate-carbon 

cycle projections for the 21st century. Theor Appl Climatol 78, 137–156 (2004); Christensen, 

V., and Walters, C. J. (2004). Ecopath with Ecosim: methods, capabilities and 

limitations. Ecol. Model. 172, 109–139; A. C. Patterson, A. G. Strang, K. C. Abbott, When 
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and where we can expect to see early warning signals in multispecies systems approaching 

tipping points: Insights from theory. Am. Nat. 198, E12–E26 (2021)).  

 

This is also true for alternative stable state research simulating aquatic dynamics pivotal to 

our understanding of critical transitions and their prediction (e.g Scheffer, M., Rinaldi, S., 

Kuznetsov, Y. A., & van Nes, E. H. (1997). Seasonal Dynamics of Daphnia and Algae 

Explained as a Periodically Forced Predator-Prey System. Oikos, 80(3), 519–532; Priester, C. 

R., Melbourne-Thomas, J., Klocker, A. & Corney, S. Abrupt transitions in dynamics of a 

NPZD model across Southern Ocean fronts. Ecol. Model. 359, 372–382 (2017)). 

 

Trophic levels have been shown to strongly link functional groups (Brooks, D. R., Storkey, 

J., Clark, S. J., Firbank, L. G., Petit, S., & Woiwod, I. P. (2012). Trophic links between 

functional groups of arable plants and beetles are stable at a national scale. Journal of Animal 

Ecology, 81(1), 4–13.; D’Alelio, D., Libralato, S., Wyatt, T. et al. Ecological-network models 

link diversity, structure and function in the plankton food-web. Sci Rep 6, 21806 (2016)) and 

we therefore focussed our classification on trophic levels to be consistent with the historic 

literature and to build upon our general reconciliation of functioning with functional groups, 

or in their simplest form, trophic levels. 

 

A second, practical consideration, was that we wanted to compare multivariate early warning 

signals to univariate signals. Therefore, trophic levels represent the lowest hierarchical 

classification valid across lakes that yield similar sample sizes across classes whilst 

maintaining the multiple time series needed for the multivariate approaches.  

 

Lines 410-422 

 

‘We also performed our classification procedure independently across phytoplankton and 

zooplankton trophic levels as this dataset gives us the opportunity to question whether 

critical transitions are shared across both components of the system. For example, it is 

plausible that a critical transition in one trophic level will not necessarily be matched by a 

critical transition in the other if the former trophic level is a driver of the second; a critical 

transition in one system component drives a non-bifurcation regime shift in another. We did 

not perform classification at lower taxonomic or functional levels as, ultimately, we are 

interested in the prediction of regime shifts at the system/community level. For ecosystem 
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managers, it is changes in functioning that is of concern 21,22 and it is the aggregate effect of 

system components that drive functioning 74. Trophic levels also represent the simplest 

linkage between functional groups and is the typical method of compartmentalising 

ecosystem models 26,75. Classifying at the trophic level therefore is consistent with the historic 

literature and builds upon our general reconciliation of functioning with functional groups, 

or in their simplest form, trophic levels.’ 

 
6) Moreover, although testing the expanding windows approach is an important aspect 
of the manuscript, details on the method remain unclear, even after following the given 
citations. 
 

Expanding windows estimate the indicator value for a given time point and standardise it by 

the running mean and running standard deviation of all previous indicator estimates using the 

equation: 

࢚ࡿࢃࡱ  = ࢚:૚࢙࢝ࢋ − (૚:࢚ି૚ࡿࢃࡱ)ࢊ૚:࢚ି૚തതതതതതതതതതതതത࢙ࡿࢃࡱ   
where t is the current time point, ews is the estimated early warning signal indicator value, 

and EWS is the expanding window/standardised running EWS value. The method therefore 

iteratively updates the estimated EWS value with each successive time point, with a 

‘warning’ signalled when the EWS value exceeds either 1 or 2 standard deviations from its 

running mean. Often a ‘burn in’ period is applied so that a sufficient running mean and 

standard deviation is achieved prior to assessment. We have added this description to the 

manuscript on lines 486-495. 

 

‘The alternative expanding window computation incrementally introduces new data after a 

set burn in period. Each indicator is standardised by subtracting its running mean from its 

calculated value at time t before division by its running standard deviation 33 using the 

equation:  ࢚ࡿࢃࡱ = ࢚࢙࢝ࢋ − (࢚:૚ࡿࢃࡱ)ࢊ૚:࢚തതതതതതതതതത࢙ࡿࢃࡱ   
where t is the current time point, ews is the estimated early warning signal indicator value 

across all data up to t, and EWS is the standardised running EWS value of all previous 

estimates. A composite metric can then be constructed by summing all individual indicator 
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values calculated per t. An oncoming transition is consequently identified when the 

indicator/composite metric exceeded its expanding mean by a certain threshold value. Here, 

we set that threshold at two standard deviations due its favourable performance relative to 

alternative threshold values 64’ 

 
7) Most importantly, details are missing on how the authors derive the central 
success/failure data table, which would be necessary for reproducibility.  
 
We apologise for this ambiguity. Although both rolling windows and the machine learning 

model generate bounded numerical data, the expanding windows are designed to only be 

interpreted as signal-no signal (Drake and Griffen, 2010; Clements and Ozgul, 2016). As the 

reviewer highlights, the indicators would not be comparable in this form, hence the 

conversion of all indicators to success-failure. A success was identified if a signal was 

identified in a lake classified as being a critical transition, or when no signal was identified in 

all other circumstances. 

 

This information is available on lines 521-530: 

 

‘Additionally, as the various EWS method classes all generate different outputs, we converted 

these outputs into the binary presence-absence of a ‘warning’ (Figure 4C). For rolling 

window computations, a warning was accepted if a positive Kendall tau correlation was in 

the 95th quartile of Kendall tau correlations from a dataset permuted from the original time 

series 11, for expanding windows when the two standard deviation threshold was exceeded for 

two or more time points 74, and for EWSNet, when the model predicted a critical transition 

(i.e. the strongest probability)61. This presence-absence of a warning was then compared to 

the ground-truth labels identified by the TGAMs, where a ‘warning’ signalled in a system 

classified as a critical transition, or the absence of warning in system not classified as 

critical transition, was considered a success, and resulted in a binomial dataset of successes 

and failures. We only considered critical transitions here as these represent the primary 

classification of concern, due to their abrupt and hysteretic nature.’ 

 
8) In particular, it is unclear how results from univariate EWS indicators, with one 
result per genus level, were made comparable to results from multivariate EWS 
indicators, which return one result for multiple time series (system). 



 11 

 

The complication of comparing univariate to multivariate was a particular challenge of this 

study and led us to consider alternative options to the suite of methods typically used in 

binary classification problems and those suggested by Reviewer #3 (namely F1 statistic and 

Area Under Curve). We settled on using Bayesian logistic regression as the method allows us 

to control for various interdependencies and potentially confounding structures in the dataset 

including the unbalanced transitioning vs transitioning sample sizes, repeated EWS 

assessments within a lake, and the difference in sample sizes between univariate and 

multivariate indicators. 

 

Our specific model achieves this by weighting each data point against the number of ‘trials’ 

or assessments made by that indicator (under the binomial distribution), and allows the error 

structure of each indicator estimate to vary between lakes but correlate within a lake using 

random effects (Bolker et al. 2009; 

https://www.sciencedirect.com/science/article/pii/S0169534709000196). And critically, 

additional random effects are fitted using the ‘ground-truth’ labels to minimise the bias 

towards Type I errors potentially driven by a larger pool of non-transitioning lakes relative to 

transitioning. We have clarified this point on lines 581-589: 

 

‘During interpretation, we back-transformed the log odds into probabilities of correct 

classification, and used the overlap of the posterior distribution’s credible intervals against 

50% to identify EWS approaches that provide better estimates than chance. Modelling the 

probability of correct classification in this way allows us to control for confounding factors 

in the dataset, namely lake identity and the varying number of trials (i.e. EWS assessments) 

between lakes and EWS methods. This control is not possible using the F1-statistics and 

receiver operator curves typically used for binary classification tasks 36,37 which are limited 

to weighting based upon unequal sample sizes and cannot estimate codependecies between 

the repeated measurements inherent to ecological data.’ 

 

And finally, we further ensured comparability between univariate and multivariate 

assessments by framing our discussion and comparisons at the trophic and system level as 

ultimately the goal of EWS indicators is to provide system level predictions using a 

representative state variable; mathematical models with alternative stable states resulting 

from a fold bifurcation are typically characterised by a single variable (e.g. Scheffer, 1990; 
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Lade and Gross, 2012) and in planktonic lake systems, it is often whole system change that is 

of managerial interest rather than specific species.  
 
9) L27: “… often inaccurate…” This is a strong claim since most EWSs have a solid 
theoretical grounding. So the question would be: inaccurate in which regard? 
 

We have modified this sentence to better indicate our belief that EWS inaccuracies have 

primarily been found when applied to real-world data rather than simulated (where the strong 

theoretical grounding can be idealised). Line 26 

 

‘This has led to the development of a suite of early warning signals (EWSs), that 

unfortunately often perform inaccurately when applied to real-world observational data.’  

 
10) L31: From theory, it is clear that EWSs derived from CSD are not expected to 
predict all types of (rapid) regime shifts. Already here, I found the fuzzy use of 
terminology confusing. 
 

We hope that the updated text and additional glossary will minimise this ambiguity (Box 1).  
 
11) L32,L35: “… identify the type of transitioning ..”, “…. different forms of abrupt 
change…”. Be more precise. What transitions (group of transitions) do you distinguish 
(critical transition vs no critical transition, Table S1) 
 

The abstract has been changed extensively with this section now reading: 

 

‘…Most of this work has built on the theory of bifurcations, with the assumption that critical 

transitions/catastrophic bifurcations are common features of complex ecological systems. 

This has led to the development of a suite of early warning signals (EWSs), which 

unfortunately perform inaccurately in observational data. Consequently, techniques have 

been proposed to overcome EWS limitations by analysing multivariate time series or 

applying machine learning. It however remains unclear whether critical transitions are the 

dominant mechanism of regime shifts and – if they are present – whether classic and second-

generation EWS methods predict them…’ 
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12) L37-38: Given that which group of EWS indicators performs best seems highly 
dependent on the temporal resolution of the time series and the chosen preprocessing 
and calculation approach, I don't see how you arrive at this general 
summary/conclusion. 
 

Following reanalysis in response to all reviewers to make explicit the compensation for 

unbalanced sample sizes, we have rewritten this concluding sentence: 

 

‘We find few instances of critical transitions in our lake dataset, with different trophic levels 

often expressing different forms of abrupt change. The ability to predict this change is highly 

processing dependant, with most indicators not performing better than chance, multivariate 

EWSs being weakly superior to univariate, and a recent machine learning model performing 

poorly.’ 

 
13) L40: “… predict change …” This is very generic - better “abrupt regime shifts” (see 
general comments regarding terminology).  
 

Our suggestion to focus on general resilience loss/system change has been edited in the 

abstract (which has strict word limits). We believe that focussing on general/generic 

ecosystem resilience changes are more meaningful than a sole focus on regime shifts and/or 

critical transitions. That’s not to say that pre-emption regime shifts is not important, we stress 

that it is, but resilience measures (such as those suggested by reviewer #2) have wider utility 

outside of regime shifts. Line 37-40 

 

‘Our results suggest that predictive ecology should start to move away from the concept of 

critical transitions and develop methods suitable for predicting resilience loss in the absence 

of the strict bounds of bifurcation theory.’ 

 
14) L76-78: No, this is a necessary but not sufficient criterium.  
 

We hope that our new Box 1 better defines the necessary criteria of Scheffer and Carpenter 

(2003). This sentence has resultantly been removed with all focus now on Box 1. 
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15) L84: Be more precise. Which ones? 
 

This sentence is now contextualised by the sentence on line 117-127: 

 

‘In this work we classify regime shifts, critical transitions, non-critical transitions and 

stationary systems (Figure 2) in nine long-term lake monitoring datasets (Figure 3)… The 

precise classification of lake fate reveals that many accepted regime shifts are not critical 

transitions, with different trophic levels responding uniquely to environmental change.’ 
 
16) L89: “uses” instead of “users” 
 

Changed accordingly. 

 
17) L94: I had trouble finding this statement in the cited article; however, if this is the 
case, this also leads to uncertainty in your transition type classification, which needs to 
be critically discussed. 
 

The citation refers to the second clause of the sentence regarding issues focussing just on 

transitioning systems. We have now provided a citation for the first clause (Rowland, J.A., 

Nicholson, E., Murray, N.J., Keith, D.A., Lester, R.E. and Bland, L.M. (2018), Selecting and 

applying indicators of ecosystem collapse for risk assessments. Conservation Biology, 32: 

1233-1245. https://doi.org/10.1111/cobi.13107) and have rewritten this sentence as follows 

on line xx: 

 

‘Reliance on univariate time series can therefore makes it challenging to define an 

ecosystem’s dynamics as stable or transitioning 33, particularly as most previous work 

neglects stationary time series 20’ 

 
18) L123-125: Given that you are investigating only 9 lakes and your applied 
classification method can not uniquely determine a critical transition, it is necessary to 
tone down this statement. 
 

The statement has been altered accordingly (lines 250-255) and now reads: 
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‘Motivated by debates surrounding multiple stable states in ecology and the need for reliable 

and generic critical transition detection tools, we assessed the prevalence of critical 

transitions in a range of empirical lake systems. We then compared the ability of current 

early warning signal (EWS) methods to correctly predict ecosystem fate regardless of 

transition type or trophic level. We found that multiple regime shifts were identifiable across 

our lake network, but only a proportion of these were critical transitions.’ 
 
19) L 125-126 Given the versatility of your results regarding preprocessing, temporal 
resolution, true positives, and true negatives, I would strongly recommend refraining 
from such generic, off-hand summaries.  
 

We have followed the reviewer’s suggestion throughout. We hope the changes are sufficient. 

 
20) L382: How do downstream deseasoning and detrending apply to yearly data? 
 

Detrending applies to yearly data but deseasoning does not. We therefore applied the 

optimum detrending identified from monthly time series to the yearly data and have clarified 

this statement on lines 447-448: 

 

‘Prior to early warning signal (EWS) assessment, each plankton time series was pre-

processed via detrending with monthly time series further deseasoned using a range of 

techniques.’ 

 
21) L383-384: The disappearance of a species can be seen as an important change in 
community composition and can possibly also depict an abrupt change. How does the 
technical need to exclude those time series bias your data against (sudden) changes? 
Please critically discuss how some of your data processing steps could have affected 
your conclusions. 
 

The reviewer is correct that the loss of taxa is an important contributor to both state change 

and possible driver/symptom of abrupt change. However, we do not believe that our data 

processing regarding time series selection will dramatically influence our ability to test early 

warning signal (EWS) ability. Genera were only excluded after the TGAM system 
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classification (to minimise the same concerns as the reviewer) which was clear in the orginal 

submission. This has been rectified by rearranging the Materials and Methods so that data 

processing is explained after the TGAM models are introduced. 

 

We were, however, forced to drop genera for EWS assessment as deseasoning will otherwise 

introduce spurious cycles over periods of persistent zeroes, and certain multivariate EWSs 

(maxCOV, mafSD, mafAR, pcaSD, pcaAR) are unable to form stable covariance matrices 

between those species. Therefore, to maximise indicator usage, we elected to exclude those 

genera. We have now added a discussion of this influence on lines 303-321. 

 

‘‘With real world time series, there is no ideal data for EWSs due to their typically high 

variability and cyclical nature driving false positive warnings 6. Detrending and deseasoning 

are therefore necessary but are no silver bullet for accurate EWS assessments. Deseasoning 

is particularly complicated and capable of introducing spurious signals when the time series’ 

value (i.e. plankton density/abundance here) are persistently close to zero. The sensitivity of 

EWS ability to data pre-processing reported here is therefore not unexpected 51,61 and 

arguably weakens EWS practicality. Choosing what ‘system’ EWSs are quantifying is also a 

key determinant of EWS ability. Here we focus on the entire lake ecosystem rather than 

specific populations of interest (as occurs during fishery management 22,62) but extrapolate 

that univariate signals from individual plankton genera as representative of trophic/lake level 

regime shifts. This is typical EWS usage 18,22,32 although we know different species/genera 

vary in their expression of critical slowing down 30,32. Such taxon specific EWS behaviour 

limits the relevance of many genera in our lake dataset and influences our null findings from 

naïvely performing EWS assessments when no information is available to select specific taxa. 

Unfortunately, this is the approach many managers are required to take in the absence of 

calibrated lake or ecosystem models and so we urge caution when choosing where to apply 

EWSs. Trophic and functional groupings appears valid levels to classify regime shifts, but 

EWSs require linear stability analysis to identify representative taxa. Multivariate EWSs 

mitigate some of this requirement but were not as successful as previously reported in 

simulated data 35,38.’ 

 
22) L385-386: Add: “The two final datasets on a monthly and yearly temporal 
resolution for each lake …..” 
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Added accordingly. 

 
23) L390-391: How does this statement relate to yearly data? 
 

Only monthly data were deseasoned while both yearly and monthly were detrended. This 

sentence has been amended to clarify this. Lines 447-448 

 

‘Prior to early warning signal (EWS) assessment, each plankton time series was pre-

processed via detrending with monthly time series further deseasoning using a range of 

techniques.’ 

 
24) L410-412: This is a necessary but not sufficient criterium! 
 

We agree and have responded to this comment in reply to comment 3). 
 
25) L414, L154: If you identify a transition on yearly resolution, how did you divide the 
monthly time series into pre-and post-transitioning phases? 
 

Monthly time series were partitioned under the year identified from the yearly data. We 

repeated the classification process using the monthly data which was in near agreement with 

the yearly (although many more breakpoints were identified and bimodality was never 

detected - presumably due to seasonal effects smoothing the kernel density 

estimate).Transition dates were often within the year identified by the yearly and 

consequently, we subset time series prior to that year for comparability while also being 

conservative against the higher uncertainty of breakpoints estimated from monthly data 

compared to yearly data.. 

 

The equivalent summary table to Table S2 for monthly data is provided below. Monthly dates 

are reported numerically where the difference between months is 1/12 or 0.083: 1970.000 is 

January 1970, 1971.083 is February 1970, 1971.500 is June 1971 etc. This is required to 

program breakpoints in the TGAM time series fit. 

 
Lake Trophic level Explanatory variable Breakpoint date Bimodality 

detected 
Kasumigaura Phytoplankton Time NA No 

Environment 1998.667 
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Zooplankton Time 2009.500 No 
Environment 2009.500 

Kinneret Phytoplankton Time 1994.917 No 
Environment 1994.917 

Zooplankton Time 1995.250 No 
Environment 1985.167 

Loch Leven Phytoplankton Time 1998.917 No 
Environment NA 

Zooplankton Time 1996.250 No 
Environment NA 

Lower Zurich Phytoplankton Time 2001.000 No 
Environment 1986.750 

Zooplankton Time NA No 
Environment NA 

Mendota Phytoplankton Time NA No 
Environment 2010.083 

Zooplankton Time NA No 
Environment 2011.000 

Monona Phytoplankton Time 2012.417 No 
Environment 2007.000 

Zooplankton Time 2011.417 No 
Environment 2011.250 

Upper Zurich Phytoplankton Time 1993.500 No 
Environment 1993.000 

Zooplankton Time NA No 
Environment NA 

Washington Phytoplankton Time 1970.667 No 
Environment 1970.667 

Zooplankton Time NA No 
Environment 1986.417 

Windermere Phytoplankton Time 1988.083 No 
Environment NA 

Zooplankton Time 1986.250 No 
Environment NA 

 
26) L416: How were plankton densities derived from the genius-level time series? As 
sums? How could this affect your ability to detect an abrupt shift (critical or otherwise), 
e.g. due to portfolio effects and not all genera might be affected equally by a regime 
shift? Also, here a critical discussion would be required. 
 

 

Plankton genera densities were calculated as sums of individual species (the maximum 

number of species pooled to a single genus was five). As the reviewer highlights, this may 

influence EWS capability (though not the TGAM pre-classification as classification took 

place at higher hierarchical organisation), decreasing EWS detection due to buffering effects. 

We conversely focussed on genera level to minimise false positives arising from high zero 

time series, and a belief that the high functional similarity within plankton groups – i.e. 

Hutchinson’s paradox (Hutchinson, G. E. (1961). The Paradox of the Plankton. The American 

Naturalist, 95(882), 137–145.) – will respond similarly to stress. It is understood that there is 

a phylogenetic signal for the likelihood of extinction in plants (R. Dinnage, A. Skeels, M. 

Cardillo, Spatiophylogenetic modelling of extinction risk reveals evolutionary distinctiveness 

and brief flowering period as threats in a hotspot plant genus. Proc. R. Soc. B Biol. Sci. 287, 

20192817 (2020)) and vertebrates (Capdevila, P.,  Noviello, N.,  McRae, L.,  Freeman, 

R. &  Clements, C.F. (2022)  Global patterns of resilience decline in vertebrate 

populations. Ecology Letters,  25,  240–251), which when combined with the general 
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functional group approach taken in plankton research, implies grouping the genera level (a 

significantly lower hierarchical level than the typical Phylum level used) is unlikely to mask 

true EWSs. This justification is given on lines 439-445: 

 

‘Plankton species were then pooled to genus level to minimise the likelihood of zero densities, 

with a genus further dropped if they disappeared for a period longer than 12 months. This is 

necessary as downstream deseasoning can spuriously introduce cycles of non-zero densities 

into periods of zeroes. In addition, the strong phylogenetic signal in vertebrate and plant 

abundance trends implies that aggregating to genera level from species is unlikely to mask 

the strong CSD in critically transitioning taxa. The two final datasets of monthly and yearly 

temporal resolution for each lake consequently consisted of genus level densities across the 

two plankton trophic levels.’ 

 

 

and further discussed on lines 309-321:  

 

‘Choosing what ‘system’ EWSs are quantifying is also a key determinant of EWS ability. 

Here we focus on the entire lake ecosystem rather than specific populations of interest (as 

occurs during fishery management 22,63) but extrapolate that univariate signals from 

individual plankton genera as representative of trophic/lake level regime shifts. This is 

typical EWS usage 18,22,33 although we know different species/genera vary in their expression 

of critical slowing down 30,33. Such taxon specific EWS behaviour limits the relevance of 

many genera in our lake dataset and influences our null findings from naïvely performing 

EWS assessments when no information is available to select specific taxa. Trophic and 

functional groupings appear valid levels to classify regime shifts, but EWSs require linear 

stability analysis (LSA) to identify representative taxa. Unfortunately, many managers are 

unable to take this the approach due to the lack of calibrated lake/ecosystem models 

appropriate for LSA. We therefore urge caution when choosing where to apply EWSs. 

Multivariate EWSs mitigate some of the requirement for LSA but were not as successful as 

previously reported in simulated data 36,39.’ 

 
27) L450-451: Over which group of time series where this averaged, zooplankton vs 
phytoplankton, i.e. trophic level? What is, in your case, the “system”? 
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Averages and dimension reductions were made over a trophic level to match the 

classifications made by TGAMs and bimodality coefficients. We are interested in overall lake 

functioning shifts (this is what we consider the ‘system’) and use the different genera and 

trophic levels as sub-samples of the lake system to balance between the simplified data 

structures EWSs require, and the inherent complexity of natural lake ecosystems. This has 

been clarified on lines 471-475. 

 

‘Multivariate EWSs expand these assessments from single time series to multiple by either 

averaging across univariate EWSs or by extracting CSD information from a dimension 

reduction of the system (Figure 4B). Here we averaged performed dimension reductions 

across all time series within a trophic level to match the classifications made in the Critical 

transition pre-classification section.’   
 
28) L463-464: The calculation stays unclear, despite also following the cited articles 
since it is unclear how, e.g. autocorrelation at time t is calculated. 
 

We hope our response to comment 6) clarifies this question. 

 
29) L473: Define "smooth transition". How did you map this to your “ground truth” 
(Table S1) for the performance evaluation? 
 

Smooth transition is now defined in Box 1, though please note, that EWSNet’s authors define 

smooth transitions as we define non-critical bifurcations. Certain EWSNet authors are co-

authors on this manuscript and agree with our Box 1 definitions as EWSNet’s Smooth 

Transitions are trained upon transcritical, pitchfork and Hopf bifurcations, not the gradual 

smooth dynamics explored by Kefi et al (Kéfi, S., Dakos, V., Scheffer, M., Van Nes, E.H. 

and Rietkerk, M. (2013), Early warning signals also precede non-catastrophic transitions. 

Oikos, 122: 641-648). 

 

We have rewritten this sentence accordingly. Lines 499-502: 

 

‘EWSNet utilises the entirety of the pre-transition time series to provide probabilities of the 

likelihood of 1) a critical transition, 2) a smooth transition (please note this class in 

analogous to non-critical transitions defined in Box 1), or 3) no transition.’   
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30) L494: To follow this section, I would find it helpful if you would refer to the 
corresponding tables in the supplementary material. 
 

Corresponding tables have been referenced throughout the section: Early warning signal 

ability including on lines 533-536: 

 

‘To estimate the classification ability of each EWS method, we developed a series of Bayesian 

hierarchical models using success/failure as response variable. Early warning signal method 

class and the specific EWS indicator itself were explored as categorical fixed effects in 

separate models: EWS method class (Table S8-S9) and indicator (Table S10-S13) ability.’ 

 
31) L484-485, L491-L492: How exactly was it handled that for the univariate measures, 
there is one success/ failure result for every genius level time series, while for 
multivariate methods, which are calculated across multiple time series representing 
"the system" (Table S2), there is only one. 
 

The binomial multilevel modelling approach inherently controls for the discrepancy in 

sample sizes between univariate and multivariate by modelling not success-failure, but the 

total number of successes across the number of trials. Here, as the reviewer identifies, trials 

differs between multivariate and univariate, but the model resultantly weights based upon the 

total number of trials within an indicator/computation method class and allows the two forms 

of measures to be comparable. We answered this concern in more detail in response to point 

6). 
 
32) L507: 15 levels. 
 

We apologise as we are unsure what the reviewer is referring to here. If regarding ‘Early 

warning signal method class’, then five levels are possible (univariate rolling, univariate 

expanding, univariate machine learning, multivariate rolling, and multivariate expanding). If 

EWS indicator, then 21 are possible (ar1, SD, skew, ar1 + SD, ar1 + skew, SD + skew, ar1 + 

SD + skew, meanAR, maxAR, meanSD, maxSD, eigenMAF, mafAR, mafSD, pcaAR, pcsaSD, 

eigenCOV, maxCOV, mutINFO, scaled EWSNet and unscaled EWSNet). If regarding 

detrending and deseasoning combinations, there are four categories for each (detrending = 
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none, linear, gaussian, LOESS; deseasoning = none, average, decomposition, STL) and 

resulting 16 combinations (4*4). We apologise again for misunderstanding and hope this 

explanation is sufficient clarification. 

 
33) L516-518: I can not fully reconcile this information to the one given in L171-172, 
particularly because also in tables S3-S7 there seems to be no factor level “none-none”, 
even so in the table headers “assessments made on raw data” is mentioned. 
 
Each estimate reported in table S3-S7 are coefficient differences (i.e. improvement) 

compared to factor level “none-none”. The raw time series (none-none factor level) 

coefficient has not been reported as its coefficient is represented as an intercept (i.e. the mean 

ability) rather than a coefficient difference. This is the standard when dummy coding 

categorical variables in linear regression models. We therefore felt it would confuse readers 

as all other coefficients are relative differences. While we are also ultimately interested in the 

improvement of each detrending and deseasoning combination over none-none, rather than 

the mean estimates themselves as we explore this question in Figures 5 and 6. We have 

therefore added the following statement to the caption of each table to clarify this: 

 

‘Each estimate is therefore the relative improvement of that factor level versus the none-none 

data pre-processing’ 
 
and altered the estimate column heading to read: 

 

‘Estimated improvement against none-none data pre-processing (median)’ 
 
If, however, the editor and reviewer believe the none-none intercept should be reported we 

are happy to make this amendment. Table S3 would therefore look as below if none-none 

factor level is included: 
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Pre-processing 
combination  

(detrending method – 
deseasoning method) 

Median coefficient Lower 95% credible 
interval 

Upper 95% credible 
interval 

Rhat Effective 
sample size 

none-none 0.076 -2.313 2.469 1 6065.53 

linear-none 0.022 -0.281 0.326 1 4404.74 

loess-none -0.029 -0.336 0.278 1 4645.2 

gaussian-none -0.04 -0.349 0.271 1 4485.97 

none-average 0.022 -0.287 0.338 1 4698.69 

none-decomposition 0.05 -0.256 0.368 1 4436.14 

none-stl -0.018 -0.32 0.295 1 4483.88 

linear-average 0.009 -0.299 0.311 1 4497.63 

loess-average 0.035 -0.274 0.341 1 4496.95 

gaussian-average 0.023 -0.282 0.339 1 4616.81 

linear-decomposition 0.037 -0.273 0.345 1 4429.23 

loess- decomposition 0.009 -0.296 0.315 1 4933.83 

gaussian- decomposition 0.011 -0.298 0.324 1 4567.6 

linear-stl 0.079 -0.223 0.39 1 4381.49 

loess-stl 0.025 -0.282 0.336 1 4682.63 

gaussian-stl 0.041 -0.271 0.346 1 4460.24 

 
34) A table of content would be helpful to navigate the material and get an overview of 
the various tests. 
 

We believe the reviewer is referring to the supplementary and so have added a table of 

contents to its title page. We apologise if this is not what was requested. 

 

‘Contents 

Figure S1: Lake regime shift classification using threshold generalised additive models and 

kernel densities. 

Figure S2-S7: Posterior parameter estimates and diagnostic chain trace plots for Bayesian 

models. 

Figure S8-S10: Diagnostic posterior predictive checks for Bayesian models. 

Table S1: Lake breakpoints and bimodality identified by Figure S1. 
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Table S2: Description of early warning signal indicators used. 

Table S3-S7: Model summary tables for the estimated improvement of data pre-processing on 

early warning signal ability in critically transitioning time series. 

Table S8-S9: Model summary tables for early warning signal computation technique ability 

(i.e. univariate vs multivariate, rolling vs expanding windows) in yearly and monthly data. 

Table S10-S11: Model summary tables for individual early warning signal indicator ability 

(in yearly and monthly data) in predicting critical transitions. 

Table S12-S13: Model summary tables for individual early warning signal indicator ability 

(in yearly and monthly data) in predicting non-critically transitioning time series.’ 

 
35) What is the temporal resolution of the time series for the results in tables S3-S7. 
 

Tables S3-S7 report monthly detrending and deseasoning, as deseasoning is only relevant for 

monthly time series. 
 
36) L130 A map depicting the location of the lake would be appropriate.  
 

As requested, we have added an additional map figure with both locations and area of the 

lake network (Figure 3). 

 
37) In addition, a table summarizing under which temporal resolution and type of 
grouping (overall, true positive, true negative) which group of EWS + preprocessing 
performed best would be helpful for the reader to keep track of the specific results. 
 

The reviewer makes a good suggestion and we have added a table (Table 2) reporting this 

information. 
 
Table 2. Optimal detrending and deseasoning combinations for each early warning signal 

computation method across time series resolutions. 
Data resolution Early warning signal computation 

method 

Optimal detrending 

method 

Optimal deseasoning method 

Monthly univariate rolling window linear Seasonal and Trend decomposition 

using Loess (STL) 

 univariate expanding window linear decomposition 

 multivariate rolling window gaussian None 
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 multivariate expanding window gaussian averaging 

 EWSNet (univariate machine 

learning model) 

gaussian None 

Yearly univariate rolling window linear NA 

 univariate expanding window linear NA 

 multivariate rolling window gaussian NA 

 multivariate expanding window gaussian NA 

 EWSNet (univariate machine 

learning model) 

gaussian NA 

 

38) L145-147, L150-151: As mentioned before, this is a necessary but not a sufficient 
criterium. 
 

We have now altered the phrasing here and directed readers towards Box 1 and the new 

Figure 2 for the hypothesised behaviour of different system dynamics under our 

TGAM/bimodality approach. Lines 143-149 

 

‘Using threshold generalised additive models (TGAMs), we identified optimal break points in 

each lake’s total phytoplankton and total zooplankton density through both time and the 

environmental ‘state-space’, and quantified bimodality in extension of the approaches of 

Scheffer and Carpenter 28 and Bestelemeyer et al. 29 (see Materials and Methods)’ 

 

‘When comparing estimated break points between the time series and environmental models 

with state bimodality…’ 

 
39) L185: Add reference to table S8, i.e. “ cross-method comparisons (table S8) …”. 
 

Corrected accordingly. 
 
40) L184-185: How does this apply to the yearly resolution time series?  
 

Deseasoning does not apply to yearly time series and we have clarified this on lines 447-448: 

 

‘Prior to early warning signal (EWS) assessment, each plankton time series was pre-

processed via detrending with monthly time series further deseasoned using a range of 

techniques.’ 
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41) L192: "..tables S8-S13". 
 

Corrected accordingly. 
 
42) L208: According to Figure 3, it should be “decreased”. 
 

Here we intended ‘increasing data resolution’ to be higher frequency of measurements i.e. 

monthly data. However, we realise this may be confusing as increasing resolution could be 

interpreted both ways and so have rewritten this sentence (line 208): 

 

‘Univariate and multivariate rolling window EWSs especially declined in robustness when 

applied to yearly data relative to monthly.’ 

 
43) L225-231: Refer to the appropriate tables in the supplementary in this section. 
 

We had initially not referred to the supplementary tables in this section as they had been 

introduced in the previous. It should also be noted that the reported estimates will differ to the 

raw coefficients presented in the supplementary tables as we have back transformed from odd 

ratios back to probability for interpretability (stated on lines 192-194) 

 

‘From this section onwards, binomial model estimates have been inverse-logit transformed 

from log odds to probabilities to improve interpretability. For raw model estimates please 

refer to Tables S8-S13, and Figures S2-S10 for model diagnostics.’ 

 

Similarly, certain reported values here are calculated across models to give an overall 

representation of ability, rather than being directly quoted from the supplementary tables. We 

have provided the R script to calculate these summary statistics in the linked Zenodo 

repository – script name = “descriptive_results.R”. 

 

We have referred to Supplementary Tables where appropriate. Lines 239-243. 

 

‘Autocorrelation at lag-1 (ar1) was the most reliable rolling window univariate EWS for 

critical transitions (Tables S10-S11). Multivariate rolling window indicators such as mean 
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autocorrelation (meanAR), PCA variance (pcaSD) and the dominant eigenvalue of the 

maximum autocorrelation factor dimension reduction (eigenMAF) were particularly effective 

in transitioning time series but weak in non-transitioning data (Tables S10-S13).’ 

 
44) L233: Specify “this”. 
 

Changed accordingly to suggest that the computation level interpretation of EWS is unhelpful 

and so interpreting at the indicator level is more informative. Lines 234-235 

 

‘This lack of coherence therefore suggests that individual indicators are highly variable and 

so should be considered individually.’ 

 
45) L234: Specify “the method”.  
 

This phrase has been written and is no longer present. The new sentence reads: 

Lines 234-239 
 

‘However, the dichotomy in prediction abilities observed for EWSNet was maintained across 

indicators and computation techniques. Composite univariate EWSs 52 computed via 

expanding windows (e.g. ar1 + SD, ar1 + SD + skew) were reliable across resolutions in not 

critically transitioning time series but maintained ~0.5 ability in critically transitioning time 

series.’’ 

 

 
46) The discussion in the present state should be shortened, and critical discussion to 
potential influences of methodological decisions added, particularly on the used 
“ground truth”, which was established on necessary but not sufficient criterium only.  
 

The Discussion has extensively been shortened and an additional paragraph added on the 

influence of time series preprocessing, resolution of time series, and aggregation of time 

series to genera vs trophic level upon our results. Lines 447-448 – response to comment 21). 

 

The ground truth labels have also been improved using the work of Scheffer and Carpenter 

(2003) and Bestelmeyer et al (2011) which we believe now fulfils many of the required 
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criterium for a critical transition (Box 1, Figure 2) and implies the presence of positive 

feedback loops which are challenging to identify exclusively from observational data. 

 
47) L256-257: I do not see how you come to this clear conclusion, seeing the very mixed 
results. The performance and appropriate pre-processing seems situation dependent, 
e.g. temporal resolution of data; maybe a more differentiated recommendation would 
add value. 
 

This statement has been edited to better synthesise this variability following all reviewers’ 

suggestions. 

 
48) L340-342: Citation with evidence in regard to this. 
 

The citation(s) Ushio et al. (2018) and Medeiros et al (2022) are attached to the manuscript 

statement. Lines 339-345. 

 

‘While some of the measures tested here are considered stability indicators (e.g mutual 

information 35), more complicated measures have recently emerged independent from the 

assumption for local stability. For example, Ushio et al. 63 exploit empirical dynamic 

modelling to estimate the Jacobian matrix of a multivariate community and extract a stability 

index which accurately diagnoses vulnerable periods in fish communities. This has been 

developed further by Medeiros et al. 59 to identify key species for management based upon 

their contribution to the system’s Jacobian and Grziwotz et al. for univariate time series 64’ 

 
Reviewer #2 
 
The paper by O’Brien et al “Early warning signals are hampered by a lack of critical 
transitions in empirical lake data”, as stated by the title and abstract, discusses 
observed variables from nine lakes, and compares multiple early warning signals. 
 
1) The paper obviously contains a lot of results, but when the authors claim that this or 
that indicator performs better or worse in terms of detecting transitions, this is based on 
statistical characteristics rather than on ground truth information about transitions – 
this can be caused by parameters of fitted models and pre-trained setups.  
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The reviewer raises a valid point that the ground truth labels used here are based upon 

observational time series, but we wish to clarify that the purpose of our analyses were to 

calssify using only the data available to lake/system managers. For our systems, four are 

known to have undergone a regime shift (Kasumigaura, Kinneret, Mendota, Washington) 

with one of those considered to have been a critical transition (Kasumigaura - Fukushima, T. 

& Arai, H. Regime shifts observed in Lake Kasumigaura, a large shallow lake in Japan: 

Analysis of a 40-year limnological record. Lakes & Reservoirs: Research & Management 20, 

(2015)) based upon statistical characteristics such as segmented regression. We go further by 

applying the holistic suggestions of Scheffer and Carpenter (2003) and Bestelmeyer et al 

(2011) to disambiguate critical transitions/bifurcations from other forms of sudden shift while 

also identifying continuous but non-linear changes. Other than system specific modelling, we 

do not believe there is an observational way to identify forms of transition other than those 

proposed in the above references. That being said, we also believe, and suggest, that because 

of this, system specific modelling approaches likely represent the best future direction if 

managers can develop models appropriate for their system. 
 
2) Furthermore, many of the indicators may contain issues by construction: for 
example, multivariate indicators aggregate variables in a simple way, and some of those 
may have opposite dynamics, while others may be cross-correlated and lead to a bias in 
estimates such Kendall’s tau. This can affect the resulting multivariate indicators to 
such extent that any conclusion about its results may be misleading.  
 
The reviewer is correct in their concern, and we do not disagree that such aggregation can 

weaken the power of such indicators in empirical data. However, we wish to clarify that we 

did not develop these aggregated variables and that the focus of the paper was to explore the 

diversity and efficacy of EWS methods currently available and accessible to managers of 

systems susceptible to critical transitions. We have therefore applied each EWS indicator 

relatively naively to assess whether even in the absence of targeted use (as in all previous 

empirical cross system comparisons– e.g. Gsell et al. 2016, Burthe et al. 2016), there is merit 

to these approaches, or whether there is a need for system specific indicators. We believe the 

latter is true. 
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3) I wonder if the authors are familiar with works of Killick and their R package 
“changepoint”? https://cran.r-project.org/web/packages/changepoint/index.html If the 
authors aim to distinguish abrupt transitions, this is a suitable tool for such analysis. 
Furthermore, I cannot see references to true multivariate analysis (i.e., not just 
aggregates or averages) developed by Williamson and Lenton (Chaos, 2015). For 
comprehensive comparison, the authors should include these methods, in my opinion 
 

We thank the reviewer for their suggestion regarding the R package changepoint. The 

threshold generalised additive model approach used here is almost a direct analogue to the 

segmented regression model fitting provided by that package but allows non-linear trends as 

well as break points to be fitted. This consequently provides us the additional capability to 

distinguish one off anomalous years/transient dynamics that are not true regime shifts from 

abrupt and stable transitions. 

 

With regard to the work of Williamson and Lenton (2015), we were not aware of it prior to 

the reviewer’s suggestion so we thank them for drawing it to our attention. Williamson and 

Lenton (2015)’s approach is complementary to that of Ushio et al (2018) and Grziwotz et al 

(2023) which we raise in the Discussion. We did not include those approaches as they are 

restricted by time series length (requiring >10 time points to function and >30 for reliable 

estimates) and fall under ‘resilience indicators’ rather than specifically early warning signals 

as our focus here. In our dataset, this time series length requirement would exclude Loch 

Leven, Monona and Washington from our analysis which we feel too greatly diminishes our 

sample size. We similarly believe Williamson and Lenton (2015)’s indicator has wider 

generic value than just as an EWS (due to its estimation of the Jacobian) but found it 

experienced a similar requirement for time series length (>15 time points in this case). We 

have therefore not added it to our analysis but have added references where appropriate to the 

method and a brief analysis in this response document for the reviewer’s interest. Lines 341-

347. 

 

‘For example, Ushio et al. 63 exploit empirical dynamic modelling to estimate the Jacobian 

matrix of a multivariate community and extract a stability index which accurately diagnoses 

vulnerable periods in fish communities. This has been developed further by Medeiros et al. 59 

to identify key species for management based upon their contribution to the system’s 

Jacobian and Grziwotz et al. for univariate time series 64. Similarly, Williamson and Lenton 
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65 approach Jacobian estimation using multivariate autoregressive models with equivalent 

success.’ 

 
4) When the authors say that most published papers contain detected ecological 
transitions, this is an obvious effect of publication process: publishable are the results 
that contain a phenomenon of interest rather than those that do not. Publishing an 
absence of something is more difficult and is of marginal interest. I am sure the 
researchers in this community shelved lots of results where they detected nothing. I 
agree that such results can also be useful, but not necessarily for a broad research 
readership. 
 

We would like to clarify that this argument is one not made by us (e.g. Barto, E. K. & Rillig, 

M. C. Dissemination biases in ecology: effect sizes matter more than quality. Oikos 121, 

228–235 (2012)) but is of particular relevance to early warning signal usage as the biasing of 

published results can increase risk of the ‘Prosecutor fallacy’ (Boetigger and Hastings, 2012, 

Early warning signals and the prosecutor's fallacy Proc. R. Soc. B. 279, 4734–4739) if only 

systems known to undergo transitions are studied. It also represents a warning for 

practitioners who use regime shift and tipping point detection methods (i.e. EWSs) to classify 

thresholds of stress (Hillebrand, H. et al. Thresholds for ecological responses to global 

change do not emerge from empirical data. Nat. Ecol. Evol. 4, 1502–1509 (2020)) for 

management purposes (a key target audience for this work). Thus, we use this as rational for 

the inclusion of a range of lakes in this analysis showing a range of transition types.  

 
5) I always start reading a new paper by looking at its figures to see the data under 
study, and then at the obtained results, to see if they are non-trivial. With this paper, I 
started searching for the main data and, to my surprise, found it in the supplement 
(figure S1). I think this figure should be in the main text. Then, I looked carefully at the 
top panels of figure S1 and placed the ticks in the panels where I could detect some 
transitions by eye. These were panels 1, 2, 6 and 8 (lakes Kasumiguara, Kinneret, 
Monona, and Washington). Curiously, after reading the paper in full, I found that the 
authors’ analyses detected critical transitions in the same datasets (Table S1). On the 
one hand, it is a good confirmation, on the other hand, it means that some less visible 
transitions may still be non-detectable by the applied methods. Therefore, modelled 
data is still of importance in studying such systems: it provides sufficient statistics and, 
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more importantly, ensures controlled experiments with ground-truth comparison. I 
think the authors should change the title of their paper, as in its current form it sounds 
dismissive to the above issues. The title could be “Analysis of EWS in empirical lake 
data”. 
 

We agree that ideally Figure S1 would be presented in the main text, but we believed the size 

of figure would be inappropriate anywhere other than in the Supplementary. If the editor is 

willing for a whole page to be allocated to the figure, or the reviewer can suggest an elegant 

way of compressing the figure whilst retaining the visibility of the information, then we are 

happy to move it to the main text where we agree it should belong. 

 

We apologise for our confusion, but we do not understand the concern of the reviewer 

regarding ‘less visible transitions may still be non-detectable by the applied methods’. To 

our knowledge, our approach to classifying regime shifts extends the techniques used by all 

previous attempts for empirical regime shift detection (e.g. changepoint, Gsell et al 2014, 

Bestelmeyer et al. 2011, Cianelli et al. 2004), and ensures all classification are made via 

model fit rather than human interpretation. Similarly, not all regime shifts were classified as 

critical transitions (e.g Kinneret zooplankton) despite there being a visible regime shift in the 

time series, implying that the subtle differences can be identified. 

 
6) The paper from the start discusses ideas that are clearly defined only later (critical 
transitions and abrupt changes in lines 405-410, 415-420). I think such blocks of text 
should appear much earlier, in case if readers are not familiar with the topic.  
 

The reviewer is in agreement with the reviewers #1 and #3 and so we have added an 

additional figure and a glossary (Box 1 - Figure 1) for this concern. We hope that this 

clarification will be sufficient.  

 
7) When the authors distinguish “univariate, multivariate and machine learning” 
indicators, this may be misleading for people in the ML community, because they are 
aware of ML methods that can be both univariate and multivariate. It looks like the 
authors developed their own language in this context, but it is not widely accepted and 
is better to be avoided in a peer-review publication.  
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We realise this statement may be confusing for readers, and were referring here to the 

differences in early warning signal calculation (which share a theoretical background) rather 

than ML. We have therefore altered our language throughout to briefly introduce ML (line 

108-110) and then refer to the specific univariate ML model EWSNet for the remainder of 

the manuscript.  

 

‘Both univariate and multivariate machine learning models are possible, but to date, only 

univariate forms have been trained specifically for tipping point classification 35,36,38’ 

 

8) When the authors claim that they disentangle critical transitions from regime shifts 
(lines 292-295), this is well-known in the EWS community for years and usually is 
addressed by using different indicators/techniques. This is not a novel conclusion 
 

We do not argue that the EWS community has not explored identifying critical transitions vs 

regime shifts in empirical time series – often using combinations of change point analyses 

(e,g Gsell et al. 2016) – but this paper expands that work by allowing non-linear but 

continuous relationships (via threshold GAMs) and by explicitly comparing against system 

behaviour in the state space. This therefore allows us to identify possible transitions 

mechanisms from solely descriptive time series. That is not to say experiments and modelling 

are not required to verify these classifications (Scheffer and Carpenter, 2003) but we can 

provide ‘best guesses’ using solely monitoring data, which is the holy grail of EWS research 

(Dakos et al 2012). 

 

We have strengthened this point by now using all three of Scheffer and Carpenter (2003)’s 

‘indicators of stable states’/Bestelmeyer et al. (2011)’s ‘analytical indicators’ in our 

classifications by introducing a probability density peak analysis in the new Figure 2 and 

updated Figure 4, and linked our hypothesised behaviour of their three indicators to each 

transition type defined in Figure 1. 

 
9) It would be useful to include a table with full description of the variables, sampling 
rates, durations, etc. Such a summary is important for overview of data. Also, include 
information about number of points in the original and processed data (monthly, 
yearly).  
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The reviewer makes a good suggestion and we have added Table 1 which contains an 

overview for each lake of the sampling method, original sampling frequency, sampling depth, 

monitoring period, length of monthly time series post regime shift identification, length of 

yearly time series post regime shift identification, the number of available genera, and 

whether a described regime shift has previously been published.  

 

‘Table 1. Data and monitoring characteristics of lakes contributing to early warning signal 

assessments. 
Lake Sampling 

method 
Original 
sampling 
frequency 

Sampling 
depth (m) 

Period Monthly 
time series 
length 
contributing 
to 
assessments 

Yearly 
time series 
length 
contributin
g to 
assessment
s 

Number of 
genera 

Regime 
shift 
identified 
in the 
literature 

Lake 
Kasumigaura 

Tube sampler 
and vertical 
net haul 

Bi-weekly 0-5 Aug 1981- 
Dec 2018 

342 30 33 ✓ 53 

Lake Kinneret Tube 
sampler, mix 
sampling and 
profile 
sampling 

Weekly 0-40 Jan 1975- 
Dec 2015 

289 25 31 ✓ 52 

Loch Leven Tube sampler 
and vertical 
net haul 

Weekly 0-5 Feb 1992- 
Dec 2006 

152 12 6  

Lake 
Mendota 

Tube sampler 
and vertical 
net haul 

Monthly 0-20 May 1995- 
Nov 2018 

168 15 37 ✓ 54 

Lake Monona Tube sampler 
and vertical 
net haul 

Monthly 0-20 Apr 1999- 
Dec 2017 

130 12 35  

Lower Zurich Tube sampler 
and vertical 
net haul 

Monthly 0-135 Jan 1977- 
Dec 2009 

332 28 40  

Upper Zurich Tube sampler 
and vertical 
net haul 

Monthly 0-36 Jan 1980- 
Nov 2000 

209 17 62  

Lake 
Washington 

Tube sampler 
and vertical 
net haul 

Weekly 0-20 Jan 1962- 
Dec 1994 

97 9 12 ✓ 48 

Windermere Tube sampler 
and vertical 
net haul 

Bi-weekly 0-40 Jan 1979- 
Dec 2002 

244 20 16  

 
10) I do not agree that non-recorded points should be replaced by zeros (lines 375-376). 
This processing changes auto-correlations in the data, which is the basis of early 
warning signal indicators. Such pre-processing will change the indicator slopes.  
 

We understand the reviewer’s concern as it is likely we were not clear in the text, but the 

rationale for replacing non-recorded points with zeros is because those genera were below 

detection threshold during of recording. Consequently, that genus is not missing and should 

be considered ‘not found’ despite the search effort being constant across the sampling period. 
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This is equivalent to counting the abundances of a butterfly species along a transect but not 

observing any individuals despite the species being present in that habitat – generating a 0 

count. 

 

Similarly, if we do not replace unrecorded plankton densities with zeroes, missing values 

would prevent sufficient EWS assessments as large periods of NAs would be introduced into 

the time series. As EWSs assume equally spaced observations (Dakos et al 2012), many of 

the time series and dramatically decrease our coverage of each lake. Interpolation has been 

suggested to populate missing values in EWS research but due to the large periods of NAs 

and potential to alter variance and autocorrelations in the data, we believe interpolation is 

inappropriate.  

 

This has been clarified on lines 376-379. 

 

‘Unidentified and/or unnamed species were removed and if a species was not recorded on a 

sampling date, that species’ density was assumed to be zero. This assumption results from 

constant search effort being made on each sampling date and unrecorded species being 

below detection threshold on that specific date.’ 

 
11) It would be good to see a multi-panel figure of monthly data. In fact, detection of 
transitions in monthly data is more challenging and interesting, because noise would 
mask obvious transitions visible in yearly data – can the authors include such results? 
The provided panels with state variables are of less interest, in my opinion. 
 

The reviewer raises a similar concern to reviewer #1 in comment 23) where we have 

answered in detail. In brief, we repeated the TGAM classification of regime shifts, critical 

transitions and stationary time series in the monthly data and found agreement in the 

breakpoint year (though, of course, in monthly time series, that breakpoint was between 

months rather than years). 

 
12) In lines 113-115, the authors mention nine lake datasets and refer to figure 1, which, 
in fact, does not contain real data (there are schematics). The sentence should be 
modified.  
 



 36 

We have now replaced Figure 1 with Figure 4 (due to the addition of other figures) which 

now contains real data. We hope this change satisfies the reviewer. 
 
13) There are some terms and abbreviations that are not explained, like mgcv, brmc. I 
understand it is technical, but in that case, it can be in the supplement. There are 
acronyms that are defined multiple times (CSD, for example). It may be worth 
including a nomenclature.  
 

We apologise for the lack of explanation for mgcv, brms and Stan specifically. These are the 

names of R packages/softwares and so have made this clearer by suffixing each time a new 

package name is introduced with ‘package’. 

 

The multiple redefinition of CSD was to ensure that readers who may only read the main text 

and not the methods (or vice versa) would not have to trawl the remainder of the text. We 

have therefore taken the reviewer’s advice, removed the redefinition and added a glossary 

(Box 1) to mitigate this.  
 
14) In the Supplement, there are many plots with time series of chains (four overlapping 
records that are difficult to distinguish). I am not sure how useful is this, but it can 
remain in the supplement for information. The captions of figures S2-S7 mention 
monthly and yearly data, but it is not clear what lake is where – is data from all lakes 
combined? The y-axes labels are merged and unreadable. I think the label tick/label 
step should be changed when mapping the labels (there should be much fewer of them). 
In the right-hand-side panels, top labels are wider than the panels.  
 

The figures S2-S7 are diagnostic plots for the Bayesian logistic models fitted to the yearly 

and monthly early warning signal data which validate the appropriateness and distribution of 

uncertainty for each estimated model parameter. They have been included for completeness. 

The chains in the right hand column represent the repeated sampling by the Monte Carlo 

Markov Chain (MCMC) sampler which we expect to overlap and ‘mix’ consistently 

throughout sampling. The left hand column depicts the estimated distribution for each model 

parameter which we expect to be smooth and unimodal. Consequently, figures S2-S7 show 

that all our models have converged and are generating robust parameter estimates (not 

necessarily accurate but precise and replicable from the data and prior). Figures S8-S10 allow 
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use to then confirm how well our model fits our data with high congruency between the 

observed data (dark lines) and draws from the model’s posterior (light lines). The labels have 

now been reformatted to be readable. 

 

As separate models were fitted for monthly and yearly EWS data, each supplementary figure 

is repeated; once for each model. 

 

We would prefer to keep these supplementary figures as they are following good practice for 

Bayesian model reporting, but understand if the reviewer and editor believe they are 

unnecessary and will remove accordingly if requested. 

 
15) In tables S3-S13, why are effective sample sizes are not integer? Why in these panels 
Rhat is included, which is equal to 1 everywhere, - isn’t it better to mention this in the 
text or caption instead of dragging the same value in a separate column in all tables? 
 

Effective sample sizes (ESS), as reported by the Stan language and the brms R package, 

represent the number of independent draws taken from the Monte Carlo Markov Chains 

(MCMC). These chains are stochastic processes that sample an assumed prior distribution, 

assign probabilities to that sample and then resample using the updated beliefs. ESS 

represents how well the sampler has estimated the parameter value given the number of 

samples/iterations the model has performed (Geyer, Charles J. 2011. “Introduction to Markov 

Chain Monte Carlo.” In Handbook of Markov Chain Monte Carlo, edited by Steve Brooks, 

Andrew Gelman, Galin L. Jones, and Xiao-Li Meng, 3–48. Chapman; Hall/CRC.). The 

MCMC sampler can introduce error (and decrease the ESS) through autocorrelation within a 

chain and divergence between chains. The high ESSs reported in Tables S3-S13 can be 

interpreted as a validation that the model has converged and is an appropriate fit analogous to 

successful overdispersion, Cook’s distance or F-tests for frequentist models. 

 

Rhat meanwhile represents the ratio of the average sample variance within a chain versus the 

variance of the pooled samples across the separate chains (Gelman, Andrew, and Donald B. 

Rubin. 1992. “Inference from Iterative Simulation Using Multiple Sequences.” Statistical 

Science 7 (4): 457–72.). If the chains have converged within the same parameter space (i.e. 

are at equilibrium) then the two variances are equal and Rhat equals 1. Rhat is therefore 
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another Bayesian measure of convergence and an appropriate model diagnostic criterion 

included for completeness. 
 
16) The main text does not have page numbers, and the supplement has three pages 
numbered as 1.  
 
Page numbers removed from the supplement accordingly. 
 
Reviewer #3 
 
Summary of work 
 
The authors conduct an analysis of early warning signals in empirical lake data. They 
obtain plankton densities and abiotic drivers from 9 lakes that have publicly available 
data, and assess whether a critical transition occurs by fitting TGAMs and looking for 
break points in both the plankton and abiotic driver data. From a total of 244 time 
series, they find that 35 undergo a critical transition, by their definition. They test three 
different groups of early warning signals (EWS) on this data: univariate EWS; 
multivariate EWS; and EWSNet, a machine learning method. They also test a variety of 
different preprocessing steps (detrending and deseasoning), data resolutions (monthly 
and yearly averages), and EWS computation methods (rolling vs expanding window). 
They find that univariate EWS with an expanding window obtain the highest average 
performance in yearly data, and multivariate EWS with an expanding window obtain 
the highest average performance on monthly data. They found that other combinations 
of EWS were not much better than chance. They conclude that EWS based on 
bifurcation theory are not particularly useful in lake data, and that focus should turn to 
resilience indicators and methods that are specific to lake ecosystems. 
 
 
Summary of evaluation 
 
I applaud the others on conducting a thorough evaluation of a multitude of different 
EWS and preprocessing methods. It has already been demonstrated that EWS are not 
consistent in freshwater ecosystems (e.g. Gsell et al. PNAS, 2016), but this study builds 
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on this work by proposing a new way to identify critical transitions in lake data, 
increasing the number of lakes analysed, testing EWS on transitioning and non-
transitioning time series, and testing a wider range of EWS, including a recently 
developed machine learning method (EWSnet). I’ve since taken a look at the data 
myself, and I don’t think it’s surprising that the EWS do not perform well, based on the 
number of missing data points, the seasonality, and the relatively small number of data 
points prior to the transitions, but nonetheless, I think its a useful contribution to the 
field, and an important word of caution to the use of generic EWS in empirical data. 
 
I was able to download the code and data files from the Github repository, which is well 
documented. The code looks well organised, although I have not attempted to reproduce 
the results. The methods seem sufficiently detailed to follow the same steps as the 
authors. I think that the work is suitable for Nature Communications, although I have a 
few main comments and a few minor comments that I think should be addressed. 
 
Main comments 
 
1) The processed dataset includes 35 ‘transitioning’ and 209 ‘non-transitioning’ time 
series. It’s important to bear in mind that this is an unbalanced dataset. If a 
classifier/EWS picked non-transitioning every time, it would have a very high correct 
prediction probability of 209/244=0.86. Therefore I don’t think that correct prediction 
probability (which is used in the results section line 190-204) is a good measure of 
performance. Something like the F1-score may be more appropriate, which strikes a 
balance between the true positive rate and the true negative rate. ROC curves are also a 
great way to get performance measures on a binary classification task (using the area 
under the curve). I would like to see which EWS perform best with a metric that is 
more suitable for an unbalanced dataset. 
 

The reviewer highlights an important point which we aimed to circumnavigate using our 

multi-level modelling approach. By explicitly accounting for interdependencies in the EWS 

dataset (i.e. repeated measurements within a lake and indicators expected to behave similarly 

in transitioning vs non-transitioning systems), the probability of correct prediction is 

regularised and the confidence in the prediction shrinks and becomes wider. This is the key 

benefit our approach has over typical binary classification task metrics such as AUC or F1-
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scores, as the test data set is ultimately imperfect, with confounders and interdependencies 

inescapable in natural, empirical systems. We also then tried to disentangle this further by 

splitting the overall analysis (Figure 3) in to true positive and true negative ability (Figure 4). 

Targeting EWS ability in this way can verify where each indicator performs best and worst 

analogously to AUC/F1-score with the overall analysis only intending to give an overview. 

 

This being said, we repeated our analysis using both balanced accuracy and F1-scores. Both 

statistics reveal comparable estimates to our modelling approach (although with a single 

point estimate). However, following the reviewer’s concerns, we have added an additional 

weighting term for sample size which regularizes our probability estimates further, so that the 

initially extremely high scores reported in the original submission for expanding window 

methods in Yearly data are much more unconfident. This implies that F1-score is 

overweighting towards the transitioning data where expanding windows often signal but 

generate false positives in the non-transitioning data. We have consequently updated the 

results with the new model and provided balanced accuracy and F1-score results below. 

Panels A) and B) are direct analogous of Figures 5 and 6 from the main text. 
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2) It is mentioned throughout the manuscript that multivariate EWS outperformed 
univariate EWS (abstract, line 124, line 251, line 306). Can the authors explain how this 
statement is supported by the results? Line 190 seems contradictory to this: “univariate 
EWS estimated using expanding windows displayed the highest average probability of 
correct classification”. To me, what seems most noteworthy is the fact that the 
expanding window improves performance regardless of whether you use 
uni/multivariate data. This may be due to large number of missing data points in the 
plankton time series, and the relatively small amount of pre-transition data for a given 
lake. 
 

The order of computation methods from top to bottom indicates the average ranking of each 

computation method across monthly and yearly data. This conclusion is therefore clearer in 

the updated analysis following the reviewers’ comments, with greater weighting towards the 

critically transitioning data. Now multivariate forms of each computation method have a 

higher average prediction probability than univariate though the differences are minimal. 

This has been clarified in the caption of Figures 5 and 6: 

 

‘Computation methods are ranked by their mean ability across monthly and yearly data.’ 
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3) The time series are split into ‘transitioning’ and ‘non-transitioning’. Where do the 
time series with a regime shifts but no critical transition go? I think into the `non-
transitioning' category, but this should be made more clear in the manuscript. If this is 
the case, when the authors compute EWS in these non-transitioning time series, are they 
including the section with the regime shift, or trimming the data to just before the 
regime shift? If the former, one would expect a spike in variance during the regime 
shift, which could trigger false positives in this analysis. I think it would make sense to 
also trim the regime shift (non-transitioning) time series so the regime shift is not 
included in the EWS computation.  
 

The reviewer is correct that for our EWS ability analysis, only two classes were of interest 

with a relevance to regime shifts: critical transitions (expected to display CSD) and not 

critical transitions. Non-critical bifurcations are also expected to display CSD but none were 

identified in our lake dataset. This information has been added to the text on lines xx: 

 

‘Many of the other lakes displayed breakpoints in their time series (e.g. Lake Mendota’s 

zooplankton) but these were not matched in the environmental state space (Figure 2, Figure 

4A, Figure S1) and were therefore classified as abrupt non-bifurcations if they also displayed 

bimodality. There are therefore two primary classifications relevant to EWSs – critical 

transitions and not critical transitions. These classifications made by TGAMs were then used 

to ground truth downstream EWS assessments and trim time series to pre-transition data.’ 

 

In response to the second concern, time series with non- bifurcation regime shifts typically 

belonged to a lake where other time series displayed a critical transition. We therefore 

trimmed all time series in lake with critical transitions prior to the estimated time series 

breakpoint. Consequently, the regime shift should not be included in the EWS assessments as 

the reviewer recommends. This information is clarified in the text on line 514-519. 

 

‘To enable comparability between transitioning and non-transitioning taxa, lakes containing 

transitions were subset prior to the year identified by TGAMs. Resultantly, if one of a lake’s 

trophic level experiences a critical transition whereas the other experiences a non-

bifurcation abrupt shift, then all time series are subset prior to any regime shift. This 

minimises the likelihood of false positive signals driven by the changes in variance 



 43 

experienced in non-bifurcation regime shifts. Lakes with no regime shifts were subset to 85% 

of their total length. This ensures we can infer the near future of the non-transitioning lake 

correctly.’ 

 
4) The Github repository is well organised and well documented. However, I didn’t find 
any indication as to what each data file represents? There are 4 files in the data 
directory. I suggest that the authors indicate this somewhere in a readme file. 
 

We apologise for the lack of description for the repository data files. Two of the files were 

duplications of the main plankton density data and have been removed. A README has now 

been added which reads: 

 

‘transition_dates.csv - estimated critical transition dates generated by the threshold 

generalised additive models coded in lake_state_spaces.R. 

wrangled_genus_plank_data.Rdata - the cleaned and genus aggregated plankton data 

underpinning the early warning signal assessments. 

The remainder of the early warning signal data can be found in the Results folder.’ 

 
Changes have also been made to the published files and directory following additional 

analyses requested during this resubmission. 

 
5) It’s not clear to me what the difference is between the scaled and unscaled weights of 
the ML classifier. Please explain this somewhere, and why it has such a large impact on 
the EWSNet predictions. 
 
Both scaled and unscaled weights are derived from the same training dataset but with 

different pre-processing. The “unscaled” involved training on the raw training data which 

spanned three orders of magnitude (1,10,100) whereas “scaled” normalises each time series 

within the range [1-2] using the equation: ࢙ = ૚ + ࢞ − ࢞ࢇ࢓࢞࢔࢏࢓࢞ −  ࢔࢏࢓࢞

where x is the time series to be scaled.  

 

This information has been included in the Methods section on lines 504-512. 
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‘We additionally tested the effect of scaled versus unscaled data processing on the quality of 

EWSNet predictions. The scaled model involves training on the same data as the unscaled, 

but time series were normalised between within the range [1-2] using the following equation: ࢙ = ૚ + ࢞ − ࢞ࢇ࢓࢞࢔࢏࢓࢞ −  ࢔࢏࢓࢞

where x is the training timeseries. This scaling therefore ensures all dynamics are considered 

at the same magnitude and aims to minimise the impact of measurement scale on predictions. 

When testing using the scaled form of EWSNet, the test time series must also be scaled for 

appropriate predictions.’ 

 
6) Am I right in thinking that break points were computed using total plankton 
densities? Did the authors consider EWS in total plankton densities instead of 
individual densities? Given that there were many zeroes in the individual plankton time 
series, I’d be curious to know if EWS have higher performance on the aggregated time 
series. 
 

The reviewer is correct that breakpoints were estimated using trophic level data while EWS 

assessments were made at the genus level. We have responded to this concern in response to 

reviewer #1’s comment 5). 

 

We had not performed EWS assessments for total densities as multivariate EWSs require 

multiple time series which is not possible for total densities. However, we have attached here 

a brief analysis for the univariate EWS and EWSNet indicators for the reviewers’ interest.   
 
The overall results are consistent other than scaled EWSNet displaying more robust true 

positive behaviour (relative to genus level data). Expanding windows display worse true 

negative capability in monthly data presumably due to stronger autocorrelation in overall 

system dynamics. Please note that analysis is of a very small sample size (4 critically 

transitioning vs 22 not critically transitioning). 
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7) There is more recent relevant work on machine learning for EWS that could be cited 
on line 315: 
Patel and Ott, Using machine learning to anticipate tipping points and extrapolate to 
post-tipping dynamics of non-stationary dynamical systems, Chaos 2023. 
Dylewsky et al., Universal early warning signals of phase transitions in climate systems, 
Interface, 2023. 
 

Cited where appropriate. Line 110. 

 
8) Fig 1B: what data is being shown here? Real lake data? 
 

This data is not real data but an exemplary multi-species community undergoing a critical 

transition/fold bifurcation provided by the R package EWSmethods. As Figure 1 is an 

overview schematic, we did not originally use real world data, but following the suggestions 

of Reviewer’s #1 and #2, we have replaced all simulated/schematic data with real lake data. 

This is now presented in Figure 4. 
 
9) How is the scaled metric score in Figure 2 computed? I didn’t see it in the methods - 
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sorry if I missed it. 
 

Scaled metric score is simply the plankton density normalised via the equation: ࢙ = ࢞ − ഥ࢞࣌࢞  

where x is the plankton time series, x bar is the time series mean and sigma x is the time 

series standard deviation. The only purpose of this scaling is to improve the ease of plotting 

and comparison between trophic levels and models. We have added this information to the 

Figure legend (Figure 4 and Figure S1). 

 

‘… A) Application of the classification approaches introduced in Figure 2 in the yearly lake 

plankton data. An example of an abrupt, non-bifurcation shift (Lake Washington’s 

zooplankton), a critical transition (Lake Kinneret’s phytoplankton) and a non-transition 

(Windermere’s phytoplankton) are presented. Plankton densities have been scaled to mean 

zero and unit variance to improve plotting clarity….’ 

 
10) Line 62: CSD does not increase as such, it is the phenomena of an increasing return 
time following perturbations. 
 

The sentence has been edited to better convey this point. Line 64-66. 

 

‘EWSs attempt to detect this critical point by the phenomenon of Critical Slowing Down 

(CSD) or the increasing return time to equilibrium following perturbations as a critical 

transition is approached 10’ 

 
11) Abstract: “recently developed machine learning techniques”. I think this is too 
broad, since only a single machine learning technique was tested. I think it should read 
“a recently developed machine learning technique”. 
 

Changed accordingly. 

 
12) Line 60: “bifurcation theory which states that a….” → “bifurcation theory which 
describes how a…” 
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Changed accordingly. 

 
13) Line 102: “machine learning exploits” 
 

Changed accordingly. 

 
14) Line 753: “machine learning is limited to univariate time series” → “machine 
learning is applied to univariate time series” (there are techniques to apply it to 
multivariate time series) 
 

Changed accordingly. 
 
15) Figure 2: x-axis “Explanatory variable” 
 

Changed accordingly. 



REVIEWERS' COMMENTS 

 

Reviewer #1 (Remarks to the Author): 

In the revised version of the manuscript: "Early warning signals require critical transitions in empirical 

lake data", the authors have diligently worked on including the reviewer's comments. In my opinion, this 

has improved the manuscript considerably. The more stringently used terminology and much-improved 

method part make the manuscript much easier to read, follow and reproduce. 

However, two points of criticism remain. These regard ambiguities in Figures 1 and 2 and, in this 

connection, the authors assumption of the capabilities of TGAMs. 

First, I very much appreciate the general idea of Figures 1 and 2 to clarify the theoretical background 

and hypotheses and define the used terminology for the paper's scope. But I think both figures could 

improve. In Figure one should be more evident when the authors use time-space or phase-space 

characteristics to derive their grouping. I also could not follow the logic of why step changes in the state 

variable in time-space due to a large shift in control parameter qualify as rapid regime shift, while a non-

linear trend (i.e. State threshold following the terminology of Andersen et al. ) is classified under 

gradual, smooth transitions, particular since in a matching step in time-space in driver and state variable 

results in a linear trend in phase-space (also mentioned in D). Also, under the label abrupt non-

bifurcation, the example of cyclic regime shifts is given; however, in this generality, cyclic regime shifts 

might well involve bifurcation points and thus possibly EWSs, see, for instance, Scheffer and Carpenter 

2003, Darkos et al. 2014. 

Further, I find the figure caption could be improved. For instance, I found it confusing that the authors 

open with, "In its simplest form, a regime shift is the process whereby an ecosystem rapidly changes 

from one alternative stable state to another …" which is commonly the wording used to describe critical 

transitions, they then continue "whereas critical transitions .." where they again refer to critical 

transitions. I would also doubt that the existence of a positive feedback mechanism is easy to 

demonstrate based on data; at least, it is nothing that the authors did. On the other hand, 

characteristics like hysteresis and discontinuity are missing, which are later used by the authors in their 

line of argumentation. Further in the glossary, the authors define regime shifts as sudden or abrupt 

shifts to an alternative attractor; however, this technically does not include the case of matching step 

changes in driver and state variables (B), so overall, this definition appears inconsistent. I would have 

also appreciated it if the authors had found a minimal set of needed terminology for the scope of their 

manuscript and used this consequently; for example, they define bifurcation and use the word tipping 

point within the definition. Thereof follows an additional definition for tipping point without clearly 

stating the subtle difference to bifurcation. As I understood it, tipping point was used as a more specific 

term for the particular case of critical transitions; however, when the authors define critical transitions, 

they use the term critical value/ bifurcation point instead. Also, it would have been helpful to introduce 

the words discontinuity and hysteresis here. Further, the given definition of a smooth transition clearly 

subsumes the case of matching breakpoints in time space and an overall linear relation in phase space, 

which is also referred to in class B. 

 



In regard to Figure 2, I find the most important and maybe most difficult case to distinguish is not clearly 

depicted, i.e. the non-linear smooth transition (state threshold following Andersen et al.). From a 

depiction of this case, it would have become clear that one would also expect a bimodal distribution 

there. Thus, the only evidence remaining to distinguish state thresholds from critical transitions is 

hysteresis evidenced by overlapping data clouds and more than one breakpoint in phase-space. In cases 

where there is no overlap, the remaining difference might be the presence of discontinuity, which is 

however very hard to detect under common monitoring data quality. 

This leads me to the potential of TGAM, where I sincerely doubt that they can distinguish between State 

threshold cases and driver-state hysteresis in the absence of an indicator for hysteresis, i.e. overlap of 

data clouds and more than one threshold, and to my knowledge, there exists no demonstration in 

regard to this capabilities. In L 400- L 405, the authors mention overlap as a criterion, however, 

hysteresis can not be decerned from bimodality and seems otherwise not to have been used in the 

classification of critical transitions and non-critical transitions. 

The authors have already toned down the certainty in their classification, e.g. figure 1 caption and added 

a statement in the discussion (L278 - L281), however, I would have sincerely wished that the authors 

were much clearer and more consistent about these limitations throughout the text, e.g. that they 

would have refrained from statements like “the precise classification” (L125) or be clearer in figure 2 

(see comments above). I do not think these well-known problems have a major impact on the 

assessment of the true positive abilities of EWSs since the authors made a conservative selection there. 

On the other hand, this conservative choice might have introduced cases with EWS into the class of non-

critical transitions and thus might have affected the true negative predictions, depending on the number 

of ambiguous cases, unfortunately, the authors do not quantify this. In the light that these are well-

known technical and thus acceptable problems, I would have much appreciated a very clear 

communication or an exclusion of these ambiguous cases altogether. 

Some remaining issues are: 

- In Figure 2, fourth row, second column subfigure (4,2): From the subfigure in the fourth row, the first 

column (4,1), it occurs that there are no flat-tail high system state values, so the curve in 4, 2 should 

have either an L shape or L shape mirrored at the y axis. 

- L197: “This results ...” should be “These results….” or “The results …” 

 

- L276: This might refer to Figure 4, not 2. 

 

Reviewer #2 (Remarks to the Author): 

 

The authors produced a substantial revision, and the revised manuscript reads better. 

 

I still have two comments. 



 

1) I disagree with the new title "Early warning signals require critical transition..." 

 

This is logically incorrect, as an attribute cannot "require" anything from its process. In my review, I 

suggested title "Analysis of EWS in empirical lake data". If the authors want to stress that EWS is an 

attribute of critical transitions (which is actually not a new message), they may say "Critical transitions in 

empirical lake data are accompanied by EWS" (or "have EWS signatures") 

 

2) I still think that in tables S3-S13 (eleven tables, each of one page) the columns of Rhat with repeated 

values 1, all the same and not informative in such quantities, must be removed, and just a line with this 

information (Rhat=1) should be added to each table caption. 

 

Reviewer #3 (Remarks to the Author): 

The authors have addressed my comments and concerns and significantly improved the figures in the 

manuscript. 
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Reviewer responses 

 

Reviewer #1 

In the revised version of the manuscript: "Early warning signals require critical 

transitions in empirical lake data", the authors have diligently worked on including the 

reviewer's comments. In my opinion, this has improved the manuscript considerably. 

The more stringently used terminology and much-improved method part make the 

manuscript much easier to read, follow and reproduce. 

 

However, two points of criticism remain. These regard ambiguities in Figures 1 and 2 

and, in this connection, the authors assumption of the capabilities of TGAMs. 

 

We thank the reviewer for their direction in improving the clarity and technical details of the 

manuscript. We believe we have addressed their remaining comments below. 

 

In the revised version of the manuscript: "Early warning signals require critical 

transitions in empirical lake data", the authors have diligently worked on including the 

reviewer's comments. In my opinion, this has improved the manuscript considerably. 

The more stringently used terminology and much-improved method part make the 

manuscript much easier to read, follow and reproduce. 

 

However, two points of criticism remain. These regard ambiguities in Figures 1 and 2 

and, in this connection, the authors assumption of the capabilities of TGAMs. 

 

1) First, I very much appreciate the general idea of Figures 1 and 2 to clarify the 

theoretical background and hypotheses and define the used terminology for the paper's 

scope. But I think both figures could improve. In Figure one should be more evident 

when the authors use time-space or phase-space characteristics to derive their grouping.  

 

We thank the reviewer for their encouragement of Figures 1 and 2 and we have edited them 

to include their suggestions. We do not believe we are in disagreement with the reviewer for 

the majority of their points, and it is the poor wording on our part that has limited the current 

figures. We hope the reviewer finds them improved. 
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We have now split Figure 1 in half and labelled whether time-space characteristics or phase-

space characteristics are used to distinguish groupings. In brief, the distinction between 

‘transition-no transition’ and ‘abrupt-gradual’ involves the time-space whereas the 

subcategories involve the phase-space. 

 

 

 

2) I also could not follow the logic of why step changes in the state variable in time-space 

due to a large shift in control parameter qualify as rapid regime shift, while a non-

linear trend (i.e. State threshold following the terminology of Andersen et al. ) is 

classified under gradual, smooth transitions, particular since in a matching step in time-

space in driver and state variable results in a linear trend in phase-space (also 

mentioned in D).  

 

We agree that the ‘threshold-like’ dynamics described in Andersen et al. 2009 is a member of 

the abrupt transition and non-bifurcation class (class B) rather than the smooth transition 

class. We have therefore added it as an example in B as a replacement for cyclic transitions 

(see response to comment 3). 

 

We also apologise for the vague terminology of examples in the smooth transition (class D), 

which we did not intend to include threshold-like dynamics. Instead, we were referring to 
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Kefi et al.’s (2013) gradual curve that qualitatively describes exponential decay. We have 

therefore clarified this example in Figure 1 and added it to Figure 2 - Smooth transition (b - 

non-linear). 

 

 

 

3) Also, under the label abrupt non-bifurcation, the example of cyclic regime shifts is 

given; however, in this generality, cyclic regime shifts might well involve bifurcation 

points and thus possibly EWSs, see, for instance, Scheffer and Carpenter 2003, Darkos 

et al. 2014. 

 

The reviewer highlights a valid point regarding cyclic regime shifts as the mechanism may 

differ between different examples. Dakos et al. (2015) highlight an example where the driver 
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continually increases and relaxes to allow both critical transitions and non-bifurcations to 

cause successive regime shifts, whereas Rinaldi and Scheffer (2000) describe how the 

bistable region of the Hopf bifurcation may also manifest in cyclic shifts. Cyclic shifts as a 

blanket phenomenon consequently do not fall in to any one of our Figure 1 classifications 

though each individual shift should independently be classifiable using Figures 1 and 2.  

 

We have therefore removed cyclic regime shifts from abrupt non-bifurcations as an 

inappropriate example and replaced it with the threshold-like responses the reviewer 

encouraged in comment 2). 

 

4) Further, I find the figure caption could be improved. For instance, I found it 

confusing that the authors open with, "In its simplest form, a regime shift is the process 

whereby an ecosystem rapidly changes from one alternative stable state to another …" 

which is commonly the wording used to describe critical transitions, they then continue 

"whereas critical transitions .." where they again refer to critical transitions. I would 

also doubt that the existence of a positive feedback mechanism is easy to demonstrate 

based on data; at least, it is nothing that the authors did.  

 

We have altered the terminology in the revision to avoid stable states and to focus on 

fundamental changes (following Dakos et al. 2015 and Andersen et al. 2009). This then 

fulfils the use case of many practitioners. It then distinguishes regime shifts from critical 

transitions and other mechanisms that explicitly require the theory of alternative stable states. 

For example, Dakos et al. 2015 highlight how it is the abrupt and persistent nature of regime 

shifts that is typically of interest to many researchers and managers. They then describe the 

various mechanisms that can generate such regime shifts which we attempt to characterise 

here. 

 

‘Regime shift: Sudden or abrupt shift in the state of the system resulting from the influence of 

an external control parameter/driver or by the system’s internal dynamics, where core 

ecosystem functions, structures and processes are fundamentally changed. A regime shift may 

be associated with bifurcations (after crossing control parameter thresholds/tipping points), 

step changes in state (in response to step changes in control parameter), threshold-like 

responses (sigmoidal response to control parameter), or limit cycles (cyclic changes due to 
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the system’s internal dynamics). These abrupt shifts may also occur across different trophic 

levels.’ 

 

Similarly, we agree that existence of a positive feedback mechanism is extremely challenging 

(and possibly impossible) from observational data alone. It is however a key feature of 

critical transitions and so we are required to mention it here, even if current techniques can’t 

identify it. We have caveated this in the Figure 2 caption. 

 

‘TGAMs are limited by classifying system dynamics solely upon observational data and 

therefore will not guarantee classification without knowledge of the underlying system 

equations. Those equations can only be determined through experiments and differential 

equation modelling 24, but TGAMs provide a ‘best-guess’ using the limited data typically 

available to system managers.’ 

 

5) On the other hand, characteristics like hysteresis and discontinuity are missing, 

which are later used by the authors in their line of argumentation.  

 

Hysteresis and discontinuity are now important characteristics for defining critical transitions 

in the Glossary (Table 1). 

 

6) Further in the glossary, the authors define regime shifts as sudden or abrupt shifts to 

an alternative attractor; however, this technically does not include the case of matching 

step changes in driver and state variables (B), so overall, this definition appears 

inconsistent. I would have also appreciated it if the authors had found a minimal set of 

needed terminology for the scope of their manuscript and used this consequently; for 

example, they define bifurcation and use the word tipping point within the definition. 

Thereof follows an additional definition for tipping point without clearly stating the 

subtle difference to bifurcation. As I understood it, tipping point was used as a more 

specific term for the particular case of critical transitions; however, when the authors 

define critical transitions, they use the term critical value/ bifurcation point instead.  

 

We have replaced the attractor terminology with ‘fundamental changes’ to be inclusive of 

step changes in driver and state variables. 
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Similarly, bifurcation point is now defined and referenced alongside tipping point to highlight 

the subtle difference highlighted by the reviewer. 

 

‘Tipping point: A threshold value at which a dynamical system undergoes a sudden shift 

from one stable state to another alternative stable state in response to small stochastic 

perturbations (Scheffer et al. 2012).  

Bifurcation point: A threshold value specifically associated with a bifurcation (Scheffer et al. 

2012; Boettiger et al. 2013).’ 

 

7) Also, it would have been helpful to introduce the words discontinuity and hysteresis 

here.  

 

These terms have now been added or mentioned in the glossary (Table 1). 

 

8) Further, the given definition of a smooth transition clearly subsumes the case of 

matching breakpoints in time space and an overall linear relation in phase space, which 

is also referred to in class B. 

 

We agree and have responded to this comment in response to comment 2). 

 

9) In regard to Figure 2, I find the most important and maybe most difficult case to 

distinguish is not clearly depicted, i.e. the non-linear smooth transition (state threshold 

following Andersen et al.). From a depiction of this case, it would have become clear 

that one would also expect a bimodal distribution there. Thus, the only evidence 

remaining to distinguish state thresholds from critical transitions is hysteresis evidenced 

by overlapping data clouds and more than one breakpoint in phase-space. In cases 

where there is no overlap, the remaining difference might be the presence of 

discontinuity, which is however very hard to detect under common monitoring data 

quality. 

 

We entirely agree with the reviewer that the threshold-like vs critical transition dynamics are 

the most challenging to disambiguate, and that hysteresis is the key feature to distinguish 

them. We have therefore added to Figure 2 sub-classification examples for abrupt transitions 

to describe (similar to Andersen et al. 2009) how threshold-like transitions are anticipated to 
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behave in the threshold GAM framework – i.e non-linear changes in both the time and phase 

spaces, a bimodal distribution and no hysteresis.  

 

10) This leads me to the potential of TGAM, where I sincerely doubt that they can 

distinguish between State threshold cases and driver-state hysteresis in the absence of 

an indicator for hysteresis, i.e. overlap of data clouds and more than one threshold, and 

to my knowledge, there exists no demonstration in regard to this capabilities. In L 400- 

L 405, the authors mention overlap as a criterion, however, hysteresis can not be 

decerned from bimodality and seems otherwise not to have been used in the 

classification of critical transitions and non-critical transitions.  

 

We do not endorse TGAMs as a panacea for regime shift detection due to the challenges the 

reviewer rightly highlights, but we do believe that their flexibility allows us to describe more 

forms of dynamics than the typically applied linear techniques to regime shift detection 

(STARS, segmented regression, bifurcation baby form modelling etc). Consequently, we 

believe TGAMs are the current ‘best guess’ available for generic regime shift classification 

from observational data, but fully support the importance of experimental and modelling 

systems for unambiguously classifying systems as strongly endorsed by Scheffer and 

Carpenter 2003. This is highlighted on lines 168-179: 

 

‘The time series classifications performed by TGAMs represent insights into the likely 

mechanism of change, covering a range of regime shift relevant mechanisms. There are, 

however, certain mechanisms that cannot be disambiguated without experimental or 

simulated work due to their similar behaviour across time and state-spaces. For example, 

threshold-like responses 54 and cusp bifurcations 7 will both display sigmoidal responses in 

both time and state-space (Figure 2 – b) threshold-like) but only the cusp bifurcation is 

anticipated to exhibit CSD. For this study, critical transitions are sufficiently different from 

other mechanisms to be classified (assuming some relaxation of driver has occurred to 

evidence hysteresis) compared to non-bifurcation regime shifts, but we suggest that for 

qualitatively similar mechanisms, further evidence is necessary. Experimental and modelling 

to identify plausible system equations is an appropriate avenue to supplement TGAMs fit to 

observational data only.’ 

 

And lines 424-430: 
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‘Together, these three analyses allow us to disentangle critical transitions from other forms 

of non-bifurcation regime shifts such as pulse events or step changes, while also identifying 

non-linear but continuous transitions (i.e. non-critical transitions and smooth transitions), 

not feasible without the use of GAMs. That said, TGAMs are descriptive of observational 

data rather than diagnostic, and true classification requires some understanding of the 

governing system equations not achievable from observational data alone.’ 

 

In this revision, we have been more explicit in the description column of Figure 2 for the 

requirements for distinguishing between dynamics and have caveated all our classifications 

further in the figure legend.  

 

Figure 2 Caption 

‘TGAMs are limited by classifying system dynamics solely upon observational data and 

therefore will not guarantee classification without knowledge of the underlying system 

equations. Those equations can only be determined through experiments and differential 

equation modelling 24, but TGAMs provide a ‘best-guess’ using the limited data typically 

available to system managers.’ 

 

That said, regarding the distinguishing of critical transitions from threshold-like dynamics,  

we do anticipate that, if the sampling resolution was sufficiently high (relative to the scale 

that the transition is occurring), that continuity would be identifiable in the threshold-like 

response regime shift using TGAMs (see Figure 2), while discontinuity would be identifiable 

in critical transitions. We also agree hysteresis is key but that TGAMs can identify hysteresis 

from the overlap in smooths before and after the breakpoint. In fact, all four of the trophic 

levels we classify as critical transitions (Kasumiguara zooplankton, Kinneret phytoplankton 

and Monona zooplankton, Washington phytoplankton) all display overlap (Figure S1) which 

we have interpreted as hysteresis. We have interpreted these as hysteresis because, while the 

system has not shifted back to its original state, it has re-experienced abiotic driver values 

present prior to regime shift. In the threshold-like dynamics scenario, the system would have 

shifted back to the original state.  

 

We have clarified this interpretation on lines 301-315: 
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‘…This is compounded further as the disambiguation of critical transitions from certain 

other regime shift mechanisms can be extremely complicated in empirical data 24,25,54, and 

the classifications we have made here are ultimately a ‘best guess’ given the data 

availability. For example, critical transitions (Figure 1 - A) and threshold-like responses 54 

(Figure 1 – B) likely display identical time series, bimodality, and very similar state-space 

behaviour. The primary difference between the two mechanisms identifiable from empirical 

data is the presence of hysteresis which can only be observed if the system reverts entirely 

(i.e. regime shifts back to the original state) or partially (i.e the driver relaxes back in to the 

bistable region but not sufficiently for the system to shift back). As described in Figure 2, 

hysteresis can be identified by an overlap of TGAM smooths in the state-space, while a 

threshold-like response has no overlap. All the lakes we classify as critical transitions do 

display some degree of overlap/hysteresis (Figure S1), but other lakes’ breakpoints may not 

have sufficiently reverted for hysteresis to be identified. We therefore encourage empirical 

regime shift and EWS researchers to consider the mechanisms driving shifts 1,24,25 to 

maximise their reliability and appropriateness, and to not solely use EWSs as evidence of 

approaching tipping points.’  

 

11) The authors have already toned down the certainty in their classification, e.g. figure 

1 caption and added a statement in the discussion (L278 - L281), however, I would have 

sincerely wished that the authors were much clearer and more consistent about these 

limitations throughout the text, e.g. that they would have refrained from statements like 

“the precise classification” (L125) or be clearer in figure 2 (see comments above). I do 

not think these well-known problems have a major impact on the assessment of the true 

positive abilities of EWSs since the authors made a conservative selection there. On the 

other hand, this conservative choice might have introduced cases with EWS into the 

class of non-critical transitions and thus might have affected the true negative 

predictions, depending on the number of ambiguous cases, unfortunately, the authors 

do not quantify this. In the light that these are well-known technical and thus 

acceptable problems, I would have much appreciated a very clear communication or an 

exclusion of these ambiguous cases altogether.  

 

We have removed the reference to ‘precise’ throughout the text (replacing ‘precise’ with 

‘explicit’ where necessary as we believe it is important to highlight that some consideration 

of possible dynamics is required when testing EWS ability), and have introduced an earlier 
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section discussing the ambiguous cases surrounding identifying hysteresis, threshold-like 

transitions and critical transitions in response to Comment 10) on lines 162-179. 

 

‘Many of the other lakes displayed breakpoints in their time series (e.g. Lake Mendota’s 

zooplankton) but these were not matched in the environmental state space nor fulfilled the 

other requirements (e.g. no overlap of clusters to indicate hysteresis, Figure 2, Figure 4A, 

Figure S1) and were therefore classified as abrupt non-bifurcations if they also displayed 

bimodality. There are therefore two primary classifications relevant to EWSs – critical 

transitions and not critical transitions. Classifications made by TGAMs were then used to 

ground truth downstream EWS assessments and trim time series to pre-transition data. The 

time series classifications performed by TGAMs represent insights into the likely mechanism 

of change, covering a range of regime shift relevant mechanisms. There are, however, certain 

mechanisms that cannot be disambiguated without experimental or simulated work due to 

their similar behaviour across time and state-spaces. For example, threshold-like responses 

54 and cusp bifurcations 7 will both display sigmoidal responses in both time and state-space 

(Figure 2 – b) threshold-like) but only the cusp bifurcation is anticipated to exhibit CSD. For 

this study, critical transitions are sufficiently different from other mechanisms to be classified 

(assuming some relaxation of driver has occurred to evidence hysteresis) compared to non-

bifurcation regime shifts, but we suggest that for qualitatively similar mechanisms, further 

evidence is necessary. Experimental and modelling to identify plausible system equations is 

an appropriate avenue to supplement TGAM fits to observational data only.’ 

 

We agree that our approach is conservative, but we are unsure how to approach the 

suggestion of communicating true and false positive rates as we truly do not know the 

mechanism that defines the dynamics of these lakes. We consequently cannot accurately 

fulfil this request and are using TGAMs as a ‘best guess’ for the dynamics prior to using 

EWSs; a classification typically lacking/unjustified from the previously published literature 

of natural systems. 

 

12) In Figure 2, fourth row, second column subfigure (4,2): From the subfigure in the 

fourth row, the first column (4,1), it occurs that there are no flat-tail high system state 

values, so the curve in 4, 2 should have either an L shape or L shape mirrored at the y 

axis. 
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We have changed this accordingly, matching the direction of state vs both time and abiotic 

driver, but do want to highlight that we have not specified whether driver is increasing or 

decreasing through time, and so the state space plot could be in either orientation. I.e. if 

driver is decreasing through time and causes a transcritical transition, then the original 

schematic would be correct. However, for clarity, we have altered our figure and the caption 

to indicate that we are assuming abiotic driver is increasing through time. 

 

‘Hypothesised behaviour of possible system dynamics under three complementary analyses 

used to classify the fate of a time series. These analyses fulfil the criteria of Scheffer and 

Carpenter 24, Andersen et al.54, and Bestelmeyer et al. 25 for identifying alternative stable 

states in empirical data through i) time series shifts , ii) a hysteresis response to the control 

parameter and iii) multimodal distributions. We have assumed here that the control 

parameter/environmental driver is increasing through time. Analyses i) and ii) are performed 

using threshold generalised additive models (TGAMs) of plankton density against time and 

environmental driver respectively…’ 

 

13) L197: “This results ...” should be “These results….” or “The results …” 

 

We apologise for the confusion as this sentence was referring to why multivariate EWSs 

estimated using expanding windows had the highest average classification probabilities. We 

have clarified this with the sentence now reading: 

 

‘This probability is associated with these EWSs displaying the highest probabilities in 

monthly data…’ 

 

14)  L276: This might refer to Figure 4, not 2. 

 

Changed accordingly. 

 

Reviewer #2 

 

15) I disagree with the new title "Early warning signals require critical 

transition..."  This is logically incorrect, as an attribute cannot "require" anything from 

its process. In my review, I suggested title "Analysis of EWS in empirical lake data". If 
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the authors want to stress that EWS is an attribute of critical transitions (which is 

actually not a new message), they may say "Critical transitions in empirical lake data 

are accompanied by EWS" (or "have EWS signatures") 

 

We thank the reviewer for their suggestion. We have followed their suggestion in 

combination with the editor to rename the title as: Early warning signals have limited 

applicability to empirical lake data. 

 

16) I still think that in tables S3-S13 (eleven tables, each of one page) the columns of 

Rhat with repeated values 1, all the same and not informative in such quantities, must 

be removed, and just a line with this information (Rhat=1) should be added to each 

table caption.  

 

We have fulfilled the reviewer’s request by removing the Rhat column and adding that 

information to the tables’ captions. 

 

‘Rhat was equal to 1 for all estimates.’ 

 

Reviewer #3 

 

17) The authors have addressed my comments and concerns and significantly improved 

the figures in the manuscript. 

 

We thank the reviewer for their useful comments and believe the manuscript is stronger and 

more useful as a result. 
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