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Poor correspondence between dHvA effect data and DFT-calculated Fermi
surfaces

We performed density functional theory (DFT) calculations for UTe2 using the full electron,

linearised augmented plane-wave package Wien2K.1 Electronic structures were converged on

a 17 × 17 × 17 Monkhorst-Pack 𝑘-mesh within the Brillouin Zone (BZ) of the primitive unit

cell using the Generalised Gradient Approximation (GGA) exchange-correlation potential. A

variable Hubbard parameter (U) was utilised, while the static magnetic moment on the ura-

nium ions was constrained to zero. The effects of spin-orbit coupling (SOC) were taken into

account. Lattice parameters and internal positions were chosen according to those used in pre-

vious DFT attempts at fitting dHvA oscillations in UTe2,2, 3 listed in Table S1. Subsequently,

non-self-consistent calculations were performed on a 46 × 46 × 46 𝑘-mesh (12996 𝑘-points in

the irreducible BZ) to obtain a high resolution Fermi surface for further study.

DFT+U+SOC results were consistent with previous work.3, 4 When correlations are ne-

glected, the DFT produces an insulating ground state in UTe2. However, applying a moderate

repulsive potential to the U-5 𝑓 electrons through a Hubbard U induces an insulator to metal

transition at ∼ 1 eV.4 The geometry and topology of the computed Fermi surfaces was exam-
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Species 𝑥 𝑦 𝑧

U 0 0 0.13480
Te1 0.5 0 0.29770
Te2 0 0.2510 0.5

Table S1: The internal atomic positions used in our DFT study of UTe2. The
lattice constants chosen for the calculations were 𝑎 = 4.1617 Å, 𝑏 = 6.1276 Å, and 𝑐 =
13.9650 Å.

ined for U = 1-16 eV. For values of U below 1.7 eV a 3D, toroidal, electron-like contribution to

the Fermi surface is recovered, while the hole-like surface consists of a heavily warped cylinder.

Above 1.7 eV the toroidal Fermi surface splits into another cylinder whereas the hole-like sheet

becomes less warped, resulting in a quasi-2D Fermi surface consisting of two cylinders centred

at the X and Y high-symmetry points.

Here, we plot characteristic Fermi surface calculations for a range of U values from U = 1 eV

up to U = 16 eV. We compare the expected angular evolution of the dHvA effect of these cal-

culated Fermi surfaces with the measurements performed in this study and reported in ref.3

It is clear that none of these calculated Fermi surfaces fully account for the observed dHvA

frequency evolution. Namely, none of them are able to account for the existence of a low fre-

quency branch. Further, all the DFT calculations exhibit moderate degrees of corrugative warp-

ing resulting in Fermi surface sheets that will produce multiple frequencies along the c-axis, in

contradiction to what we have observed (Supplementary Figure S7). Hence, this motivated us

to perform Fermi surface simulations guided by the dHvA data, as detailed below.

Visualisation of DFT-generated Fermi surfaces was performed using PyVista-based scripts5, 6

and the corresponding quantum oscillation frequencies were extracted using the SKEAF ex-

tremal area program.7
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Fig. S1. The simulated quantum oscillation frequencies (a,b) from the DFT calcu-
lated Fermi surface with U = 1.0 eV (c,d). Low quantum oscillatory frequencies are
expected, very different from those observed by experiment.
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Fig. S2. The simulated quantum oscillation frequencies (a,b) from the DFT calcu-
lated Fermi surface with U = 1.5 eV (c,d). Multiple frequency branches are expected,
in both rotation planes, that are not observed by experiment.
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Fig. S3. The simulated quantum oscillation frequencies (a,b) from the DFT cal-
culated Fermi surface with U = 2.0 eV (c,d). A large proportion of the angular profile
in the 𝑐-𝑏 plane is captured by this Fermi surface calculation. However, in the 𝑐-𝑎 plane
the low, spectrally dominant frequency branch is not accounted for.
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Fig. S4. The simulated quantum oscillation frequencies (a,b) from the DFT cal-
culated Fermi surface with U = 8.0 eV (c,d). Again the low, spectrally dominant
frequency branch in the 𝑐-𝑎 plane is not accounted for.
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Fig. S5. The simulated quantum oscillation frequencies (a,b) from the DFT cal-
culated Fermi surface with U = 12.0 eV (c,d). Again the low, spectrally dominant
frequency branch in the 𝑐-𝑎 plane is not accounted for.
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Fig. S6. The simulated quantum oscillation frequencies (a,b) from the DFT cal-
culated Fermi surface with U = 16.0 eV (c,d). Again the low, spectrally dominant
frequency branch in the 𝑐-𝑎 plane is not accounted for.
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Fig. S7. Change in Fermi surface cross-sectional area as a function of distance
𝑧 in the first Brillouin zone. DFT calculations predict substantially more corrugation
than our empirical model which has near-constant cross sectional area for both the
hole (a) and electron pockets (b).
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Fermi surface parameterisation

The Fermi surface simulations detailed in the Methods section were generated using a Cartesian

reciprocal space basis:

®𝑒𝑥 = 2𝜋(1/𝑎, 0, 0),

®𝑒𝑦 = 2𝜋(0, 1/𝑏, 0),

®𝑒𝑧 = 2𝜋(0, 0, 1/𝑐).

(1)

This can be related to the actual 𝑘-space basis as:

®𝑘𝑥 = ®𝑒𝑦 + ®𝑒𝑧

®𝑘𝑦 = ®𝑒𝑥 + ®𝑒𝑧

®𝑘𝑧 = ®𝑒𝑥 + ®𝑒𝑦 .

(2)

Fig. S8. The reciprocal space basis used to parameterise the Fermi surface. A
Cartesian coordinate system was used since it has an intuitive relation with the cylin-
drical polars used to parameterise the Fermi surface.
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Fermi surface simulations

As discussed above, DFT calculations were unable to accurately describe the measured quantum

oscillation data. On close inspection, the dHvA effect data exhibit some key features:

1. At 0◦, all frequencies collapse onto a single point, indicating that the area of all surfaces

when viewed down the 𝑐-axis must be extremely similar.

2. When initially rotating away from ®𝑐 towards ®𝑎, the frequencies split into three branches,

with one branch that decreases in frequency, which would appear at odds with a cylindri-

cal Fermi surface of circular cross-section.

3. At angles close to 90◦ the the frequencies go as 1
cos 𝜃 with only one (fast) frequency ob-

servable at 74◦, indicative of cylindrical Fermi surfaces of similar area again.

Initially, the behaviour of the quantum oscillation data at 0◦ and high angles seems to con-

tradict the behaviour seen at intermediate angles. However, from the angle dependence of the

oscillations and from DFT calculations, several features of the Fermi surface can be deduced.

DFT calculations suggest that the Fermi surface does indeed consist of two ‘squircular’ cylin-

ders. The 0◦ behaviour indicates that both cylinders must have very similar areas but also that

their area cannot be very warped as a function of 𝑘𝑧 otherwise this would result in a number of

frequencies at 0◦. However, the mid-angle frequencies show neck-and-belly behaviour as well

as a branch that decreases in frequency, which would indicate warping along 𝑘𝑧. To reconcile

these behaviours, it is noted that the symmetry of the Brillouin Zone allows spatial warping

along 𝑘𝑧. What this means is that the Fermi surface consists of cylinders of constant area which

follow a sinusoidally oscillating path in the 𝑘𝑥/𝑘𝑦 plane as a function of 𝑘𝑧 (Supplementary

Figure S9).

In DFT, changing U in the range 2-16 eV modifies the direction and amplitude of the above

warping, likely due to changes in the hybridisation of the bands. However, the DFT results could
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Fig. S9. Comparison of the maximal (blue) and minimal (red) semi-classical or-
bits around undulating (a) and corrugated (b) cylindrical Fermi surfaces for dif-
ferent field tilt angles in the 𝑎-𝑐 plane. We find that an undulating surface allows for
degenerate orbits along the 𝑐-axis that split into an increasing and decreasing branch
off-axis. At some critical angle between 45◦and 60◦the minimal frequency will rapidly
increase. This profile is able to describe all the features of the dHvA oscillations. For a
corrugated, neck-and-belly type surface, on-axis the orbits are degenerate and off-axis
follow a 1/(1 − cos(𝜃)) relation, at odds with measurement.
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not completely capture the angular frequency evolution observed in the quantum oscillation data

(see Supplementary Figures S1-6).

Instead, an approach similar to the work of Bergemann et al.8 was adopted. For UTe2, the

squared-off shape of the cylinders means that the Fermi surface can be described as a superpo-

sition of super-ellipses defined as:

���� 𝑞𝑥𝑅𝑎

����𝑛+ ���� 𝑞𝑦𝑅𝑏

����𝑛= 1. (3)

Therefore, the surface vectors can be defined as

𝑞𝑥 (𝑡) =
∑︁
𝑛

𝐴𝑛 | cos 𝑡 |
2
𝑛 · 𝑅𝑎 sgn(cos 𝑡)

𝑞𝑦 (𝑡) =
∑︁
𝑛

𝐴𝑛 | sin 𝑡 |
2
𝑛 · 𝑅𝑏 sgn(sin 𝑡)

𝑡 ∈ [0, 2𝜋] (4)

where 𝑅𝑎 and 𝑅𝑏 are the semi-diameters in the 𝑞𝑥 and 𝑞𝑦 direction respectively. 𝑞𝑥 and 𝑞𝑦 are

defined according to orthogonal basis vectors, not the reciprocal lattice vectors (see Supple-

mentary Figure S7). The exact shape of the Fermi surface in the ®𝑒𝑥 − ®𝑒𝑦 plane does not have a

strong influence on the simulated oscillations and so the combination of super-ellipses was cho-

sen such that it reproduced the in-plane shape of the U = 8 eV DFT calculation. The dominant

super-ellipse contribution comes from 𝑛 = 5 (Supplementary Figure S10).

The centres of the super-ellipses trace out a sinusoidal path in reciprocal space that can be

parameterised as

𝑝𝑥 (𝑢) = 𝑤𝑎 cos(𝑢)

𝑝𝑦 (𝑢) = 𝑤𝑏 cos(𝑢)

𝑝𝑧 (𝑢) = 𝑢

𝑢 ∈ [−𝜋, 𝜋] (5)

where 𝑤𝑎 and 𝑤𝑏 are the warping parameters in the ®𝑒𝑥 and ®𝑒𝑦 directions respectively. Physically,

this may correspond to hybridisation between U and Te orbitals governed by the respective
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Fig. S10. Fits for the dominant super-ellipsoidal portions of the electron and hole
cylinder from a DFT calculation with U = 8 eV. We find the electron cylinder has an
exponent of 𝑛 = 4.7 and the hole cylinder 𝑛 = 4.96. Hence for our model we choose
𝑛 = 5.

interatomic distances, similar to behaviour seen in YFe2Ge2 (ref.9). Note since 𝑢 is defined

in the range of [−𝜋, 𝜋], the final areas must be rescaled according to the real extent of the ®𝑒𝑧

direction.

With these parametric equation defined, the simulated Fermi surface can be obtained by

defining the surface

®𝑆 = ®𝑞 + ®𝑝 + ®𝐴 (6)

where

®𝑞 = (𝑞𝑥 , 𝑞𝑦, 𝑞𝑧), (7)

and

®𝑝 = (𝑝𝑥 , 𝑝𝑦, 𝑝𝑧). (8)

®𝐴 is an offset from the centre of the Brillouin zone such that the cylinders are centred at the X

and Y high-symmetry points. For these simulations the unit-cell was assumed to have dimen-
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sions:10

𝑎 = 4.123 Å,

𝑏 = 6.086 Å,

𝑐 = 13.812 Å.

(9)

The 0◦ dHvA data fix the areas of each cylinder at constant values Aℎ/𝑒 while the sym-

metry properties of the Brillouin zone allows the hole-like cylinder to only be warped in the

®𝑒𝑥 direction, whereas for the electron-like cylinder warping is only allowed in the ®𝑒𝑦 direction.

This means that once the area for each cylinder has been determined there are only two free

parameters that can be varied to fit the data:

𝑅𝑎

𝑅𝑏

, where 𝑅𝑎𝑒/ℎ𝑅𝑏𝑒/ℎ = A𝑒/ℎ, (10)

𝑤𝑎/𝑏 for 𝑒/ℎ. (11)

For the hole-like cylinder, values of:

𝑅𝑎 = 1.92,

𝑅𝑏 = 2.12,

𝑤𝑎 = 0.52,

𝑤𝑏 = 0

(12)

were determined, whereas for the electron-like cylinder it was found that:

𝑅𝑎 = 1.55,

𝑅𝑏 = 2.59,

𝑤𝑎 = 0,

𝑤𝑏 = −0.15.

(13)
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With these parameters, Fermi surfaces were generated and visualised using PyVista.5 Sim-

ulated frequencies were determined according to a similar methodology to SKEAF,7 although

the closed-cylindrical topology of each surface makes determining extremal frequencies sig-

nificantly easier. Since there is only one warping parameter, each cylinder can contribute at

most only two extremal areas. Extremal areas were determined by shifting each cylinder to the

origin and creating a supercell of the cylinder (extending 20 Brillouin zones). Slicing planes

were then placed at regular intervals along the ®𝑐 direction where the angle of the slicing planes

could be varied continuously through 90◦ towards either the ®𝑎 or ®𝑏 direction. The maximal and

minimal areas, A, of the intersection of each slicing plane with each cylinder could then be

determined, and hence the frequency contribution, 𝑓 , of each cylinder was calculated according

to the Onsager relation,11

𝑓 =
ℏA
2𝜋𝑒

. (14)

It should be noted that the quantum oscillation data is degenerate with respect to inversions

of the warping parameter. This is to say that making 𝑤𝑎/𝑏 negative will invert the warping of the

cylinders while leaving the simulated oscillation pattern the same (see Supplementary Figure

S11). In this work we chose the warping to best emulate the Fermi surfaces seen for U = 8 eV

as used in several other UTe2 works, in addition to studies of several uranium oxides.12–14
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Inverted-warping Fermi surface

Fig. S11. An example degenerate Fermi surface. a, Side-on view of the Fermi
surface. b, Top-down view of the Fermi surface. c, Extension of cylinders outside of
the first Brillouin zone. When the warping parameters are inverted an alternate Fermi
surface is produced with simulated dHvA effect frequencies that identically match the
quantum oscillation data (see Fig. 4 of main text). The shape of these surfaces more
closely resembles the DFT-generated Fermi surfaces of U = 1.7-2.0 eV than those of
other U parameters.
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Quantum oscillations in the contactless resistivity of UTe2

In addition to our dHvA effect study presented in the main text, we also measured quantum

oscillations from the Shubnikov-de Haas (SdH) effect. Contactless resistivity was measured by

utilizing a proximity diode oscillator (PDO) circuit, with the change in frequency of this circuit

as a function of magnetic field being related to the change in resistivity of a UTe2 crystal (for

further details of this measurement technique, see for example refs.15–17).

Figure S12 shows the contactless resistivity of UTe2 for field oriented along the ®𝑐 direction

(purple curves) and at a tilt angle of 51◦ away from ®𝑐 towards ®𝑏 (green curves). For field aligned

along ®𝑐, a monofrequency oscillatory signal is clearly resolved, with no other frequency peaks

resolvable above the noise floor. This is in very good agreement with the torque data presented

in the main text.

We note that a recent field-modulation technique study of the dHvA signal of UTe2 along

the ®𝑐 direction reported multiple frequency branches for this orientation.18 The authors posited

that the disagreement between their result and that of our torque study is likely due to a mis-

alignment in one of the experiments. We note that our employed cantilever beam magnetometry

technique of capacitive torque magnetometry in general allows for better accuracy and precision

in angular orientation than magnetic torque performed using piezoelectric cantilevers, due to the

larger sample and cantilever sizes involved that enable easier orientation during the mounting

procedure. However, by the nature of the measurement, the possibility of some non-negligible

deflection of the cantilever away from the equilibrium position of alignment – although un-

likely due to the very small magnitude of background torque close to a high symmetry direction

– nonetheless cannot be entirely excluded. For our contactless resistivity study presented here,

we replicate the monofrequency waveform of Fig. 3 of the main text very well. We note that

the alignment of the crystal for the PDO experiment was assisted by choosing a platelet shaped

sample, with a dominant (001) face. This was then secured onto a planar PDO coil such that

18



the base plate of the measurement coil – the plane of which runs orthogonally to the crystal-

lographic ®𝑐 direction – could be firmly secured onto the rotator platform of the measurement

probe. With this platform oriented normal to the applied field, the field is then aligned along the

®𝑐 direction. Angular orientation was calibrated by use of a Hall sensor.

We note that the resolution of our PDO measurement was not as sensitive as the comparative

torque measurement at 𝜙 = 0◦ in the main text, as the second harmonic is not discernible.

This may be due to some technical differences in the optimisation of the two measurement

techniques, or due to a difference in sample quality, or a combination of both. Despite the

lower temperature of the 51◦ measurement, it is not sensitive enough to resolve any frequency

components. This is consistent with the rapidly increasing frequency profile of our quasi-2D

Fermi surface model, accompanied by a sharp diminution of oscillatory amplitude, as the field

is titled further away from the axis of the cylinders (as demonstrated by Fig. 2 of the main text)

– thus, the oscillatory amplitude appears to have fallen below the comparatively high noise floor

of the PDO measurement. Our SdH measurements therefore do not indicate the presence of any

other Fermi sheets beyond the two quasi-2D cylindrical sections that are captured by our Fermi

surface model and presented in Fig. 4 of the main text.
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Fig. S12. Quantum oscillations in the contactless resistivity of UTe2. a, PDO
frequency for a coil connected to a UTe2 crystal with magnetic field oriented along
the ®𝑐 direction. (Here 𝜙 is defined as the angle between ®𝑐 and ®𝑏.) The inset gives a
zoomed view at high field, showing that the 3.5 kT oscillations are clearly visible in the
raw signal before background subtraction. b, Background-subtracted PDO signal for
magnetic field oriented along the ®𝑐 direction (𝜙 = 0◦) and tilted 51◦ away from ®𝑐 towards
®𝑏. The 51◦ data has been offset by 80 Hz for clarity. The subtraction procedure for both
angles was performed identically. c, FFT spectra of the data in panel (b).
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Estimation of the mean-free path

We can estimate a lower bound for the mean-free path of the samples investigated in this study

by considering the (real-space) cyclotron orbits that give rise to the observed magneto-quantum

oscillations. Assuming an approximately circular cross-sectional surface area normal to the

applied magnetic field, then A = 𝜋𝑘2
F, where 𝑘F is the Fermi wave-vector. Consider now the

cyclotron motion of an electrically charged quasiparticle in the presence of a magnetic field 𝐵,

which may be described by

𝑚∗ 𝑣
2
F

𝑟
= 𝑒𝐵𝑣F, (15)

where 𝑟 is the radius of the cyclotron orbit and 𝑣F is the Fermi velocity. As ℏ𝑘F ≡ 𝑚∗𝑣F, we can

substitute this into the above and with use of Eqn. 14 we may express 𝑟 as

𝑟 =

√︂
2ℏ 𝑓
𝑒𝐵2 . (16)

Therefore, the observation of a quantum oscillation frequency of 18.5 kT (in Fig. 2 of the main

text) at a magnetic field of 26 T implies a cyclotron orbit of radius ≈ 1900 Å. Thus, this gives

an approximate lower bound on the mean-free path of the sample.

We can compare this value deduced from cyclotron orbit arguments with an estimation of

the mean-free path, 𝜆, expected from Drude theory.19 For a metal with carrier density 𝑛, 𝜆 may

be expressed as:

𝜆 =
𝑚∗𝑣F

𝑛𝑒2𝜌0
=

ℏ𝑘F

𝑛𝑒2𝜌0
. (17)

Taking 𝑛 from a prior Hall effect study,20 which found for 𝐵 < 35 T that 𝑛 = 1.6 ×1022 cm−3,

then a sample with 𝜌0 ≲ 0.5 µΩ cm (Fig. 1b) has 𝜆 ∼ 2000 Å. Thus, this approximation

underlines the pristine quality of the UTe2 single crystals investigated in this study.
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Conductivity tensor analysis

The absence of a pronounced anisotropy of the electrical conductivity of UTe2 has been pro-

posed as evidence in favour of the existence of a 3D Fermi surface pocket in this material.21 This

is because in many materials with Fermi surfaces consisting exclusively of quasi-2D cylindrical

sections, such as cuprates and ruthenates, the resistivity in the plane orthogonal to the cylin-

drical axis is typically orders of magnitude lower than for transport parallel to the axis.22–24

However, the Fermi surface cylinders of typical cuprates and ruthenates do not have the pro-

nounced warping that we find is required to describe the dHvA data of UTe2 (Fig. 4 of the main

text). Therefore, the vector normal to their Fermi surfaces – at all points on the surfaces – never

has a significant component in the 𝑘𝑧 direction. By comparison, we show below that our Fermi

surface model of UTe2 – with its strongly pronounced undulations – naturally accounts for the

isotropy of the electrical conductivity tensor, as we plot in Fig. 5 of the main text.

The conductivity of a metal within the relaxation time approximation25 can be written as:

𝜎𝛼𝛽 (𝑇) = 1
𝑘B𝑇

∫ ∞

−∞
𝑓 (1 − 𝑓 )X𝛼𝛽 (𝜖)𝑑𝜖 (18)

for energy 𝜖 , temperature 𝑇 , where 𝑘B is Boltzmann’s constant and 𝑓 is the Fermi-Dirac distri-

bution function

𝑓 =

(
exp

[
(𝜖 − 𝜇)
𝑘B𝑇

]
+ 1

)−1
, (19)

for chemical potential 𝜇, and X𝛼𝛽 (𝜖) is the transport coefficient25 defined to be

X𝛼𝛽 (𝜖) = 2𝑒2
∫

k

∑︁
𝑖

𝑣𝛼𝑖 (k)𝑣
𝛽

𝑖
(k)𝜏𝑖,k𝛿(𝜖 − 𝜖𝑖 (k))

𝑑k
8𝜋3 . (20)

Here 𝑣𝛼
𝑖
(k) is the group velocity of a quasiparticle:

𝑣𝛼𝑖 (k) =
1
ℏ

𝜕𝜖𝑖

𝜕k
(21)

where 𝑖 is the band index, 𝛼 ∈ [𝑥, 𝑦, 𝑧] and 𝜏𝑖,k is the quasiparticle relaxation time.
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In the limit that 𝑇 → 0
𝑓 (1 − 𝑓 )
𝑘B𝑇

→ 𝛿(𝜖 − 𝜇). (22)

Therefore, we can redefine the conductivity as:

𝜎𝛼𝛽 (𝑇) ∝ X𝛼𝛽 (𝜇) (23)

∝
∫

k

∑︁
𝑖

𝑣𝛼𝑖 (k)𝑣
𝛽

𝑖
(k)𝜏𝑖,k𝛿(𝜖 − 𝜇) 𝑑k

8𝜋3 (24)

∝
∫

k 𝑓

∑︁
𝑖

𝑣𝛼𝑖 (k 𝑓 )𝑣𝛽𝑖 (k 𝑓 )𝜏𝑖,k 𝑓

𝑑k 𝑓

8𝜋3 (25)

where k 𝑓 is now the set of vectors which lie on the Fermi surface. In the constant relaxation

time approximation this can be further simplified to

𝜎 ∝
∑︁
k 𝑓

∑︁
𝑖

𝑣𝛼𝑖 (k 𝑓 )𝑣𝛽𝑖 (k 𝑓 ) (26)

where
∑

k 𝑓
is a sum over all k 𝑓 on the Fermi surface.

Since the empirical Fermi surface in this model does not contain information about the

energy at each 𝑘-point, we approximate 𝑣𝛼
𝑖
(k 𝑓 ) ∼ 𝑛𝛼

𝑖
(k 𝑓 ), the normal to the Fermi surface.

Therefore, as the system is divided into cells of non-equal area the conductivity becomes

𝜎 ∝
∑︁
𝑗

∑︁
𝑖

𝐴2
𝑖, 𝑗𝑛

𝛼
𝑖, 𝑗𝑛

𝛽

𝑖, 𝑗
(27)

where
∑

𝑗 is a summation over the cells of the geometrical surface that defines the Fermi surface

and 𝐴𝑖, 𝑗 is the area of the 𝑗 th cell of the 𝑖th band.

Applying this formalism directly to our simulated Fermi surface of UTe2 gives the results

presented in Figure S13(a,b). When no warping is included, the 𝜎𝑧𝑧 component is several

orders of magnitude less than 𝜎𝑥𝑥 and 𝜎𝑦𝑦. Increasing the warping towards the level used to

fit the quantum oscillation data (warping = 100%) rapidly increases 𝜎𝑧𝑧 by several orders of

magnitude. Further increasing the warping beyond 100% only serves to slightly increase the

proportional contribution of 𝜎𝑧𝑧 to the overall conductivity matrix.
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Fig. S13. Diagonal components of the conductivity tensor as a function of Fermi
surface warping. a, Components of the conductivity tensor determined directly from
the geometrical Fermi surface fitting. 100% warping corresponds to the extent of undu-
lation required to fit the dHvA data (Fig. 4 of the main text). b, The same components
plotted on a logarithmic scale showing the rapid increase in 𝜎𝑧𝑧 as the cylindrical warp-
ing is increased. c, Components of the conductivity tensor including the (directional-
dependent) mean free path (details specified in the text). d, The same components
plotted on a logarithmic scale showing that at 100% warping all components of the
conductivity are of the same order of magnitude.

Therefore, this simple geometrical analysis of the dependence of the electrical conductivity

tensor on the extent of undulations along the Fermi surface cylinders very well captures the

empirical observation of the absence of pronounced anisotropy in the conductivity of UTe2.

However, we note that this simple treatment predicts 𝜎𝑦𝑦 > 𝜎𝑥𝑥 for all warping parameters, i.e.

independent of the cylindrical undulations. This is at odds with the experimental data reported
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in Eo et al.21 in which 𝜎𝑥𝑥 ≈ 2𝜎𝑦𝑦 and 𝜎𝑦𝑦 ≈ 𝜎𝑧𝑧. We note that in our approach outlined above

we made the simplifications of taking 𝜏𝑖,k to be isotropic and constant and 𝑣𝛼
𝑖
(k 𝑓 ) to be ∼ 𝑛𝛼

𝑖
(k 𝑓 )

whereas in reality it varies as 𝜕𝜖𝑖
𝜕k . This simplified our treatment in order to focus exclusively on

the dependence of the conductivity to the shape of the Fermi surface – the primary aim of this

analysis.

However, to effectively capture the additional effect of possible anisotropies in the direc-

tional dependencies of the quasiparticle velocity or the relaxation time – which would in turn

result in a (directional-dependent) renormalized mean free path that may be important for con-

sidering the conductivity in the 𝑥𝑦-plane – we must expand our simple geometrical model to

explicitly account for this possible k-dependence of the mean free path. From Ziman (ref.26)

we may conveniently re-express the electrical conductivity as

𝜎𝛼𝛽 (𝜔) = 𝑒2

4𝜋3ℏ

𝜏(𝜖F)
1 − 𝑖𝜔𝜏(𝜖F)

∫
𝑣𝛼 (k)𝑣𝛽 (k)

|v(k) | 𝑑S (28)

for frequency 𝜔 where 𝑑S denotes integration over the Fermi surface. Then generalizing to a

k-dependent relaxation rate for 𝜔 = 0 and 𝛼 = 𝛽 Eqn. 28 becomes

𝜎𝛼𝛼 =
𝑒2

4𝜋3ℏ

∫
𝜏(k)𝑣𝛼 (k)2

|v(k) | 𝑑S (29)

=
𝑒2

4𝜋3ℏ

∫
𝜆𝛼 (k)𝑛𝛼 (k)𝑑S (30)

where 𝜆𝛼 (k) = 𝑣𝛼 (k)𝜏(k) is the mean free path and 𝑛𝛼 (k) =
𝑣𝛼 (k)
|v(k) | . This form is convenient

as mass renormalization due to soft modes cancels in the product of the velocity and scattering

time (i.e. cancels both in 𝜆𝛼 (k) and in 𝑛𝛼 (k)).

Incorporating the additional degree of freedom of 𝜆𝛼 (k) from Eqn. 30 as a free fitting pa-

rameter into our geometrical UTe2 conductivity model, we can now excellently capture the

results of Eo et al.21 as we plot in Fig. S13(c,d) and Fig. 5 of the main text. While the inclusion
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of 𝜆𝛼 (k) has only a slight effect on the proportional contribution of 𝜎𝑧𝑧 to the overall conduc-

tivity matrix – an important aspect of this analysis in the context of confidently determining the

Fermi surface geometry of UTe2 – it does indeed reconcile the factor of ≈ 2 variation between

𝜎𝑥𝑥 and 𝜎𝑦𝑦 reported in ref.21

We remark that, independent to our primary discussion concerning the relationship between

the conductivity tensor and Fermi surface undulation of UTe2, our finding here of a pronounced

variation of the mean free path in the 𝑘𝑥-𝑘𝑦 plane – which is required in order to reconcile simple

bandstructure considerations with empirical observations – is itself an interesting point worthy

of further exploration. If one were to somewhat naı̈vely attempt to predict the anisotropy of 𝜆

in the 𝑘𝑥-𝑘𝑦 plane by only considering bandstructure calculations from e.g. ref.27 then since the

velocity for the Te-𝑝 bands that dominate the contribution to 𝜎𝑦𝑦 is expected to be lower than

for the U-𝑑 bands that contribute to 𝜎𝑥𝑥 , one would expect that 𝜎𝑦𝑦 > 𝜎𝑥𝑥 – the opposite of

what is observed experimentally by Eo et al.21

We propose that a possible mechanism for the mean-free path anisotropy in the 𝑘𝑥-𝑘𝑦 plane

of UTe2 arises due to enhanced scattering between Te-𝑝 sheets in the 𝑘𝑦 direction relative to the

U-𝑑 sheets in the 𝑘𝑥 direction (Figure S14). As pointed out by Xu et al.,12 the density of states

of the Te-𝑝 electrons at the Fermi level is expected to be higher than that of the U-𝑑 states.

Therefore the spin or charge susceptibility 𝜒(q) at q = Qa will be higher than that at q = Qb.

Subsequently, there will be greater large-angle scattering for charge carriers in the 𝑦 direction

than the 𝑥 direction, which will suppress the mean-free path and hence the conductivity in the 𝑦

direction, thereby naturally accounting for the observation that 𝜎𝑥𝑥 > 𝜎𝑦𝑦. We note that such a

mechanism may have important implications regarding the likely pairing state of the spin-triplet

superconductivity, and is worthy of further study beyond the scope of this analysis.

As a final note, we stress that the key result of this analysis is that the presence of pro-

nounced axial undulations along the cylindrical Fermi surface sheets is sufficient to account for
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Fig. S14. Schematic of charge carrier scattering in the 𝑥 and 𝑦 directions. En-
hanced charge and spin susceptibility at Qa and Qb results in greater large-angle scat-
tering of charge carriers moving in the 𝑦 direction than in the 𝑥 direction, whereas the
effect of small-angle scattering is ineffective in reducing the current. Subsequently the
mean free path of carriers in the 𝑦 direction is reduced relative to the 𝑥 direction. This
acts to suppress 𝜎𝑦𝑦 resulting in 𝜎𝑥𝑥 > 𝜎𝑦𝑦.

the lack of anisotropy in the electrical conductivity tensor of UTe2. This results simply from

considering the extent of undulations along the Fermi surface cylinders, and is independent of

higher order considerations such as the possible anisotropy of the mean free path in the 𝑘𝑥-𝑘𝑦

plane. Our analysis of the electrical conductivity tensor demonstrates that the presence of any
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3D Fermi surface section(s) are not required in order to account for the reported conductivity

data; however, as for fitting to the dHvA data, the presence of pronounced undulations along

the cylindrical axes is essential.
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Identification of two distinct Fermi surface sections contributing to the ob-
served oscillatory waveform

The high resolution of the quantum oscillation data measured in this study allows us to perform a

detailed quantitative analysis, to better understand the geometrical properties of the UTe2 Fermi

surface. The arguments presented in the main text, and the discussion of our Fermi surface

simulation given above, present a strong argument in favour of the UTe2 Fermi surface being

composed of two quasi-2D cylindrical sheets. Prior analyses of cylindrical Fermi surfaces in

hole-doped cuprates have carefully considered the amount of corrugation that may be present

along the sides of the cylinders,28–31 which can have important implications for Fermi surface

nesting vectors.32, 33

Our simulated Fermi surface (Fig. 4 of the main text) possesses pronounced undulations

along the length of the cylinders. However, on a smaller scale, our model predicts that the

cylinders are very smooth, with negligible crinkles or corrugations along the surfaces. Further-

more, the model expects a singular frequency component to be observed for field along ®𝑐. This

would imply that both cylinders have the same cross-sectional area, and again, that there are

only negligibly small ripples or corrugations up their lengths – only the large-scale undulations,

that go through one complete period of undulation for each Brillouin zone, without adding

additional extremal orbits for field along ®𝑐.

To assess the validity of these geometrical assumptions, we can closely inspect the dHvA

signal for field applied collinear to the cylindrical axes (the ®𝑐 direction). We note that our

measurement has an angular uncertainty of approximately 2◦ in this rotation plane. We note

further that the amplitude of the background magnetic torque was minimal at 0◦, as expected

(although, the amplitude of the oscillatory component was maximal). Due to the dilution refrig-

erator still cooling back to base temperature after eddy-current-induced heating was introduced

by sweeping up quickly (0.5 T/min) from 0 to 28 T, which slightly diminished the amplitude
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of the highest-field section of the data for 𝜃 = 0◦ in Fig. 2 of the main text upon sweeping

down slowly, here we consider just the data obtained for 𝜇0𝐻 ≤ 26.5 T (as we also do for

the LK analysis in the main text), to mitigate this spurious effect. For the general case of two

cylindrical Fermi sheets, labelled 𝛼 and 𝛽, of unspecified cross-sectional area and degree of cor-

rugation, the theoretically expected28, 29, 34, 35 quantum oscillatory waveform for magnetic field,

𝐻, applied parallel to their axes may be approximated as:

Δ𝜏 =
∑︁
𝑛=𝛼,𝛽

Δ𝜏𝑛,0 · 𝑅T𝑅D · 𝐽0

(
2𝜋Δ 𝑓𝑛

𝜇0𝐻

)
· cos

(
2𝜋 𝑓𝑛
𝜇0𝐻

)
, (31)

where Δ𝜏0 is the amplitude in the infinite-field limit, 𝑅T is the temperature damping coefficient

(computed from the data presented in Fig. 3 of the main text), 𝑅D is the Dingle damping co-

efficient36 of form 𝑅D = exp
(
−𝐷𝑛

𝜇0𝐻

)
for damping factor 𝐷𝑛, Δ 𝑓𝑛 is the depth of corrugation (in

frequency-space) of the 𝑛th Fermi sheet, and 𝑓𝑛 corresponds to the oscillatory frequency cor-

responding to a cross-sectional area A𝑛 by the Onsager relation.11 𝐽0 denotes a zeroth order

Bessel function of the first kind, to capture the extent of any possible corrugation along the

lengths of the cylinders, which would result in interference due to phase smearing.

We perform an unconstrained fit to Eqn. 31 in Fig. S9, which yields values of 𝑓𝛼 = 3470(15) T,

Δ 𝑓𝛼 = 13(4) T, 𝑓𝛽 = 3485(13) T, and Δ 𝑓𝛽 = 7(6) T. This implies that both cylinders have identi-

cal cross-sectional areas (within uncertainty), and that the presence of corrugation is negligible

as Δ 𝑓𝛼/ 𝑓𝛼 = 0.004. Therefore, we conclude that the description provided by our Fermi surface

simulation – of quasi-2D cylindrical sections with identical cross-sectional areas and negligible

small-scale corrugations – is well supported by this analysis.

We note that this treatment is only approximate as it is assumes cylinders having circular

cross-sections, rather than the super-elliptical cross-sections we find in our Fermi surface sim-

ulations – hence, we have restricted this analysis solely to the 0◦ data. A similar analysis at

inclined angles, beyond the scope of this work, fully accounting for the squircular nature of the
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cylinders, could be illuminating in evaluating the effects of a possible Yamaji angle in the vicin-

ity of the orientation at which the very high magnetic field re-entrant superconducting phase is

located37, 38 (see Fig. S22).
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Fig. S15. Isolating the dHvA contributions of two quasi-2D Fermi surface sec-
tions of equal area. a, The 19 mK dHvA data from Fig. 3 of the main text, for magnetic
field oriented along ®𝑐, is reproduced here (black curve). Red solid and blue dashed
curves are the 𝛼 and 𝛽 components, respectively, of Eqn. 31, obtained by performing
an unconstrained fit to the data. Ω𝛼,𝛽 represent the oscillatory contribution from each
of the two distinct cylindrical Fermi surface sections. The purple curve is the sum of
these two components (Ω𝛼 + Ω𝛽), which fits the measured data very well. b, FFTs of
the curves in (a), along with the FFT of the residual curve obtained by subtracting the
fit from the data (grey dashed line).
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Fig. S15. (cont.) c, The same FFT spectra as (b) plotted here on a logarithmic ampli-
tude axis. No clear frequency peaks are distinguishable from the noise after subtracting
the dominant component, except for the second harmonic at 7.0 kT. Therefore, the two
cylindrical sections (labelled here as 𝛼 and 𝛽) appear to be the sole Fermi surface sec-
tions with closed cyclotron orbits normal to ®𝑐.

33



Fig. S16. UTe2 single crystal. Photograph of a typical UTe2 crystal prepared by the
molten salt flux method. Our UTe2 samples tend to crystallise to have flat (001) and
(011) surfaces, with the direction of longest extent (left-right in this image) being the ®𝑎
direction.
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Fig. S17. Determining 𝑇c from resistivity measurements. The same electrical re-
sistivity data as that in Fig. 1 of the main text, here plotted linearly in temperature close
to the superconducting transition. A 𝑇c of 2.1 K is clearly resolved, as determined by
zero resistivity (defined as being below the detection limit of 0.01 µΩ cm).
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Fig. S18. Determining 𝑇c from magnetisation measurements. dc magnetisation,
𝑀, of a UTe2 sample from the same growth batch as those used in our quantum oscil-
lation measurements. The onset of superconductivity is clearly resolved at 𝑇 = 2.1 K,
indicating a single bulk transition at this temperature. A small magnetic field of 1 mT
was applied along the ®𝑎 direction; the sample was affixed to a quartz sample holder by
cryogenic varnish and measured in a Quantum Design MPMS.
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Fig. S19. Heavy quasiparticle effective masses. a, Oscillatory component of mag-
netic torque at 𝜙 = 45◦ from ®𝑐 towards ®𝑏 over the field range 26-28 T, at various tem-
peratures between 27 mK and 140 mK as indicated. b, Fast Fourier transforms (FFTs)
of the data in (a). Two prominent frequency branches are observed, at 5.4 kT and
4.4 kT, respectively. c, FFT amplitudes from (b) plotted versus temperature. Lines are
fits to the Lifshitz-Kosevich theory of temperature damping for magnetic quantum oscil-
lations34 (see Methods); these fits yield cyclotron effective masses of 78(2) 𝑚𝑒 for the
5.4 kT branch, and 57(3) 𝑚𝑒 for the 4.4 kT branch; 𝑚𝑒 denotes the bare electron mass.
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Fig. S20. Measurements of the high frequency, small amplitude dHvA signal at
𝜃 = 74◦. a, Δ𝜏 from three successive magnetic field sweeps for ®𝐻 tilted 74◦ from ®𝑐
towards ®𝑎, plotted linearly in inverse field. To maximise the ratio of signal-to-noise, the
magnetic field was swept slowly at a rate of 0.05 T/min for each curve. The cyan curve
is the averaged, smoothed waveform. b, The corresponding FFTs of the data in (a).
All curves show a clear peak at 18.5 kT on top of background noise. It is the average
of these three individual sweeps that is plotted in Fig. 2 of the main text.
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Fig. S21. Long field sweep for field oriented along the ®𝑐 direction. a, Δ𝜏 at 100 mK.
Note that the signal to noise of the data presented in this figure is notably poorer than
that of the data presented in Fig. 3 of the main text. This is due to the data here being
obtained at a considerably faster sweep rate of 0.5 T/min, compared to 0.05 T/min for
the Δ𝜏 curves in Fig. 3. b, Raw torque signal. c FFT of the data in (a) over the field
interval of 16 T ≤ 𝜇0𝐻 ≤ 28 T, and d, over 25 T ≤ 𝜇0𝐻 ≤ 28 T. No slower frequency
components are resolved over this wide field range.
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Fig. S22. Prediction by our Fermi surface simulation of a Yamaji angle coinciding
with the orientation of very high magnetic field re-entrant superconductivity. It
has previously been reported that for magnetic fields in excess of 40 T applied in a nar-
row angular range tilted approximately 60◦ from the ®𝑐 direction towards the ®𝑏 direction,
re-entrant superconductivity is observed up to at least 70 T (refs.37,38). Interestingly,
we note that our Fermi surface simulation predicts an intersection of three frequency
branches (a crossing of the maxima and minima of the hole sheet intersecting the
maxima of the electron sheet) to occur in close proximity to this angle at which the
re-entrant superconducting phase is most pronounced.38 The lines in the main panel
are given as a guide to the eye; the inset is the same simulation as plotted in Fig. 4 of
the main text.
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