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SUPPLEMENTARY NOTE 1

Simulations. We use lumped elements circuit simu-
lator (QUCS), and high-frequency RF/MW electromag-
netic analysis (SONNET), to simulate the two meander-
ing wire shunted resonators to ensure the resonances we
measured are reasonable, as shown in Supplementary Fig.
1. The lengths of the CPW waveguide part of the res-
onators are 4620 um on the left and 4007 um on the right.
The corresponding inductance of the left (L1) and right
(L2) meandering wire is ≈ 0.1 nH and ≈ 0.25 nH [1].
From finite element analysis simulator (COMSOL Mul-
tiphysics), we calculate the coupling capacitance value of
6.98 fF between the transmission line and the resonator
(Cleft and Cright), which we use in simulations. The
simulated resonance frequencies from QUCS were 6.072
GHz and 6.394 GHz. Simulations from Sonnet reveals the
frequencies of the center lines at 5.311 GHz and 6.130
GHz. Since in the reported device we use air bridges
to connect the ground planes around the circuit, there-
fore we now repeat the simulation in Sonnet using the air
bridges. In superconducting quantum devices, air bridges
[2, 3] holds the balance of the ground planes around the
central lines, reduces the possibility of microwave loss
due to mode mixing, and avoids pseudo resonances. The
simulated designs with and without air bridges are re-
ported in Supplementary Fig. 1 (b,c). After adding the
air bridges to mimic the reported device, the simulated
frequencies rise to 5.706 GHz and 6.182 GHz. Both of
these frequencies are lower than the designed bare fre-
quencies of the left and right resonators, this could be
due to the imperfect isolation of the propagating mi-
crowave. We observed that the simulated current-field
distribution at the resonance frequency at one side of the
device shows a part of the field leaking across the other
side because of the imbalance of the grounding around
the meandering shunt that could make the wave to prop-
agate along the ground surrounded by the centre line of
the off-resonance resonator. This imbalance issue could
be verified when we placed a perfect conductive block as
shown in Supplementary Fig. 1 (d), between the mean-
dering wire to connect the upper (ground 1) and lower
(ground 2) ground planes of the device, and as a result we
observed that the frequencies rise to the values very close
to QUSC. The experimentally observed lower frequency
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(6.027 GHz) is within a reasonable range obtained from
Sonnet and QUCS simulations, but the higher frequency
(6.762 GHz) is higher than the simulated frequency from
QUCS. As shown in Supplementary Fig. 1 (a), adding an
inductor with around 0.5 nH between the floating sides
of the meandering wires to mimic the Josephson junction
could increase the frequency to 6.7 GHz. Hence, both of
our measured frequencies are under the reasonable range
and are used in Appendix for calculations.

SUPPLEMENTARY NOTE 2

Theory. In this Appendix we briefly present the the-
ory of the transmission rectification effect in our device.
The system is described by the Hamiltonian

H = Hres +Hloop +Hint. (1)

The Hamiltonian of the two resonators is given by

Hres =

2∑
j=1

[
ℏωja

†
jaj +

√
ℏκcjZ0

ω3
j

dIj(t)

dt
(a†j + aj)

]
− ℏg12(a†1 + a1)(a

†
2 + a2), (2)

where ωj = 2πfj are the angular frequencies of the fun-
damental modes of the resonators 1 and 2 (in our sample
ω2 > ω1), aj are the corresponding ladder operators,
κc1, κc2 are the damping rates of the resonators due to
their capacitive coupling to the transmission lines,

κcj =
2ω3

jZ
2
0C

2
Kj

π
, (3)

Z0 is the resonator impedance, CK1, CK2 are the capac-
itors connecting the resonators to the transmission lines
(see Fig. 1 (c) in the main text), I1(t), I2(t) are the in-
put microwave currents which are related to the incoming

powers as P in
j = Z0I2j (t) (here bar implies the time aver-

aging), and g12 is the coupling strength between the two
resonators.
This coupling is mediated by the inductances of the

coupling elements L1, L2, by the total inductance of the
upper part of the SQUID loop containing the three junc-
tions Lq, and by the total capacitance of the Josephson
junctions Cq, see Fig. 1(c) of the main text and Sup-
plementary Fig. 1(a). The direct coupling between the
resonators g12 is not sensitive to the state of the qubit.
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Supplementary Figure 1. Device simulations (a) Simulated circuit design image from QUCS, multiports network analysis. (b)
Simulated design image using Sonnet with no bonding wires. (c) Al Bonding wires mimicking the real device in panel to connect
upper (ground 1) and lower (ground 2) grounds. (d). A metallic block to connect the upper and lower ground planes.

In the weak coupling limit g12 can be approximately es-
timated as

g12 ≈ 2

π

ω1ω2L
′
1L

′
2

Z0

(
Cqω1ω2 +

1

Lq

)
, (4)

although this expression becomes inaccurate if g12 be-
comes comparable to the frequency difference |ω1 − ω2|.
The Hamiltonian (Supplementary Eq. (2)) contains the
terms proportional to the derivatives of the input cur-
rents dIj/dt, which have been derived within the usual
input-output formalism for the resonators [4] without ap-
plying rotating wave approximation.

The Hamiltonian of the superconducting loop Hloop is
expressed in terms of the ladder operators b, b† describing
its low-frequency mode, and the flux dependent qubit
frequency ω0(Φ) = 2πf01(Φ),

Hloop = ℏω0(Φ)b
†b− EC

12
(b† + b)4. (5)

Here EC is the effective charging energy of the low fre-
quency mode of the loop, which determines the anhar-

monicity of the qubit. From the spectroscopic measure-
ments presented in Supplementary Fig. 2 (e,f) we esti-
mate EC/(2πℏ) ≈ 200 MHz. Finally, the last term in
the Hamiltonian (Supplementary Eq. (6)) describing the
interaction between the loop and the resonators has the
form

Hint = −ℏg1(a†1 + a1)(b
† + b)− ℏg2(a†2 + a2)(b

† + b), (6)

where g1 and g2 describe the coupling between the qubit
and the corresponding resonator.

We diagonalize the Hamiltonian of the two resonators
(Supplementary Eq. (2)) and introduce the hybrid modes
with frequencies

ωh,l =

√
ω2
1 + ω2

2 ±
√
(ω2

2 − ω2
1)

2 + 16g212ω1ω2

2
. (7)

In the transmission rectification experiment we probe the
range of frequencies close to fh = ωh/(2π) = 6.762 GHz.
For this reason, we leave only the high frequency mode
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and write the Hamiltonian of the resonators (Supplemen-
tary Eq. (2)) and the interaction term (Supplementary
Eq. (6)) in the form

Hres = ℏωha
†
hah +

(√
κh1

ω2
1

dI1(t)

dt

+

√
κh2

ω2
2

dI2(t)

dt

)√
ℏωhZ0(a

†
h + ah), (8)

Hint = −ℏgh(a†h + ah)(b
† + b). (9)

Here ah, a
†
h are the ladder operators of the hybrid mode

with the angular frequency ωh = 2πfh, κh1 and κh2 are
the partial contributions to the total damping rate of this
mode coming from the coupling of the resonators 1 and
2 to the transmission lines,

κh1 =
ω1

ωh
sin2 θ κc1, κh2 =

ω2

ωh
cos2 θ κc2, (10)

and the angle θ is determined by

sin 2θ =
4g12

√
ω1ω2√

(ω2
2 − ω2

1)
2 + 16g212ω1ω2

. (11)

The total damping rate of the hybrid mode is κh = κh1+
κh2+κhi, where κhi describes the internal damping in the
resonators and in the qubit, i.e. κhi = T−1

1 + κr1 + κr2,
where T1 is the relaxation time of the qubit and κr1, κr2

describe the internal damping in the resonators. The
couplings to the high frequency mode, gh, and to the low
frequency one, gl, are expressed as

gh = −(ω1/ωh)
1/2g1 sin θ + (ω2/ωh)

1/2g2 cos θ,

gl = (ω1/ωl)
1/2g1 cos θ + (ω2/ωl)

1/2g2 sin θ, (12)

Based on Supplementary Eq. (8) we observe that the
input currents I in1 and I in2 have different pre-factors. This
difference is the origin of the asymmetry in our system.
From this pre-factors we can determine the ratio of the
powers P ∗

1 and P ∗
2 , above which single transmission lines

in the coefficients |S31|2 and |S42|2 split into two lines,
without solving the problem. Namely, we find

P ∗
1

P ∗
2

=
ω4
1κh2

ω4
2κh1

. (13)

The powers P ∗
1 and P ∗

2 are not equal because the fre-
quencies of the two resonators f1 and f2 and/or the cou-
plings between the hybrid mode and the two transmis-
sion lines, κh1 and κh2, differ from each other. This
makes our device a non-linear system with asymmet-
ric coupling to the two ports. According to the the-
ory, exactly these properties are required for transmis-
sion rectification, see e.g. Ref. [5]. In our device the
coupling capacitors CK1 and CK2 are nominally equal,
CK1 = CK2. Therefore the ratio (Supplementary Eq.
13) can be simplified to P ∗

1 /P
∗
2 = cot2 θ. In the experi-

ment we find P ∗
1 /P

∗
2 = 3.2, see Fig. 4 in the main text,

which corresponds to θ = 0.51. To obtain this value
from Supplementary Eq. (11) and, at the same time, to

reproduce the experimentally observed frequencies of the
modes fh = 6.762 GHz and fl = 6.026 GHz from Supple-
mentary Eq. (7), we choose f1 = 6.209 GHz, f2 = 6.595
GHz and g12/(2π) = 313 MHz. The simulations reported
in Appendix show that these parameters are reasonable.
Moreover, with the parameters given in the Appendix A,
L1 = 0.1 nH, L2 = 0.25 nH, Lq = 0.5 nH and Cq ≈ 100
fF, Supplementary Eq. (4) gives g12/(2π) ≈ 200 MHz,
which is not too far from the estimate given above.
To verify our model further, we have estimated the val-
ues of the coupling capacitors in COMSOL and found
CK1 = CK2 = 7 fF. Adopting this value and the pa-
rameters given above, from Supplementary Eq. (3) we
obtain κc1/(2π) = 732.6 kHz, κc2/(2π) = 878 kHz, and
from Supplementary Eq. (10) we find κh1/(2π) = 160
kHz, κh2/(2π) = 653 kHz. The damping rates κh1, κh2

can be independently estimated by fitting the transmis-
sion coefficients |S41|2 and |S32|2 at zero magnetic flux,
where the qubit is decoupled from the resonator, to the
expressions resulting from our model Hamiltonian (Sup-
plementary Eq.(2)):

|S41|2 = 1− ω4
h

ω4
1

κ2
h1 + 2κh1κh2

4(ω − ωh)2 + κ2
h

,

|S32|2 = 1− ω4
h

ω4
2

κ2
h2 + 2κh1κh2

4(ω − ωh)2 + κ2
h

. (14)

Such fitting procedure gives κh1/(2π) = 160 kHz,
κh2/(2π) = 430 kHz and κh/(2π) = 787 kHz. While
κh1 agrees with the theoretical estimate given above, the
experimental rate κh2 is a bit lower than the theoretical
prediction. With these parameters the ratio of the pow-
ers (Supplementary Eq.(13)) becomes 2.1, which is still
not very far from the result of the measurements. Thus,
we have confirmed that our observations reasonably well
agree with the model.
The dependence of the transmission coefficients |S31|2

and |S42|2 on power (see main text Fig. 4) can be un-
derstood as follows. At sufficiently low power we can
approximately replace the two resonators and the qubit
by a single non-linear system with the Hamiltonian

H = ℏωra
+a+

ℏK
6

(a† + a)4

+2ℏ(ϵ1 + ϵ2) cosωt(a
† + a). (15)

Here ωr = ωh +2πχ is the frequency of the hybrid mode
shifted due to the interaction with the qubit, K is the
Kerr non-linearity of the combined system and

ϵj =
ω2
h

ω2
j

√
κhjP in

j

2ℏωh
. (16)

It has been experimentally shown that this approxima-
tion well describes systems similar to ours [6, 7]. To find
the the transmission coefficient |S31|2 at low power we
put ϵ2 = 0 and construct the following ratio:

|S31|2 =
P3

P in
1

=
κh2ℏωr

2P in
1

⟨a†a⟩. (17)
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Here P3 is the power coming to the port 3 and the factor 2
in the denominator accounts for the equal splitting of the
power coming out of the resonator 2 between the ports 2
and 3, i.e. we put κh2ℏωr⟨a†a⟩ = P2+P3 and assume that
P2 = P3. The average value ⟨a†a⟩ for the Hamiltonian
(Supplementary Eq.(15)) has been evaluated in Ref. [8].
Based on this result we obtain the expression for the
transmission coefficient in the form

|S31|2 ≈ κh1κh2

4(ω − ωr)2 + κ2
h

×

∣∣∣0F2

(
1− ω−ωr−i

κh
2

K ,−ω−ωr+i
κh
2

K ,
2κ2

hP
in
1

9K2P∗
1

)∣∣∣2∣∣∣0F2

(
−ω−ωr−i

κh
2

K ,−ω−ωr+i
κh
2

K ,
2κ2

hP
in
1

9K2P∗
1

)∣∣∣2 , (18)

where 0F2(x) is the generalized hyper-geometric function
and

P ∗
1 =

2

9

ℏκ2
hω

4
1

κh1ω3
h

(19)

is the power at which the Lorentzian peak in |S31|2 splits
into two. The transmission coefficient |S42|2 and the
power P ∗

2 are given by the same expressions with the
interchanged indexes 1 and 2. Analyzing the expres-
sion Supplementary Eq. (18), one can show that in the
limit κh ≪ K the maxima of the two peaks appearing at
P in
1 > P ∗

1 occur at frequencies

ω± = ωr ±
√
2κh

3

√
P in
1

P ∗
1

− 1. (20)

Inverting this formula, we find that for a given probe fre-
quency ω the peak in the transmission coefficient occurs
at the power

Ppeak,1 = P ∗
1

(
1 +

9(ω − ωr)
2

2κ2
h

)
. (21)

If the signals are applied to both sides of the device, in
Supplementary Eq. (18) one should replace the combi-
nation P in

1 /P ∗
1 by the sum P in

1 /P ∗
1 + P in

2 /P ∗
2 . In Fig. 4

of the main text, we show the powers Ppeak,1 and Ppeak,2

by the white dashed lines. We have used the damping
rate κh = 1.1 MHz, which has been obtained by fitting
the transmission coefficients (Supplementary Eq. (14))
at low powers and at the flux value Φ = 0.5Φ0, at which
the data shown in Fig. 4 of the main text have been
gathered. The threshold powers P ∗

1 = −112 dBm and
P ∗
2 = −117 dBm have been treated as fitting parame-

ters. From the fits we also estimate the anharmonicity
as K/(2π) ≈ −11.5 MHz.

Finally, we note that at sufficiently high power the
assumption about weak non-linearity of the qubit be-
comes insufficient, and one should consider full sinusoidal
current-phase relation for the three Josephson junctions
of the qubit. Here we do not consider this regime. It
is well known, however, that in this limit the resonator

becomes decoupled from the qubit, and the transmission
lines both in |S31|2 and in |S42|2 shift to the bare fre-
quency of the hybrid mode fh, see Fig. 4 of the main
text.

SUPPLEMENTARY NOTE 3

Two tone-spectroscopy:
To determine the qubit transition frequencies we have

performed the two-tone spectroscopy as follows. For ev-
ery value of magnetic flux we choose the probe frequency
of a continuous weak microwave signal ‘probe tone’ (tone
one) using a vector network analyzer (VNA). Once the
flux specific probe frequency is chosen, using a separate
microwave signal generator a ‘pump tone’ (tone two) is
applied to excite the qubit energy levels. The combined
results of the one tone and the two tone spectroscopies
are presented in Supplementary Fig. 2.
To fit the obtained spectra numerically and to find the

coupling constants between the qubit and the resonators,
we adapted the following procedure. First, we diagonal-
ize the Hamiltonian of the flux qubit using two dimen-
sional plane waves as described in article [1]. In this
way, we find the dependence of the transition frequency
f01(Φ) between the lowest and the first excited states of
the qubit decoupled from the resonators on the magnetic
flux Φ. Fitting the obtained f01(Φ) dependence to the re-
sults of spectroscopy away from the anti-crossing points,
we estimate the parameters of the flux qubit. Namely, we
find the asymmetry parameter α = 0.632 and the Joseph-
son energies of the two bigger junctions of the SQUID
loop, EJ/(2πℏ) = IC/4πe = 37.5 GHz. Next, we use the
equation describing two coupled oscillators,

fr =

√√√√f2
i + f2

01 ±
√
(f2

i − f2
01)

2
+ 16g2i fif01

2
, (22)

to fit every avoided crossing between the hybrid modes
of the resonator (indicated by the index i) and the flux
dependent qubit frequency in Supplementary Fig. 2. In
the range of frequencies shown there we observe two hy-
brid resonator modes, low frequency mode (index l) and
high frequency mode (index h). The frequencies of these
modes are fl = 6.027 GHz and fh = 6.762 GHz, and
the corresponding couplings are gl/(2π) ≈ 1 MHz and
gh/(2π) ≈ 175 MHz. Based on these numbers, from
Supplementary Eq. (12) and with the system parame-
ters given in the previous section we can estimate the
couplings g1 and g2, which appear in the initial Hamilto-
nian (Supplementary Eq.(2)): g1/(2π) ≈ −89 MHz and
g2/(2π) ≈ 155 MHz.

SUPPLEMENTARY NOTE 4

Rectification (R) plot with background noise.
In Supplementary Fig. 3, for the lowest reported power
(−134 dBm), we show the rectification ratio R plot with-
out filtering the background noise (|S42|2 + |S31|2 > 0).
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Supplementary Figure 2. One tone and two tone-spectroscopy for -134 dBm input probing power. Panels (a) and (b) show
the one tone-spectroscopy data, and panel (c) two tone-spectroscopy data, with probe signal coming through the port 1.
Analogously, panels (d) and (e) show one tone-spectroscopy and (f) two tone-spectroscopy, with the probe signal arriving
through the port 2. In panels (c) and (f) the pump tone power (Rabi power) is -94 dBm. The frequency step size used in
the measurements is 300 KHz. At low input power, the amplitude difference between the maximum resonance point of the
transmission to its consecutive frequency point (frequency step size) is much larger than the background noise amplitude.
Therefore, the error in determining the frequency will be within ± 300 KHz.
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Supplementary Figure 3. The transmission rectification ratio R computed from Eq.1 of the main text, with the noisy background.
Estimated error bars are ±35%. More details on error bar estimation are mentioned in Section II of the main text.
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