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Supplementary Note 1:  

Magnetic properties and nuclear magnetic resonance of Mn3Zn0.5Ge0.5N 

 

 

Supplementary Fig. 1 | Magnetic properties of Mn3Zn0.5Ge0.5N. a, Temperature dependence of the 

inverse of the magnetization M. Solid line indicates a linear behavior. Blue (grey) shadowed area indicates 

the antiferromagnetic AFM (paramagnetic PM) phase. b, Temperature dependence of M/μ0H for various H. 

The short-dash lines indicate the linear behavior. c, Isothermal magnetization M(H) at T = 2 K and 5 K. Inset 

shows M(H) at 2 K in low fields where M(0) is the difference of M(0) between the up sweep and down 

sweep of the field H . Source data are provided as a Source Data file.   

 

A Néel temperature TN = 411 K is obtained from the Curie-Weiss behavior 1/M ~ T in 

agreement with previous results1, 2. M/μ0H in various fields displays a linear background with 

a negative slope with an upturn below ～5 K. 

The integral magnetization M of Mn3Zn0.5Ge0.5N is small and does not show a transition 

at low temperatures (Supplementary Fig. 1c). Rather, the static susceptibility =M/H increases 

linearly toward low temperatures with an upturn below ~ 5 K. The magnetization in 10 mT at 

T = 2 K corresponds to an average magnetic moment of 3.6×10-5 μB/Mn. At zero field, a 

magnetization M(0) = M(0)/2= 1.5 A m-1 corresponding to 0.4 × 10-5 B/Mn is verified by 
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the isothermal magnetization curves at 2 K within our experimental accuracy of 0.3 A m-1 

(Supplementary Fig. 1d). These tiny magnetizations agree with a very small NMR shift 

(Supplementary Fig. 2) and the weak linear dependence on H confirms that the change of the 

magnetic structure below T* = 3.7 K is very small. 

The slight change in magnetic properties during cooling is also confirmed by NMR 

measurements. Zero-field NMR suggests the presence of magnetic order at low temperatures. 

A variation of magnetic moments of ⁓1%, would correspond to a shift of the NMR line by ⁓1 

MHz, which cannot be resolved from the measured NMR line with a full width at half 

maximum of 20 MHz (Supplementary Fig. 2). However, the tiny shift of the NMR peak to 

higher frequencies at 1.9 K is at least compatible with larger ordered moments at 1.9 K 

compared to 6.2 K.  

 

 

Supplementary Fig. 2 | Nuclear magnetic resonance spectra of 55Mn nuclei in Mn3Zn0.5Ge0.5N. Spectra 

at temperatures 6.2 K > T* and 1.9 K < T*. The data were collected at zero magnetic field. Errors are smaller 

than the symbol size. Source data are provided as a Source Data file.   
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Supplementary Note 2:  

Electronic transport properties of Mn3Zn0.5Ge0.5N and Mn3Ag0.93N 

 

Supplementary Fig. 3 | Transverse resistivities of Mn3Zn0.5Ge0.5N. a, ρ┴(T) of sample #1 for various 

magnetic fields H applied perpendicularly to the current direction. b, ρ┴(H) of sample #1 in 

perpendicular magnetic field H at various temperatures T. The transition field H0 = 30 mT was 

determined from the resistivity at 1.8 K. The sweep direction of the magnetic field is indicated by 

arrows. c, Field dependence of the transverse resistance ratio R/R0 for sample #2 at low temperatures, where 

R0 is the value at T = 4 K in zero field and H0 is 120 mT. Source data are provided as a Source Data file.   

 

 

   

Supplementary Fig. 4 | Angular dependence of resistivity of Mn3Zn0.5Ge0.5N (#2). a, ρ┴(H) for various 

angles ω between the directions of field H and voltage V at 2 K where H0 = 120 mT.  is the angle of in-

plane rotation around the surface normal. b, Angular dependence of ρ┴(H) for various out-of-plane angles 

φ between the directions of field H and current I at 1.8 K. c, Angular dependence of ρII(H) for various out-

of-plane angles φ between the directions of field H and current I at 1.8 K. Source data are provided as a 

Source Data file.   
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Supplementary Fig. 5 | Resistivity of Mn3Ag0.93N. Longitudinal resistivity and transverse resistivity 

a, vs. temperature and b, vs. magnetic field. The slope of ρ┴(H) corresponds to a carrier density n = 

1.2 × 1018 cm-3. Source data are provided as a Source Data file.  
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Supplementary Note 3:  

Neutron diffraction results of Mn3Zn0.5Ge0.5N 

 

 

Supplementary Fig. 6 | Neutron diffraction patterns at 2 K, 5 K, and 10 K. The inset shows the reflection 

around d = 2.77 Å. Source data are provided as a Source Data file.   

 

 

Supplementary Fig. 7 | Intensity difference Imy – Im0. Data are shown for selected 2 K, 3 K, and 3.5 K 

where Imy and Im0 indicate the fitted difference between the observed and calculated intensities of 

Mn3Zn0.5Ge0.5N with optimized magnetic moments my = 0.38 μB/Mn or m0 = 0, respectively. Inset shows 

the difference around d = 2.77 Å at 2 K on a smaller scale. Source data are provided as a Source Data file.   
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Supplementary Table 1 | Refined structural parameters of Mn3Zn0.54Ge0.46N at 300 K. Space group 

Pm3̅m (No. 221). Atomic positions: Mn: 3c (0, 1/2, 1/2); Zn/Ge: 1a (0, 0, 0); N: 1b (1/2, 1/2, 1/2). 

Atoms and structural parameters  

a (Å)  3.91831(1) 

V (Å3)  60.158(1) 

Mn n 1 

Zn n 0.54(1) 

Ge n 0.46(1) 

N n 1 

Phase fraction (wt. %) Mn3Zn0.54Ge0.46N 96.3 

Phase fraction (wt. %) MnO 3.7 

Rp (%)  2.85 

Rwp (%)  3.78 

χ2  2.611 

mMn (μB/Mn)  2.85(3) 

a: lattice constant, V: unit-cell volume, n: number of atoms per unit cell, Rp: profile R-factor, Rwp: weighted profile  

R-factor, χ2: goodness of fit, mMn: magnetic moment per Mn atom  

 

 

 

Supplementary Table 2 | Refined structural parameters of Mn3Zn0.54Ge0.46N at 10 K. Space group 

Pm3̅m (No. 221). Atomic positions: Mn: 3c (0, 1/2, 1/2); Zn/Ge: 1a (0, 0, 0); N: 1b (1/2, 1/2, 1/2). The 

refinement agreement and weighted profile agreement values obtained were Rp = 4.05% and Rwp = 6.15%, 

indicating the high quality of the structural model. 

Atoms and structural parameters  

a (Å)  3.91157(2) 

V (Å3)  59.849(1) 

Mn n 1 

Zn n 0.54 

Ge n 0.46 

N n 1 

Rp (%)  4.05 

Rwp (%)  6.15 

χ2  4.164 

mMn (μB/Mn)  3.26(3) 

a: lattice constant, V: unit-cell volume, n: number of atoms per unit cell, Rp: profile R-factor, Rwp: weighted profile  

R-factor, χ2: goodness of fit, mMn: magnetic moment per Mn atom  
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Supplementary Table 3 | Refined structural parameters of Mn3Zn0.54Ge0.46N at 2 K for the cases of My 

= 0 and optimized My = 0.38 μB/Mn. Space group Pm3̅m (No. 221). Atomic positions: Mn: 3c (0, 1/2, 1/2); 

Zn/Ge: 1a (0, 0, 0); N: 1b (1/2, 1/2, 1/2). 

Atoms and structural parameters                             My = 0 / My = 0.38 μB/Mn 

a (Å)  3.91157  

Mn n 1 

Zn n 0.54 

Ge n 0.46 

N n 1 

Rp (%)  4.19 / 4.14 

Rwp (%)  6.42 / 6.40 

χ2  9.252 / 9.190 

mMn (μB/Mn)  3.40(2) / 3.32(2) 

a: lattice constant, V: unit-cell volume, n: number of atoms per unit cell, Rp: profile R-factor, Rwp: weighted profile  

R-factor, χ2: goodness of fit, mMn: magnetic moment per Mn atom  

 

 

 

Supplementary Fig. 8 | The magnetic moment My dependence of χ2. χ2 is determined from the expected 

and weighted profile R factors, and is obtained by fitting the selected My. Source data are provided as a 

Source Data file.   
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Supplementary Fig. 9 | Intensity difference I–I20=I(μ0H)–I(20mT) of neutron diffraction patterns. I 

indicates the intensity under different applied magnetic fields. The offsets are indicated in the image for 

clarity. Source data are provided as a Source Data file.   
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Supplementary Note 4:  

Neutron diffraction results of isostructural Mn3Ag0.93N 

 

 

Supplementary Fig. 10 | Neutron diffraction on Mn3Ag0.93N. a, Neutron diffraction patterns at 2 K, 5 K, 

and 10 K. The inset shows the enlarged peak around d = 2.8 Å. b, Diffraction patterns of Mn3Ag0.93N for 

various temperatures. IT and I10 indicate the intensities of patterns at temperature T (K) and 10 K, respectively. 

The offsets are explored in the image for clarity. c, Temperature dependence of the integrated intensity at 

peak positions P1 ~ 0.79 Å, P2 ~ 0.95Å, P3 ~ 1.64 Å, and P4 ~ 2.84 Å. The offsets 0, 0, 0.1, and 0.2 were 

applied for the integrated intensities of P1, P2, P3, and P4 respectively. Error bars represent the standard 

deviation. Source data are provided as a Source Data file.   
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Supplementary Table 4 | Refined structural parameters of Mn3Ag0.93N at 300 K. Space group: Pm3̅m 

(No. 221). Atomic positions: Mn: 3c (0, 1/2, 1/2); Ag: 1a (0, 0, 0); N: 1b (1/2, 1/2, 1/2). 

Atoms and structural parameters  

a (Å)  4.01975(2) 

V (Å3)  64.953(1) 

Mn n 1 

Ag n 0.928(5) 

N n 1 

Phase fraction (wt. %) Mn3Ag0.93N 98.3 

Phase fraction (wt. %) MnO 1.7 

Rp (%)  3.66 

Rwp (%)  4.63 

χ2  2.990 

mMn (μB/Mn)  - 

a: lattice constant, V: unit-cell volume, n: number of atoms per unit cell, Rp: profile R-factor, Rwp: weighted profile  

R-factor, χ2: goodness of fit, mMn: magnetic moment per Mn atom  

 

 

Supplementary Table 5 | Refined structural parameters of Mn3Ag0.93N at 2 K. Space group Pm3̅m (No. 

221). Atomic positions: Mn: 3c (0, 1/2, 1/2); Ag: 1a (0, 0, 0); N: 1b (1/2, 1/2, 1/2). 

Atoms and structural parameters  

a (Å)  4.01517(2) 

V (Å3)  64.731(1) 

Mn n 1 

Ag n 0.928 

N n 1 

Rp (%)  4.88 

Rwp (%)  5.99 

χ2  2.306 

mMn (μB/Mn)  3.81(3) 

a: lattice constant, V: unit-cell volume, n: number of atoms per unit cell, Rp: profile R-factor, Rwp: weighted profile  

R-factor, χ2: goodness of fit, mMn: magnetic moment per Mn atom  
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Supplementary Fig. 11 | Powder neutron-diffraction. a, Diffraction pattern at 2 K for the sample of 

nominal composition Mn3Ag0.93N. The refined composition was determined to be Mn3Ag0.93N. The neutron 

diffraction pattern are fitted well with the antiperovskite model shown as Fig. 1a. The vertical markers below 

the data indicate the angular positions of the nuclear (top row), MnO impurity (second row), and magnetic 

(third row) Bragg reflections. Peaks of vanadium (bottom row) were detected as a vanadium container was 

adopted to hold samples during the neutron diffraction measurement. The refinement agreement and 

weighted profile agreement values obtained were Rp = 4.88% and Rwp = 5.99%, indicating the high quality 

of the structural model (Supplementary Table 5). b, Temperature dependence of the local magnetic moment 

of Mn atoms determined by Rietveld refinement of the neutron diffraction data of Mn3Ag0.93N. Error bars 

represent the standard deviation. Source data are provided as a Source Data file.   
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Supplementary Note 5:  

Theoretical Model 

To interpret the observed behavior of the resistivity and the fictional suppression of the 

magnetization by a magnetic field we first developed a model that describes different 

antiferromagnetic phases in presence of the external magnetic field H. At the macroscopic 

level, the magnetic structure of an antiferromagnet Mn3Zn0.5Ge0.5N is described with three 

vectors 𝐌𝟏, 𝐌𝟐 and 𝐌𝟑 of magnetic sublattices. Instead, we introduce linear combinations 

that correspond to the order parameters of different antiferromagnetic phases: two Néel vectors   

𝐍𝟏 = (𝐌𝟏 + 𝐌𝟐 − 2𝐌𝟑)/√6 and  𝐍𝟐 = (−𝐌𝟏 + 𝐌𝟐)/√2 , and total magnetization 𝐌 =

(𝐌𝟏 + 𝐌𝟐 + 𝐌𝟑)/√3  .3,4 Magnetic configurations are calculated by minimizing the free 

energy of the sample which we model in agreement with the highest spin symmetry group 

which is isomorphic with D3d: 

 

𝐹 =
1

2
𝐽(𝑇)𝐌𝟐 +

1

4
𝐷𝐌𝟒 −

1

2
𝐷′[(𝐍𝟏𝐌)𝟐 + (𝐍𝟐𝐌)𝟐] − ΛCC[(𝐍𝟏𝐇)𝟐 + (𝐍𝟐𝐇)𝟐] − 𝐌𝐇    (S1) 

 

Here J stands for the Heisenberg exchange coupling (coupling between pairs of spin), D and 

𝐷′represent biquadratic exchange couplings (couplings between four spins), and the last term 

is a standard Zeeman energy in the external magnetic field. The value of the biquadratic 

exchange couplings (constants D,𝐷′) can be calculated from the first principles, as recently 

demonstrated in Ref. 6. From a phenomenological point of view, the biquadratic exchange 

stabilizes noncollinear magnetic ordering, as it will be discussed below. 

The nontrivial term with the phenomenological constant ΛCC describes the anisotropy of 

Zeeman interactions associated with the topology of spin ordering (three noncollinear spins). 

This term is similar to the field-induced anisotropy observed in systems with unquenched 

orbital momentum (Paschen-Back effect)5. In the case of noncollinear antiferromagnets, an 

orbital momentum appears due to electron hopping between the magnetic atoms, even in 

absence (or vanishingly small) spin-orbit coupling. A simple explanation of this effect is as 

follows. A free electron moves in the effective magnetic field induced by exchange interactions 
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with the localised spins. As the direction of this field rotates from site to site, the electron spin 

acquires an additional Berry phase.7 The corresponding effective force on the electron spin is 

equivalent to the effect produced by spin-orbit interactions. In a coplanar triangular structure, 

however, both couter-clockwise and clockwise directions of electron motion are equivalent, 

and the effective orbital momentum is zero on average. In a non-coplanar structure, the out-

of-plane localized magnetic moment removes the degeneracy of the couter-clockwise and 

clockwise electron motions, resulting in a non-zero topological orbital momentum. Interaction 

between such topological orbital moments according to Ref. 6 is given by the expression 

𝐸𝐶𝐶 = 𝜅𝐶𝐶(𝐌 ⋅ 𝐍1 × 𝐍2)2. If the magnetisation is induced by the magnetic field, then 𝐌 = 𝜒𝐇, 

where 𝜒 is the magnetic susceptibility, and 𝐸𝐶𝐶 = 𝜅𝐶𝐶𝜒2(𝐇 ⋅ 𝐍1 × 𝐍2)2. The Néel vectors are 

orthogonal to each other, 𝐍𝟏 ⊥ 𝐍𝟐 (see below), and thus form an orthogonal frame. As such, 

we can write 𝐸𝐶𝐶 = 𝜅𝐶𝐶𝜒2 [𝐇𝟐 − (𝐍𝟏𝐇)𝟐 + (𝐍𝟐𝐇)𝟐]. Denoting Λ𝐶𝐶 = 𝜅𝐶𝐶𝜒2 brings us to Eq. 

(1) of the main text. 

We calculated different magnetic configurations by minimizing Eq. (1) assuming that (i) 

the exchange constant J(T) changes with temperature T, and (ii) magnitudes of sublattices 

magnetizations are equal and fixed: |𝐌𝟏|= |𝐌𝟐| = |𝐌𝟑| = 𝑀𝑠.  

In absence of the magnetic field (H=0), we distinguish between two configurations, Γ5g 

and FO (Fig. 1 b,d), in which all three vectors sublattice magnetizations are locked within 

one plane. Configuration Γ5g is pure antiferromagnetic (𝐌 = 𝟎), the angle between each pair 

of sublattice magnetizations is 120°, which means 𝐍𝟏 ⊥ 𝐍𝟐, |𝐍𝟏|= |𝐍𝟐| = √3𝑀𝑠. This 

configuration is stable at J(T) > 0. The spin symmetry of the phase is equivalent to the group 

C3d which includes 120° rotations around the axis perpendicular to the spin plane, and 180° 

rotation around the axis which is parallel to one of sublattice magnetizations. 

Configuration FO (Fig. 1 d) has a nonzero magnetization which is parallel to one of 

magnetic sublattices, the angles between the pairs 𝐌𝟏, 𝐌𝟑 , and 𝐌𝟐, 𝐌𝟑  are equal but 

different from 120°. This phase is stable at J(T) < 0, with 𝐌|| 𝐍𝟏 ⊥ 𝐍𝟐, |𝐍𝟏|≠ |𝐍𝟐|, 𝑀∥ =

√(𝐽 − 3𝐷′/2)/𝐷. The spin symmetry of the phase corresponds to C2 with the symmetry axis 

parallel to 𝐌𝟑.  

An external magnetic field modifies the phase diagram in a different way, depending on 
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its orientation with respect to the plane spanned by the vectors 𝐌𝟏, 𝐌𝟐 and 𝐌𝟑. A magnetic 

field applied parallel to the plane stabilizes configuration FO and contributes to the 

magnetization, 𝑀∥ (𝐻∥). Typical field dependencies calculated at different values of J(T) are 

shown in Supplementary Fig. 12a. 

 

Supplementary Fig. 12 | Magnetization (theory). Typical field dependencies of a, in-plane 𝑀∥ (𝐻∥) b, 

out-of-plane 𝑀⊥ (𝐻⊥)  components of magnetization at different temperatures. Inset in a shows 

temperature dependence of 𝑀∥ (𝑇) at zero field. Source data are provided as a Source Data file.   

 

 

A magnetic field that is perpendicular to the plane induces a transition to the third phase FL 

with a noncoplanar configuration of the magnetic vectors (Fig. 1f, violet line in Supplementary 

Fig. 12). In this case, the angles between the vectors 𝐌𝟏, 𝐌𝟐 and 𝐌𝟑 are equal but different 

from 120°. The magnetization is parallel to the magnetic field, 𝐌||𝐇 ⊥  𝐍𝟏 ⊥ 𝐍𝟐  , 

|𝐍𝟏|= |𝐍𝟐| < √3𝑀𝑠, 𝑀⊥ (𝐻⊥) (see Supplementary Fig. 12b). The stability regions of each 

of the phases are shown in the Fig. 3 (solid blue and dashed grey lines) of the main text and 

reproduced in Supplementary Fig. 13 (solid blue and violet lines).  

Next, we analyze the structure of the resistivity tensor in each phase based on the spin 
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symmetry. Corresponding results are summarized in Table 1 of the main text. A small non-

diagonal component of the resistivity observed in the experiment is allowed by the low 

magnetic symmetry of the FO phase. We associate the reduction in symmetry with the rotation 

of the magnetic moments with respect to the crystallographic axes. Corresponding calculations 

are given below. We additionally refer the reader to Refs. 3, 4, and 8 where similar effects have 

been analyzed in detail. 

 

Phase diagram of the polycrystalline sample  

To fit the experimental field and temperature dependence of the resistivity, we take into 

account that our sample is polycrystalline and consists of different grains with arbitrary 

orientations of the crystallographic axes with respect to the external magnetic field. We divide 

the averaging over the different crystallites into two steps, taking into account the distribution 

of (i) the induced in-plane magnetization 𝑀∥, which determines the value of the magnetic 

resistivity; (ii) the transverse components of the resistivity with respect to the crystallographic 

axes.  

 

Supplementary Fig. 13 | Temperature-magnetic field phase diagram (theory). The blue line separates 

the FO and Γ5g phases. Above the violet line the FO and Γ5g phases are unstable with respect to the 

fluctuation of 𝐌 ⊥  𝐍𝟏 ⊥ 𝐍𝟐 (FL phase). The red line shows the transition between the FO and FL phases 

for a polycrystalline sample (after averaging). Above the tri-critical point 𝑇𝑐𝑟 < 𝑇 < 𝑇0 the magnetic field 

stabilizes only the FO phase (dotted line A), all crystallites contribute to the transverse resistivity signal. 
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Below the critical temperature 𝑇 < 𝑇𝑐𝑟 and starting from 𝐻1𝑐𝑟 < H  (dotted line line B) a polycrystalline 

sample is a mixture of FO and I phases. 

So, in the first step we fix the value of the magnetic field, H, and consider different 

orientations with respect to the sublattice magnetizations. We distinguish only between the 

diagonal component of the resistivity tensor, as they are introduced in the main. In this case, 

the distribution of crystallites is parameterized by the angle 𝜃 between the magnetic field and 

the normal to the plane spanned by the vectors 𝐍𝟏 ⊥ 𝐍𝟐 (hereafter referred to as the ordering 

plane). Above the tri-critical temperature 𝑇𝑐𝑟 < 𝑇 < 𝑇0 (see Supplementary Fig. 13, vertical 

line A), the value of the in-plane magnetization in a particular crystallite is determined by the 

projection of the magnetic field onto the ordering plane: 𝑀∥(𝜃) ≡ 𝑀∥(𝐻 cos θ) [see Eq. (S1)]. 

The probability to find a crystallite with 𝑀∥(𝜃) is 𝑤(𝜃)𝑑𝜃 = sin𝜃𝑑𝜃 and the average value 

of the resistivity is calculated as  

ρ𝑎𝑣𝑒 = ∫ ρ[𝑀∥(𝜃)]𝑤(𝜃)𝑑𝜃                 (S2) 

with integration over all  cos𝜃 ≤ 𝐻2𝑐𝑟/𝐻.  

Below the tri-critical temperature 𝑇 < 𝑇𝑐𝑟 and above 𝐻1𝑐𝑟 < 𝐻  (see Supplementary Fig. 

13, vertical line B), the out-of-plane magnetization 𝑀⊥(θ) ≡ 𝑀⊥(𝐻 sin θ) can occur. In this 

case the value of the in-plane magnetization is given by the following expression: 

M∥(θ) = {
𝑀∥(𝐻 cos 𝜃), 𝐻 < 𝐻1cr

𝑀∥(𝐻 cos 𝜃√1 − 𝑀2
⊥/2), 𝐻 ≥ 𝐻1cr

, (S3) 

In this case integration in (S2) spans all 𝑐𝑜𝑠𝜃 ≤ 𝐻2𝑐𝑟/𝐻  if 𝐻 < 𝐻1cr , and 𝑐𝑜𝑠𝜃 ≤

𝐻2𝑐𝑟/(𝐻√1 − 𝑀2
⊥(𝜃)/2) if 𝐻 ≥ 𝐻1cr. 

In the second step we start from the expression of resistivity tensor for a single crystallite 

with account of spin-orbit interactions, as will be explained below. In FO case this symmetric 

tensor has a nondiagonal component ρ𝑛𝑜𝑛 ∝ ρ𝑥𝑥 − ρ𝑦𝑦, due to rotation of the ordering plane.  

We next average this tensor over all possible orientations of the crystallographic axes x,y,z. 

Three dimensional rotations are parametrized with the Gibb’s vector or Rodrigues parameters 

Ref. 9 which gives ρ𝑗𝑘
𝑎𝑣𝑒 =

1

5
ρ𝑗𝑘 +

4

5
𝛿𝑗𝑘𝑇𝑟ρ̂, where 𝛿𝑗𝑘 is the Kronecker symbol. 
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Origin of the transverse component of resistivity  

In this section we consider a single crystallite with the ordering plane (111). In this case, the 

structure of the resistivity tensor is determined by the magnetic symmetry of the phase and 

depends on the orientation of the magnetic vectors M, N1, and N2 with respect to the 

crystallographic axes. By minimizing the exchange energy given by Eq. (1) in the main text 

we found the values of M, N1 and N2 as a function of field and temperature. The orientation 

with respect to the crystallographic axes can be then calculated by minimizing the magnetic 

anisotropy energy 𝐹an. To construct 𝐹an we follow the approach described in Refs. 3,4,8 and 

introduce combinations Q and P which are irreducible representations of the magnetic 

symmetry group:  

𝑄𝑥 =
1

2
(𝑁2𝑦 − 𝑁1𝑥 − √2𝑁1𝑧), 𝑃𝑥 =

1

2
(𝑁2𝑥 + 𝑁1𝑦 + √2𝑁2𝑧),

𝑄𝑦 =
1

2
(𝑁2𝑥 + 𝑁1𝑦 − √2𝑁2𝑧), 𝑃𝑦 =

1

2
(𝑁2𝑦 − 𝑁1𝑥 + √2𝑁1𝑧),

𝑄𝑧 = −
1

√2
(𝑁2𝑦 + 𝑁1𝑥), 𝑃𝑧 =

1

√2
(𝑁1𝑦 − 𝑁2𝑥).

   (S4) 

Here the axes x, y, and z are aligned along [1̅1̅2], [11̅0] and [111] crystallographic directions. 

The values of Q, P, and M are not independent due to constraints |𝑴1| = |𝑴2| = |𝑴3| = 𝑀𝑠: 

𝑸2 + 𝑷2 + 𝑴2 = 𝑀𝑆
2 etc (see Refs. 3,4). The magnetic anisotropy energy which is invariant 

with respect to the crystallographic symmetry group is modelled as follows: 

𝐹an =
1

2
𝐾𝑎𝑛𝐐2 + 𝑑𝐷𝑀𝐼𝐌(𝐇)𝐐,                       (S5) 

where 𝐾𝑎𝑛 > 0  is the anisotropy constant, 𝑑𝐷𝑀𝐼  can be interpreted as a constant of 

Dzyaloshinskii-Moriya interactions (it couples magnetization with the antiferromagnetic order 

parameters). The equilibrium values of Q and P are calculated by minimizing energy (S1) with 

the constraints, and the fixed value of M(H) that minimizes the exchange energy Eq. (S1).  

The analysis of the energy Eq. (S5) shows that in the Γ5g phase the only nontrivial 

component is Pz; in the flower phase only 𝑃𝑧 , 𝑄𝑧, M𝑧 ≠ 0, and in the FO phase the nonzero 

components are Px, Pz and Qy, My. Appearance of the in-plane components Px, and Qy 

corresponds to rotation of the ordering plane away from crystallographic orientation (111). 

Symmetry considerations predict the following structure of the resistivity tensor:  

𝜌𝑧𝑧 − 𝜌𝑥𝑥 , 𝜌𝑧𝑧 − 𝜌𝑦𝑦 ∝ A𝑴𝑸 + B𝑷2, 𝜌𝑥z ∝ 𝑃𝑥𝑃𝑧    (S6) 
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From Eq. (S6) we conclude that only the FO (and I) phases have a nonzero nondiagonal 

component of resistivity tensor (see Supplementary Fig. 14). 

 

 

 

Supplementary Fig. 14 | Temperature dependence of the transverse resistivity in zero magnetic field. 

Diamonds: ┴from experiment, sample #2, solid line: theory (see text for the details). Source data are 

provided as a Source Data file.   
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