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REVIEWER COMMENTS 

 

Reviewer #1 (Remarks to the Author): Expert in soft tissue sarcoma functional genomics and preclinical 

models 

 

In the manuscript entitled “Proteomic characterization identifies clinically relevant subgroups of soft 

tissue sarcoma”, Tang et al perform proteomic analysis of 272 STSs representing 12 major subtypes. 

They also perform phosphoproteomics for a subset of these samples. Based on this dataset the authors 

accomplish interesting analyses including hierarchical sample classification, proteomic clustering 

classification and TME deconvolution and immune-based tumor classification. These analyses uncover 

interesting correlations. One being the association of SHC1 with poor prognosis in angiosarcoma (AS) 

and epithelial sarcoma (ES) and its potential role in phosphorylating and regulating AAD2 and CNTBB1. 

Another being the involvement of APEX1 and NPM1 in promote cell proliferation in one of the 

proteomic clusters identified (PC-Cc). The classification based on immune signatures defines three 

immune subtypes with distinctive tumor microenvironments. 

 

The amount of work and analyses performed in this study is impressive. The dataset will be of interest 

for better understand the diversity of STS but also will provide a valuable resource for clinicians and 

biologist working on STS. The amount or work and analysis done is a bit overwhelming. Additionally, and 

although in general the paper is clear, there are some parts where the English language needs to be 

improved particularly in the discussion. Some comments which I think should be addressed: 

 

1. One of the interesting aspects of this study is the inclusion of normal adjacent tissue for a number of 

samples. It is clear from the GO presented in supplementary Fig. 2 that this is probably enriched in 

normal muscle tissue. Since sarcomas can occur in many different locations and the adjacent normal 

tissue can be quite variable, I wonder if this was taken into consideration. Are the normal tissues 

primally corresponding to muscle or is there a combination of more connective tissue types (adipose, 

muscle, cartilage, etc). The protein was extracted from FFPE material and the regions were probably 

selected based on histology? 

 

2. It is unclear in Figure 2A how the 6 clusters were defined. Why do the authors define AS, ES, MLPS, 

WDLPS as two distinct clusters (HC1 and HC2), while MFS, DDLPS, othersFS and MPNST form a single 

cluster (HC3)? Based on the dendrogram y-axis (height) the HC3 should be further subdivided into three 

clusters: MFS, DDLPS (as one cluster), othersFS and MPNST. Is that correct? Or which 

parameters/cutoffs were used for determining the 6 HCs? 

 

3. Line 239: “Meanwhile, *HC1-enriched proteins (student’s t test, fold-change > 1.5, adjusted P value 

<=0.05) participating in pathways correlated with metabolism (as shown in figure 2C) were filtered out. 



Is it supposed to be *HC2-enriched proteins? Or did the authors filter out some of the H1-enriched 

proteins? This is unclear and confusing. 

 

4. The work involves many different analyses touching on some relationships only superficially. I think to 

further test these models/hypotheses is out of the scope of the paper, however, the authors should take 

care in their concluding remarks in the results section. The findings support or are suggestive of a 

particular mechanism but were not functionally tested. The conclusive remarks in the result section 

should reflect that. 

 

For example: 

 

Line 283: “In sum, the upregulation of SHC1 drives poorer diagnoses of patients diagnosed with AS or ES 

through promoting actin cytoskeleton reorganization and epithelial cell migration by phosphorylation of 

ADD2 Ser2”. 

 

Although the integration between proteomics and phosphoproteomics is very interesting, and 

suggestive of a role for SHC1, the data shown does not directly implicate SHC1 in poor prognosis by 

promoting cytoskeleton reorganization or cell migration. In fact, only cell viability was measured upon 

SHC1 inhibition at this point in the paper. Also, the authors did to confirm that indeed SHC1 is able to 

phosphorylate ADD2 and later in the paper it is suggested that SHC1 regulates metastasis by 

phosphorylating CTNNB1 (instead or in addition?) (Fig.3K, L). This conclusion should be rephrased. 

 

Line 458: “Taken together, our data illustrated that RIOK1 phosphorylates NPM1 on Ser125 to assist the 

interaction of NPM1 and APEX1 resulting in cell proliferation in PC-Cc” 

 

Again, the authors show increase proliferation by NPM1 overexpression, and that NPM1 interacts with 

APEX1 but the rest of the data is correlative. 

 

5. The TME deconvolution analysis suggests some interesting relationships. Since this type of analysis is 

usually done from transcriptomic data, I wonder to what extent is well established for proteome 

analysis. Was this validated with an alternative deconvolution method or by a couple of IHC markers to 

validate enrichment of immune cell populations in some of the samples analyzed? 

 

6. The discussion is too long and has some paragraphs that are not well written. See for example the 

paragraph starting on line 647. 



 

7. Although the last integrative analysis presented in Figure 6 brings together the different aspects 

analyzed in this study, it is unclear what it means in the perspective of heterogeneity of STS subtypes. 

Some subtypes are enriched in specific proteomic clusters which are then enriched in different immune 

signatures, but still, there is a lot of variability on how HC are distributed. 

 

8. There are some typos and some sentences are not well constructed or are unclear. This is particularly 

noticeable in the discussion. Some examples below: 

 

Line 73. “A potential explanation is that these mechanisms could not reflect the functional effects, as 

they reside many regulatory layers away from the protein.” 

 

Line 106. “It is necessarily required for immune therapy that more detailed information about the 

characteristics of immune infiltration and the effective immune components.” 

 

Line 594. “When considering targeting the molecular in the TGFβ signaling pathway (such as SHC1), ES 

might have a similar response with AS.” 

 

Minor comments: 

 

1. Line 257: “We found the activity level of two pathways enriched in HC1, actin cytoskeleton 

reorganization (Pearson’s correlation, r = 0.21 pvalue = 0.0049) and epithelial cells migration (Pearson’s 

correlation, r = 0.22 p value = 0.0027), changed *tightly followed the abundance variation of SHC1 

(Figure 2F). 

 

I would not say there is a *tight correlation between SHC1 abundance and Epithelial cell migration. It is 

just a correlation. 

 

2. Fig. 2K it would be better to show in the plot the IC50 of all cell lines individually and they are only 6. 

 

3. The literature references are not always correct. For example, reference for CellX should be 62 (not 63 

as mentioned in the text). 

 



 

 

 

Reviewer #2 (Remarks to the Author): Expert in tumour immunology and immune landscapes in sarcoma 

 

The present study undertakes a comprehensive proteomic profiling of 272 STS patients representing 12 

major subtypes. 

The authors identify six subtypes on the base of hierarchical classification, three subtypes based on 

proteomic analysis and three subtypes based on immune signatures. For some clusters they identified 

some mechanism/s relevant for patient prognosis. Interestingly, some of the main mechanisms 

identified with bioinformatics approaches are verified by wet laboratory experiments. 

The study provides a valuable proteomic resource for the scientists working on sarcomas. The study is 

correctly written, although the logic of the analyzes carried out is not always fluent and sometimes it is 

difficult to follow. 

Moreover, there are some concerns: 

1) The three main clustering analysis should be performed also taking into account the anatomical site 

distribution and the therapies applied to the patients, in order to verify if the clustering may be 

influenced by the location of the tumor or by the therapy. 

2) in figure 5A complement and coagulation cascade pathways are enriched in the IM-S-1 cluster 

corresponding to the stroma-enriched subtype and B cells in the IM-S-2. Results already published on 

the role of complement activation and B cells in sarcomas (doi: 10.1038/s43018-021-00173-0 and doi: 

10.1038/s41586-019-1906-8) should be mentioned and discussed. Are the main findings of these two 

papers true by proteomic point of view? For example, is the C3aR or complement soluble 

proteins/receptors expression associated with M2-like macrophages and/or UPS patient survival? Are B 

cell markers associated with increased overall survival? Do they correlate with metastasis? 

3) The authors should discuss some limitations of the study, such as: 

- the requirement of future validation in independent cohorts. 

- considering the extensive intra-tumoural heterogeneity, the inability of bulk proteomic approach to 

dissect the contribution of distinct heterogenous tumour regions. 

- the study is based on localised disease, thus it will have to be determined if these findings will be true 

also for locally relapsed and metastatic tumours. 

 

 

 



 

Reviewer #3 (Remarks to the Author): Expert in MS-based cancer proteomics 

 

Comments on “Proteomic characterization identifies clinically relevant subgroups of soft tissue 

sarcoma” by Tang et al. 

The authors present proteome data from 272 soft tissue sarcoma tissues and 91 matched tumor-

adjacent tissues (total of 363 samples). In addition, phosphoproteome data were generated from 138 

sarcoma and 24 tumor-adjacent tissues. Data analysis is based on clustering the data, extract functional 

predictions from the clusters, and follow-up with some cell line experiment to understand the role of 

top-scoring proteins in the specific functional categories. The authors are - in general – overstating the 

evidence from the molecular mechanisms they are interrogating (see comments). Overall, I did not find 

the study to be very exciting. I think that Nature Communications is a good place for resource-style 

papers like this, and proteomics studies on soft tissue sarcoma have the potential to help us better 

understand the diseases and to identify new treatment strategies. Also, 361 sample is a quite large 

number. What I am missing is evidence that proteomics is adding crucial information beyond what we 

know about the disease. I also think that the follow-up experiments need more depth. I am on the fence 

regarding recommending to consider a publication after major revisions, but I am happy to look the 

manuscript after the below comments have been addressed. 

 

 

(1) The authors state that 15,552 proteins were identified across all samples with an average of 5,593 

proteins being quantified per sample on average. It is very unlikely that 5.5 k proteins per sample using 

unfractionated sample leads to a total of > 15 k proteins across 363 samples. I wonder if the false-

discovery filtering at the protein level was done for each individual sample but not for all datasets 

combined. It is the latter, that should have been done. Merely filtering for each individual run will 

greatly inflate the protein FDR for the entire dataset (as false assignments will be different for each run). 

It is also not clear if a parsimony filtering was used on the identified proteins. This should also be done 

the combined dataset. The same question applies to the phosphoproteomics analysis: was the filtering 

done on the combined dataset (which it should have been) or only on each individual dataset? 

 

(2) Peptides/proteins were quantified using a label-free approach (iBAQ). Reproducibility is shown in 

Supp Fig 1 A. I would like to see the median CV across all the HEK standard samples as well as the CV in 

dependence to the signal-to-noise ratio. 

 

(3) Supp Fig 2 A. The PCA plot shows quite an overlap of NAs and tumor samples. It would be great to 

see a unsupervised clustering of NAs and tumor sample and some cluster purity measurement to 

evaluate the separation of tumor and normal samples. 

 



(4) What criteria were used to define the clusters (HC1-6)? This is not clear based on the dendrogram 

alone. The dendrogram implies that there was very clean clustering histological subtypes. I am missing a 

plot showing how well the subtypes were separated from each other using unsupervised clustering (see 

also comment 3). 

 

(5) line 250. A correlation between TGFbeta proteins and SHC1 does not necessarily mean that SHC1 

plays a key role in TGFbeta signaling. It may suggest that it plays a role, but this needs more evidence. 

This should be re-worded. 

 

(6) Line 283: In sum, …. None of that is shown with enough evidence. The language should be toned 

down. Higher kinase expression does not necessarily mean higher kinase activity. Did ADD2 S2 

phosphorylation level drop with inhibition of SHC1? How specific is the inhibitor. What is the kinase 

phosphorylating ADD S2? 

 

(7) Fig 3 and Supp Fig 6: Is the inhibition of SHC1 and MAPK10 affecting the phosphorylation levels at 

CTNNB1Ser552 and Ser675? 

 

(8) Fig 7P and line 457. There is lots of evidence missing for RIOK1 phosphorylating NPM1 and thereby 

regulating the interaction of APEX1 and NPM1. Does inhibition/KD of the kinase affect the 

phosphorylation level (phosphoproteomics, WB)? Does the inhibition affect the interaction of the 2 

proteins (IP-MS, WB)? Does it affect the co-regulation of the two proteins (proteomics)? 

 

(9) Fig 7O and line 527: Evidence is missing. Does inhibition/KD of MAPK10 affect the CTNNB1 Ser657 

phosphorylation level. Does the inhibition of MAPK10 in cells derived from the according strain affect 

immune infiltration (xenograft model)? 

 

(10) As the control samples are matched tumor-adjacent tissue, the authors may consider comparing 

sarcoma and control tissue in a patient-specific manner to better understand tumor/normal differences 

(does it matter if I normalize the sarcoma proteome by the adjacent tissue proteome for each patient, 

rather than compare all control samples with all sarcoma samples?). 

 

Minor comments: 

(a) The KSEA algorithm should cited in the main text when stating that kinase-substrate networks were 

generated. 



Reviewer #1 (Remarks to the Author): Expert in soft tissue sarcoma functional 1 

genomics and preclinical models 2 

 3 

In the manuscript entitled “Proteomic characterization identifies clinically 4 

relevant subgroups of soft tissue sarcoma”, Tang et al perform proteomic analysis 5 

of 272 STSs representing 12 major subtypes. They also perform 6 

phosphoproteomics for a subset of these samples. Based on this dataset the authors 7 

accomplish interesting analyses including hierarchical sample classification, 8 

proteomic clustering classification and TME deconvolution and immune-based 9 

tumor classification. These analyses uncover interesting correlations. One being 10 

the association of SHC1 with poor prognosis in angiosarcoma (AS) and epithelial 11 

sarcoma (ES) and its potential role in phosphorylating and regulating AAD2 and 12 

CNTBB1. Another being the involvement of APEX1 and NPM1 in promote cell 13 

proliferation in one of the proteomic clusters identified (PC-Cc). The classification 14 

based on immune signatures defines three immune subtypes with distinctive tumor 15 

microenvironments. 16 

 17 

The amount of work and analyses performed in this study is impressive. The 18 

dataset will be of interest for better understand the diversity of STS but also will 19 

provide a valuable resource for clinicians and biologist working on STS. The 20 

amount or work and analysis done is a bit overwhelming. Additionally, and 21 

although in general the paper is clear, there are some parts where the English 22 

language needs to be improved particularly in the discussion. Some comments 23 

which I think should be addressed:  24 

Response: 25 

We are grateful for the constructive comments that the reviewer has provided, which 26 

truly help us in improving our work. In this revision, according to the reviewer’s 27 

comments, we have conducted a deeper bioinformatic analysis, performed a series of 28 

functional experiments, and also revised the manuscript carefully. We have provided 29 

specific point-to-point response as follows: 30 

 31 



1. One of the interesting aspects of this study is the inclusion of normal adjacent 32 

tissue for a number of samples. It is clear from the GO presented in supplementary 33 

Fig. 2 that this is probably enriched in normal muscle tissue. Since sarcomas can 34 

occur in many different locations and the adjacent normal tissue can be quite 35 

variable, I wonder if this was taken into consideration. Are the normal tissues 36 

primally corresponding to muscle or is there a combination of more connective 37 

tissue types (adipose, muscle, cartilage, etc). The protein was extracted from FFPE 38 

material and the regions were probably selected based on histology? 39 

Response: 40 

We appreciate the reviewer’s constructive comments. We apologize for the unclear 41 

description of the sample collection and assessments and the neglected presentation of 42 

how we performed a comparative analysis between tumors and normal tissues adjacent 43 

to tumor (NAT). To systematically respond to the comment, we divided the responses 44 

into two parts: 45 

 46 

1. The criteria for sample collection and assessment 47 

In this study, for tumor samples, 272 formalin-fixed, paraffin-embedded (FFPE) 48 

sarcoma tumor tissues and 91 paired NATs were acquired from Zhongshan Hospital, 49 

Fudan University from 2010 to 2019. One 4 μm trick slide from each FFPE block was 50 

sectioned and stained by hematoxylin and eosin (H&E) for histological evaluation. 51 

Specifically, each tumor/ tumor-adjacent sample was checked by three expert 52 

pathologists to confirm the sample quality according to the following criteria: 53 

 54 

For tumor samples: (1) pathologists evaluated and defined tumor area on the slices of 55 

FFPE specimens with tumor cell ratio (tumor purity) > 90%; (2) the histological 56 

subtypes of sarcoma were diagonalized by pathologists according to WHO 57 

classification of soft Tissue & Bone tumor (Adv Anat Pathol, PMID: 32960834).  58 

 59 

For NAT samples: (1) pathologists evaluated and defined the tumor-adjacent areas on 60 

the slices of FFPE specimens with no observed tumor cells; (2) for different histological 61 

sarcoma subtypes, NATs were chosen based on tumor locations and the original 62 



lineages of tumors, according to WHO classification of soft Tissue & Bone tumor (Adv 63 

Anat Pathol, PMID: 32960834). The specific NATs for different histological sarcomas 64 

were presented in Table RL1. The representative H&E-stained slices showed the 65 

regions of tumors with their paired NATs, which confirmed the NAT types for 66 

distinctive tumors, and also indicated over 90% of tumor cellular purities for tumor 67 

regions, and no tumor cells in NATs (Figure RL1). Moreover, the same NAT collecting 68 

criteria were also utilized by previous published sarcoma studies (Cell, 69 

PMID:29100075; Nature Genetics, PMID:20601955; Curr Treat Options Oncol, 70 

PMID: 35171456; Cancer Research, PMID:17638873).  71 

 72 

Table RL1. The histological subtypes of sarcoma and tissue types of their paired NATs 73 

Tumors NATs  

WDLPS Lipid tissue 

MLPS Lipid tissue 

DDLPS Lipid tissue 

AS Connective tissue 

UPS Connective tissue 

MFS Connective tissue 

otherFS Connective tissue 

LMS (gastrointestinal tract & uterus) Smooth muscle tissue 

LMS (other organs) Connective tissue 

RMS Skeletal muscle tissue 

MPNST Nerve tissue 

SS Connective tissue 

ES Connective tissue 



Figure RL1. The criteria for sample collection and assessments 74 

(A) H&E-stained slices presents the regions of tumor and paired NATs. Different histological 75 

subtypes have distinguished tissue types of NATs. 76 

 77 

2. The molecular features of tumors and NATs 78 

In our previous version, to investigate the common molecular features of sarcoma 79 

tumors and NATs, we conducted a comparative analysis between all tumor tissues and 80 

all NATs. As a result, Gene Ontology (GO) enrichment analysis based on proteomic 81 

data revealed that proteins of some classical oncogenic pathways, including RNA 82 

splicing, NF-kappaB signaling, JNK cascade, and cell growth were significantly 83 

elevated in tumor samples, whereas, the protein participating in ATP metabolic process, 84 

glycogen metabolic process, and actin filament organization were decreased in tumor 85 

samples. 86 

 87 

In the revision, following the reviewer’s suggestion, we performed pair-wised tumors 88 

and NATs comparative analysis among 12 histological sarcoma subtypes to clearly 89 

elucidate the molecular features of different histological tumor subtypes and features 90 

of their corresponding NATs. As a result, besides the common features of sarcoma 91 

tumors such as cell cycle, NF-kappaB signaling pathway, and the general characteristics 92 

of NATs such as ATP metabolic process, we observed the distinctive features of 93 



different histological sarcoma tumors and their corresponding NATs (Table RL2). For 94 

instance, the pathways enriched in WDLPS included the VEGFA & VEGFR2 signaling 95 

pathway and HOXA1 target signaling pathway, whereas pathways enriched in its pair-96 

wised NATs (lipid tissues) included organic acid catabolic process, carboxylic acid 97 

catabolic process, and ATP synthesis coupled electron transport. Meanwhile, the 98 

pathways enriched in RMS include MYC targets up, signaling by interleukins and DNA 99 

replication, while, pathways enriched in their pair-wised NATs (skeletal muscle tissues) 100 

were muscle system processing, muscle contraction, etc. Along with these findings, the 101 

pathways dominantly enriched in MPNST were MAPK cascade, P53 regulation 102 

pathway, and cell cycle, whereas pathways enriched in its pair-wised NATs (nerve 103 

tissues) were intermediate filament organization and collagen fibril organization. The 104 

specific pathways for distinctive tumors and NATs were listed as follows:  105 

Table RL2. Significantly enriched pathways in NAT tissue and tumor tissue for each 106 

histological subtype 107 



The above results indicated that besides the common features of sarcoma tumors (cell 108 

proliferation, MAPK signaling pathways, etc.) and NATs (ATP metabolic process), 109 

pair-wised comparative analysis revealed specific features for distinctive histological 110 

sarcomas and their corresponding NATs. In the revision, besides the common features 111 

of tumors and NATs which have been described in our previous version, we have added 112 

the distinguished features of different histological sarcoma tumor types and their 113 

corresponding NATs in the “Result” section, on lines 127-144 and 201-213. Moreover, 114 



we carefully checked our previous version of the manuscript, and in our research, the 115 

omics data of NATs were utilized to investigate the differential expression features of 116 

sarcoma tumors and NATs (supplementary figure2 in the previous version), thus we 117 

have updated the supplementary figure 2 accordingly. Also, we have added the criteria 118 

for selection and assessment of NATs in the “Method” section on lines 933-960 in the 119 

revised manuscript.  120 

 121 

2. It is unclear in Figure 2A how the 6 clusters were defined. Why do the authors 122 

define AS, ES, MLPS, WDLPS as two distinct clusters (HC1 and HC2), while MFS, 123 

DDLPS, othersFS and MPNST form a single cluster (HC3)? Based on the 124 

dendrogram y-axis (height) the HC3 should be further subdivided into three 125 

clusters: MFS, DDLPS (as one cluster), othersFS and MPNST. Is that correct? Or 126 

which parameters/cutoffs were used for determining the 6 HCs? 127 

Response: 128 

We thank the reviewer for the critical comment. We apologize for the unclear 129 

presentation of the clustering cutoffs and details in our previous manuscript. To 130 

systematically respond to the comment, we will address this comment from 3 aspects: 131 

1. The process to create the dendrogram;  132 

2. The criteria to determine the cluster number; 133 

3. Biological insights based on hierarchical clusters. 134 

 135 

1. The process to create the dendrogram 136 

To investigate the intrinsic common features of STS histological subtypes, we 137 

employed hierarchical clustering on the 12 STS histologic subtypes. R (version 4.2.0) 138 

and the R package “factoextra” (version 1.0.7) were utilized for data process and 139 

visualization.  140 

 141 

Firstly, we performed ANOVA analysis to filter proteins with high variable values 142 

among different histology subtypes. The protein expression matrix had been processed 143 

as described in the “Method” section of the manuscript. 2536 proteins were finally 144 

filtered out with significant variance among histological subtypes (p-value <= 0.001). 145 



Then, we calculated the mean values of these filtered proteins for each sarcoma 146 

histology subtype. The “Pearson” distances between each two subtypes were calculated 147 

utilizing these mean values (Supplementary Table 2). Next, based on the “Pearson” 148 

distances, we created the dendrogram with “hclust” and “fviz_dend” functions in R 149 

using default parameters (Figure RL2A). 150 

Figure RL2. Process and details of hierarchical clustering 151 

(A) The cluster dendrogram of 12 histological subtypes of sarcoma 152 

 153 

2. The criteria to determine the cluster number 154 

The cluster number of hierarchical clustering is determined by the height where the 155 

cluster dendrogram is cut. To find the appropriate cluster number (k), we cut the cluster 156 

dendrogram at different heights to get the cluster numbers from 2 to 10 (Figure RL2B). 157 

Referring to previous research, we utilized the silhouette coefficient to estimate the 158 

similarity of samples in one cluster and the difference of samples among different 159 

clusters. The silhouette coefficients reached the peak when the cluster number was 5 or 160 

6 (Figure RL2C).  161 

 162 

To further investigate the clinical availability of our hierarchal cluster, we evaluated the 163 

association between hierarchal clustering with patients’ prognosis. As a result, when the 164 

cluster number is 6, patients belonging to different clusters presented distinguished 165 

overall survival time (log-rank test, p < 0.03) (Figure RL2D), suggesting its potential 166 

clinical utilization. Therefore, we cut the dendrogram at 0.95 and clustered the 12 167 

histological subtypes of sarcoma into 6 subgroups: HC1 (AS and ES), HC2 (MLPS and 168 

WDLPS), HC3 (MFS, DDLPS, and otherFS), HC4 (RMS and SS), HC5 (UPS), and 169 



HC6 (LMS) (Figure RL2E). 170 

Figure RL2. (B) The circled cluster dendrograms of sarcoma histological subtypes with cluster 171 

numbers from 2 to 10. (C) The scaled mean values of silhouette coefficients for different cluster 172 

numbers. (D) Kaplan-Meier curves for overall survival times when cluster number is 5 or 6. 173 

 174 



Figure RL2 (E) Cluster dendrogram for hierarchical clustering when cluster number is 6 175 

 176 

3. Biological insights based on hierarchical clusters 177 

Besides clinical availability, our HC clustering showed strong biological relevance, 178 

each subgroup showed distinctive biological features, helping to uncover the intrinsic 179 

common features of different histological subtypes belonging to the same hierarchical 180 

cluster. Particularly, in our previous version, we found that HC1 contains AS and ES, 181 

both of which could be distinguished from other clusters with elevated expression of 182 

SHC1-TGFβ signaling pathways.   183 

 184 

In the revision, we conducted further analysis to investigate how hierarchical clusters 185 

could decipher the common features and heterogeneity among 12 histological subtypes 186 

of sarcoma. As a result, we found that our hierarchical clustering divided the lipid 187 

sarcoma (WDLPS, MLPS, and DDLPS) into two clusters. Particularly, DDLPS were 188 

clustered together with fibrosarcomas (MFS and otherFS) and MPNST in HC3. 189 

WDLPS and MLPS were clustered into another cluster (HC2). Considering different 190 

differentiation levels of WDLPS, MLPS, and DDLPS, these findings revealed the 191 

difference of tumor differentiation within lipid sarcomas might lead to the diverse 192 

molecular features between DDLPS and WDLPS, further implying that the degree of 193 

tumor differentiation might serve as an important factor in determining the molecular 194 



features of sarcomas within lipid sarcomas. Because DDLPS is more metastatic and 195 

proliferative than WDLPS (Adv Anat Pathol, PMID: 32960834), we compared the ratio 196 

of KI67-positive tumor cells in WDLPS and DDLPS. DDLPS showed an obviously 197 

higher ratio of KI67-positive tumor cells than WDLPS (Figure RL2F). Consistently, 198 

HC3 also presented the higher ratio of KI67-positive tumor cells than HC2, implying 199 

that HC3 featured fast cell proliferation characteristics (Figure RL2F). 200 

Figure RL2. (F) Boxplots illustrating the ratio of KI67-positive tumor cells in HC2 and HC3 201 

(left) and histological subtypes belonging to HC2/HC3 (right). 202 

 203 

GSVA analysis revealed that DDLPS (HC3) could be distinguished from WDLPS and 204 

MLPS (HC2) by elevated enrichments of Rab pathway (Figure RL2G-H). The 205 

elevated protein expression of Rab GTPases including RAB14, RAB5A, RAB2A, etc. 206 

in HC3 confirmed the increased Rab pathway in HC3 (Figure RL2I). 207 

Figure RL2. (G) The heatmap of specifically enriched pathways in hierarchical clusters; (H) 208 

Boxplots showing GSVA scores of Rab regulation of trafficking and Rab pathway in 209 

histological subtypes belonging to HC2/HC3. 210 

 211 



Moreover, among the Rab GTPases that showed elevated expression in HC3, we 212 

observed that the protein abundance of RAB2A and RAB14 were significantly 213 

correlated with patients’ prognosis (Figure RLJ).  214 

Figure RL2. (I) The heatmap presenting Rab GTPases enriched in HC3; (J) The forest plot 215 

showing the hazard ratios of Rab GTPases enriched in HC3. 216 

 217 

Previous researches have reported that Rab GTPases participated in cell autophagy 218 

(Cell Death Differ, PMID: 24440914; Cell Biosci, PMID: 33557950). RAB2A has 219 

been proved to regulate the formation of autophagosome and autolysosome (Autophagy, 220 

PMID: 30957628). Researches have indicated that the elevated autophagy might be 221 

associated with tumor proliferation (Clin Cancer Res, PMID: 26567363), we then 222 

hypothetically assumed that the elevated autophagy might lead to significantly fast 223 

tumor cell proliferation and cell proliferation index in HC3. 224 

 225 

Aim to confirm this assumption, we compared the autophagy pathway between HC2 226 

and HC3, and found that both the autophagy pathway enrichment scores as well as 227 

autophagy markers (ATG5, ATG7, MTOR, WIPI1) showed elevation in HC3 than HC2 228 

(Figure RL2K-M). Moreover, proliferation index of sarcoma is both correlated with 229 

protein expression of RAB2A and autophagy pathway GSVA scores (Figure RL2N). 230 

These findings illustrated that comparing to WDLPS and MLPS which belong to HC3, 231 

DDLPS, which belongs to HC2, showed fast tumor cell proliferation features, which 232 

might be caused by the RAB2A-associated autophagy process. 233 



Figure RL2. (K) The scatter plot presenting the positive correlation between RAB2A and 234 

autophagy pathway; (L) The boxplot presenting the enrichment scores of autophagy in different 235 

clusters; (M) Boxplots presenting the abundances of autophagy markers in different clusters; 236 

(N) The scatter plot presenting the positive correlation between proliferation index and 237 

autophagy pathway (left) or abundance of RAB2A (right) 238 

 239 

In sum, our hierarchical clustering showed clinical relevance and could help to illustrate 240 

the common features among different histological sarcomas and could further decipher 241 

the distinctive biological features of lipid sarcomas varies with degrees of 242 

differentiation. In the revised manuscript, we have updated the methods for hierarchical 243 

clustering in the “Methods” section and updated our analysis on the HC2 and HC3 in 244 

the “Result” section (line297-330). Also, we updated Figure RL2 in the revised 245 

Figure2, Supplementary Figure 8&9. 246 

 247 

3. Line 239: “Meanwhile, *HC1-enriched proteins (student’s t test, fold-change > 248 

1.5, adjusted P value <=0.05) participating in pathways correlated with 249 

metabolism (as shown in figure 2C) were filtered out. 250 

Is it supposed to be *HC2-enriched proteins? Or did the authors filter out some of 251 

the H1-enriched proteins? This is unclear and confusing.  252 

Response: 253 

We thank the reviewer for the comment and apologize for the incorrect phrasing of line 254 

239. We have revised the manuscript as follows: “Meanwhile, HC2-enriched proteins 255 



(student’s t-test, fold-change > 1.5, adjusted p-value <= 0.05) participating in pathways 256 

correlated with metabolism (as shown in Figure 2C) were filtered out.” 257 

 258 

4. The work involves many different analyses touching on some relationships only 259 

superficially. I think to further test these models/hypotheses is out of the scope of 260 

the paper, however, the authors should take care in their concluding remarks in 261 

the results section. The findings support or are suggestive of a particular 262 

mechanism but were not functionally tested. The conclusive remarks in the result 263 

section should reflect that. 264 

 265 

For example: 266 

Line 283: “In sum, the upregulation of SHC1 drives poorer diagnoses of patients 267 

diagnosed with AS or ES through promoting actin cytoskeleton reorganization and 268 

epithelial cell migration by phosphorylation of ADD2 Ser2”. 269 

 270 

Although the integration between proteomics and phosphoproteomics is very 271 

interesting, and suggestive of a role for SHC1, the data shown does not directly 272 

implicate SHC1 in poor prognosis by promoting cytoskeleton reorganization or 273 

cell migration. In fact, only cell viability was measured upon SHC1 inhibition at 274 

this point in the paper. Also, the authors did to confirm that indeed SHC1 is able 275 

to phosphorylate ADD2 and later in the paper it is suggested that SHC1 regulates 276 

metastasis by phosphorylating CTNNB1 (instead or in addition?) (Fig.3K, L). This 277 

conclusion should be rephrased.  278 

Response: 279 

We thank the reviewer for this critical comment. We agree with the reviewer that more 280 

evidence could help to elucidate the mechanism of how SHC1 regulates cell migration 281 

through phosphorylation and leads to metastasis and poor prognosis in sarcoma. To 282 

systematically respond to the comments, we divided the comments into 2 parts: 283 

  284 

Part 1. The association between SHC1 and cell migration in the HC1 cluster. 285 

In our previous version, we grouped the 12 histological types of sarcomas into 6 286 



hierarchical clusters (HC), among which HC1 containing both AS and ES showed the 287 

worst prognosis. Differential expression analysis combined with GO pathway analysis 288 

revealed HC1 featured with enrichment of the TGFβ signaling pathway. To further 289 

elucidate the mechanism underlying the poor prognosis of HC1 patients, we focused on 290 

the HC-elevated proteins that enriched in the TGFβ signaling pathway and identified 291 

SHC1 as the top-ranked elevated protein in HC1 associated with patients’ poor 292 

prognosis. We then hypothetically assumed that SHC1 might play an important role in 293 

leading the poor prognosis of HC1 sarcoma, through enhancing TGFβ mediated tumor 294 

cell migration.   295 

 296 

To confirm this assumption, in the revision, we conducted the following experiments: 297 

 298 

1.1. SHC1 could impact the HC1 tumor cell migration. 299 

To investigate the role of SHC1 in impacting the tumor cell migration in HC1 cluster, 300 

we utilized the ASM cell line (the cell line originating from AS), since AS is the main 301 

component of HC1. We constructed the stable SHC1-overexpressed ASM cell line 302 

(SHC1-OE-ASM) utilizing the pCDH-SHC1-copGFP vector and also knocked down 303 

SHC1 (SHC1-KD-ASM) utilizing pLKO.1-CMV-shSHC1-copGFP. RT-PCR analysis 304 

was utilized to verify the expression of SHC1 in SHC1-OE-ASM and SHC1-KD-ASM. 305 

The results confirmed the significantly elevated expression of SHC1 in SHC1-OE-306 

ASM and the significantly decreased expression of SHC1 in SHC1-KD-ASM (Figure 307 

RL3A). We then evaluated the cell migration rates using transwell assay. As a result, 308 

the SHC1-OE-ASM cell line showed increased cell migration ability, whereas the 309 

SHC1-KD-ASM cell line exhibited decreased cell migration ability compared with 310 

control cells (Figure RL3B). 311 



Figure RL3. Functional experiments to validate the impacts of the SHC1-PTK2 and 312 

SHC1-CSNK1G1 axis in sarcoma 313 

(A) The expression of SHC1 in SHC1-OE-ASM, SHC1-KD-ASM, and the control group by 314 

RT-PCR. (B) The effects of SHC1 on the migration of ASM cells were confirmed by the 315 

transwell assay. The bar plots (right panel) indicate counts of migrated ASM cells under 316 

different treatments. 317 

 318 

1.2. Comparative analysis revealed PTK2 as the core kinase that linked SHC1 and 319 

the phosphorylation of ADD2.  320 

Published researches have indicated that SHC1 participated in various biological 321 

process, and might regulate downstream pathways through phosphorylation (Nature, 322 

PMID: 23846654; Nat Commun, PMID: 28276425; Front Cell Dev Biol, PMID: 323 

33693003). Therefore, in our previous version, to further illustrate how SHC1 led to 324 

cell migration, we performed correlation analysis and observed that the 325 

phosphorylation of ADD2 (functions in cytoskeleton reorganization and epithelial 326 

migration) at Ser2 showed the most significant correlation with SHC1. Combined with 327 

clinical information, we found that the phosphorylation of ADD2 at Ser2 was 328 

significantly associated with patients’ poor prognosis. 329 

  330 

Functionally, SHC1 is an adapter protein that could interact with different kinases and 331 

participate in signal transduction pathways (Nature, PMID: 23846654). In the revision, 332 

to elucidate the kinase that related to SHC1 and might regulate the phosphorylation of 333 

ADD2 at Ser2 in HC1 cluster, we referred to the public database (PhosphoSite [https://  334 



www.phosphosite.org/homeAction.action], Phos-pho.ELM [http:// 335 

phospho.elm.eu.org/dataset.html], and PhosphoPOINT [http:// 336 

kinase.bioinformatics.tw/]) and conducted correlation analysis. As a result, among the 337 

kinases reported to regulate phosphorylation of ADD2, PTK2, was identified as the 338 

kinase that showed the most significant correlation with SHC1 and comparatively 339 

higher expression in the HC1 cluster (Figure RLC-D).  340 

Figure RL3. (C) The scatter plot presenting the significantly positive correlation between the 341 

protein expression of PTK2 and SHC1 (Spearman’s rank correlation). (D) The violin plot 342 

indicated the PTK2 protein expression among HC clusters. 343 

 344 

1.3. Inhibiting PTK2 could impact the increased cell migration leading by SHC1. 345 

To further investigate the role of PTK2 in impacting cell migration, we utilized SHC1-346 

OE-ASM and OE-Ctrl-ASM cells and treated them with PTK2 inhibitors. We then 347 

evaluated the cell migration by transwell assay. As a result, inhibiting PTK2 could 348 

significantly decrease the cell migration rates increased by SHC1 (Figure RL3E). 349 

Moreover, overexpression of PTK2 in SHC1-KD-ASM significantly increased cell 350 

migration which was inhibited by knocking down SHC1 (Figure RL3F). These results 351 

implied that the kinase, PTK2 participated in cell migration driven by SHC1. 352 

Figure RL3. (E-F) The transwell assay confirms effects of the SHC1-PTK2 axis on the 353 



migration of ASM cells. The bar plots indicated the migrated cell counts of ASM cells under 354 

different treatments. 355 

 356 

We further performed phosphoproteomic analysis between SHC1-OE-ASM treated 357 

with or without PTK2 inhibitor. As a result, the phosphorylation of some proteins 358 

participating in actin cytoskeleton reorganization and epithelial cell migration showed 359 

a significant elevation in SHC1-OE-ASM and a significant decrease in SHC1-OE-ASM 360 

treated with the PTK2 inhibitor, such as ADD2 at S2, FGD4 at S702, and EPB41 at 361 

S542 (Figure RL3G). These observations confirmed the role of PTK2 in 362 

phosphorylating ADD2 at S2 and elevation actin cytoskeleton reorganization pathways.  363 

Figure RL3. (G) The boxplots indicate the phosphorylation intensity of ADD2 S2 and other 364 

phosphosites participating in actin cytoskeleton reorganization under different treatments. 365 

 366 

In sum, the above experiments confirmed our assumption that SHC1 could impact the 367 

cell migration through phosphorylating ADD2 at Ser2, mediated by PTK2. 368 

 369 

Part2 The association between SHC1 expression and high metastatic rates of PC-370 

Ra-HC1. 371 

Additionally, in our previous manuscript, to investigate the heterogeneity within and 372 

across the histological subtypes of sarcomas, we performed proteomic-based subtyping 373 

and divided the sarcoma into three proteomic subtypes (PC-Ra, PC-Cc, and PC-Sm) 374 

with patients belonging to PC-Ra had the highest metastatic rates. Importantly, the 375 

integrative analysis of hierarchical and proteomic clusters revealed that PC-Ra 376 

contained samples from both HC1 (PC-Ra-HC1) and other HCs (PC-Ra-oHCs). We 377 



then conducted further analysis and found that the elevated metastatic rates of PC-Ra-378 

HC1 might be caused by SHC1-mediated angiogenesis (student’s t-test: p-value = 379 

0.042), while PC-Ra-oHCs might be caused by MAPK10-mediated MAPK signaling 380 

pathway (student’s t-test: p- value = 2.1e-4).  381 

 382 

In previous version, to verify the impact of SHC1 for metastasis in PC-Ra-HC1, we 383 

have constructed SHC1-overexpressed vector and transfected it into the ISOHAS cell 384 

line (SHC1-OE-ISOHAS) which showed similar expression patterns with PC-Ra-HC1, 385 

and conducted the transwell migration assay. As a result, the increased migration ability 386 

of SHC1-OE-ISOHAS was observed, confirming the role of SHC1 in enhancing 387 

metastasis of tumors belonging to PC-Ra-HC1 (shown in the original Figure 3I).  388 

 389 

In the revision, we then tried to further illustrate the mechanism underlining this 390 

phenomenon. Since we have confirmed that as an adaptor protein, SHC1 could interact 391 

with PTK2 and phosphorylated ADD2 to elevate the actin cytoskeleton reorganization 392 

pathway in HC1, we then evaluated the expression of PTK2 and phosphorylation of 393 

ADD2 in HC1-PC-Ra. As a result, comparing to HC1-oPCs (HC1 samples which were 394 

grouped into other proteomic clusters), PTK2 and phosphorylation of ADD2 at S2 395 

showed no significantly elevation in HC1-PC-Ra (Figure RL3H), implying that PTK2 396 

phosphorylated ADD at S2 might be the common features shared by both HC1-PC-Ra 397 

and HC1-oPCs, and SHC1 might cooperate with other kinases to promote metastasis of 398 

HC1-PC-Ra.  399 

Figure RL3. (H) Boxplots illustrate the abundances of PTK2 and ADD2 S2 in HC1-PC-Ra 400 

and HC1-oPCs 401 



We then explored the potential phosphosites that might be regulated by SHC1 and lead 402 

to metastasis in PC-Ra-HC1. As a result, the phosphosite CTNNB1 at Ser552 was 403 

identified to be the potential regulatory phosphosites of SHC1. Further validation 404 

experiments were conducted and verified that elevated expression of SHC1 could 405 

elevate the phosphorylation of CTNNB1 at Ser552 (Figure RL3I). 406 

Figure RL3. (I)  Heatmap illustrating elevated phosphosites in high-SHC1 patient derived 407 

cells. 408 

 409 

In the revision, to further explore the kinase that associated with SHC1, the 410 

phosphorylation of CTNNB1 at Ser552 and the tumor metastasis. The following 411 

experiments were performed: 412 

 413 

2.1 Comparative and correlation analysis revealed CSNK1G1 as the core kinase 414 

that linked SHC1 and the phosphorylation of CTNNB1.  415 

We referred to the public database and performed further correlation analysis. As a 416 

result, among the public reported kinases of CTNNB1, CSNK1G1 showed the 417 

significantly positive correlation with both SHC1 and the phosphorylation of CTNNB1 418 

at Ser552 (Figure RL3J-K). Consistently, the phosphorylation of CSNK1G1 also 419 

showed elevated expression level in PC-Ra (Figure RL3L). 420 

  421 



Figure RL3. (J) The correlation of the expression of CSNK1G1 with SHC1 expression 422 

(Spearman’s rank correlation). (K) The correlation of the expression of CSNK1G1 with the 423 

phosphorylation of CTNNB1 at Ser552 (Spearman’s rank correlation). (L) The boxplot 424 

indicates the expression of CSNK1G1 in different proteomic clusters. 425 

 426 

2.2. Inhibiting CSNK1G1 could impact the increased cell migration leading by 427 

SHC1. 428 

To further investigate the role of CSNK1G1 in impacting tumor metastasis, we utilized 429 

the constructed SHC1-OE-ISOHAS and Ctrl-OE-ISOHAS cells and treated them with 430 

the CSNK1G1 inhibitor. We then evaluated the cell migration by transwell assay. As a 431 

result, inhibiting CSNK1G1 could significantly decrease the cell migration rates 432 

increased by SHC1 (Figure RL3M). These results implied that CSNK1G1 as a kinase 433 

participated in tumor metastasis in PC-Ra-HC1 driven by SHC1.  434 

Figure RL3. (M) The effects of the SHC1-CSNK1G1 axis on the migration of ISOHAS cells 435 

were confirmed by transwell assay. The bar plots indicated the migrated cell counts of ISOHAS 436 

cells under different treatments. 437 

 438 



We further performed phosphoproteomic analysis between SHC1-OE-ISOHAS treated 439 

with or without the CSNK1G1 inhibitor. As a result, the phosphosites of proteins 440 

participating in angiogenesis, especially CTNNB1 Ser552, significantly decreased in 441 

SHC1-OE-ISOHAS treated with the CSNK1G1 inhibitor (Figure RL3N). These 442 

observations confirmed the role of CSNK1G1 in phosphorylating CTNNB1 at Ser552. 443 

Figure RL3. (N) The boxplots indicate the phosphorylation levels of CTNNB1 Ser552 and 444 

other phosphosites participating in angiogenesis under different treatments.  445 

 446 

The above results confirmed our assumption that SHC1 could lead to PC-Ra-HC1 447 

tumor migration through phosphorylating CTNNB1 mediated by CSNK1G1. 448 

 449 

 450 

In sum, our data illustrated the two potential functions of SHC1, by interacting with 451 

PTK2 and phosphorylating ADD2 at Ser2, SHC1 will enhance cell migration, and lead 452 

to poor prognosis of HC1 patients. Meanwhile, for a group of HC1 patients that showed 453 

proteomic features of Pc-Ra, SHC1 will further interact with CSNK1G1 and 454 

phosphorylating CTNNB1 at Ser552, and lead to tumor metastasis (Figure RL3O).  455 

 456 

According to the reviewer’s comments, we also toned down our statements as follows: 457 

“In sum, the upregulation of SHC1 might interact with kinase PTK2, phosphorylating 458 

ADD2 at Ser2, enhanced cell migration. This phosphorylation cascade might be 459 

associated with the poor prognosis with HC1 patients (AS or ES).” 460 

  461 



Figure RL3. (O) Sankey plot illustrates the distribution of HC1 in proteomic clusters and 462 

related phosphorylation process. 463 

 464 

In the revision, we have updated Figure RL3 in the revised Supplementary Figure 465 

10&11 and the “Result” section on lines297-334, line355-384, line 397-417, and line 466 

520-551. in the revised manuscript. 467 

 468 

Line 458: “Taken together, our data illustrated that RIOK1 phosphorylates NPM1 469 

on Ser125 to assist the interaction of NPM1 and APEX1 resulting in cell 470 

proliferation in PC-Cc”. Again, the authors show increase proliferation by NPM1 471 

overexpression, and that NPM1 interacts with APEX1 but the rest of the data is 472 

correlative.  473 

Response: 474 

We appreciate the reviewer for this critical suggestion, and we agree with the reviewer 475 

that more evidence should be provided before making conclusion. According to 476 

reviewer’s suggestion, in the revision, we performed further analysis and functional 477 

experiments to confirm our findings.  478 

 479 

Specifically, we utilized the sarcoma cell line, RKN, for further functional experiments, 480 

as it originates from LMS and represents the proteomic features of PC-Cc. We 481 

constructed the RIOK1-overexpressed RKN cell line (RIOK1-OE-RKN) through the 482 

RIOK1 overexpression plasmid, pCDH-RIOK1-copGFP. Moreover, shRNA of RIOK1 483 

were designed and transfected into RKN cell line to knock down the expression of 484 

RIOK1 (RIOK1-KD-RKN). We then performed CCK8 cell proliferation assay and 485 



evaluated the cell proliferation rates. As a result, RIOK1-OE-RKN showed most 486 

significantly elevated cell proliferation rates and RIOK1-KD-RKN had significantly 487 

decreased cell proliferation rates (Figure RL4A). We also treated RIOK1-OE-RKN 488 

cell line with RIOK1 inhibitor, and the inhibitor significantly decreased the 489 

proliferation of RIOK1-OE-RKN (Figure RL4A). These observations confirmed the 490 

impact of RIOK1 on promoting sarcoma tumor cell proliferation. We then performed 491 

comparative proteomic and phosphoproteomic analysis among RKN sarcoma cell lines 492 

with different treatments (RKN transfected with empty vector, RIOK1-OE-RKN, 493 

RIOK1-OE-RKN treated with RIOK1 inhibitor, RKN transfected with scrambled 494 

shRNA, RIOK1-KD-RKN). As a result, besides APEX1, the proteins participating in 495 

DNA base excision repair including XRCC1, XRCC4, POLB, as well as cell 496 

proliferation index KI67 showed elevated expression in RIOK1-OE-RKN (Figure 497 

RL4B-C). Intriguingly, the phosphorylation of NPM1 at Ser 125 was significantly 498 

increased in RIOK1-OE-RKN, implying that RIOK1 regulated the phosphorylation of 499 

NPM1 (Figure RL4C).  500 

Figure RL4. Functional experiments to validate the impact of RIOK1 and the interaction 501 

between NPM1 and APEX1. 502 

(A) Proliferation of the RKN cell line associated with different treatments (n = 4 repeats per 503 

group). (B) The heatmap reveals the expression patterns of DNA base excision proteins across 504 

the cells associated with various treatment (n = 3 repeats per group). (C) The boxplots reveal 505 

the abundance of APEX1, KI67 and phosphorylation of NPM1 at Ser125 in RKN cell line with 506 



different treatments. 507 

 508 

To further investigate the impact of NPM1 phosphorylation on cell proliferation as well 509 

as on its interaction with APEX1, we then constructed NPM1 phosphorylation site 510 

mutant plasmid, NPM1S125A, and transfected it into RIOK1-KD-RKN cells (NPM1-511 

mut-OE-RIOK1-KD-RKN). The non-mutant NPM1 was also transfected into RIOK1-512 

KD-RKN cells (NPM1-OE-RIOK1-KD-RKN) which were utilized as controls. By 513 

evaluating the cell proliferation rates, we observed that comparing to RIOK1-KD-RKN 514 

cells, NPM1-OE-RIOK1-KD-RKN cells showed elevated cell proliferation rates, 515 

whereas the cell proliferation rates of NPM1-mut-OE-RIOK1-KD-RKN showed no 516 

significant elevation (Figure RL4D). Consistently, the cell proliferation index, KI67 517 

was also observed to be elevated only in NPM1-OE-RIOK1-KD-RKN cells (Figure 518 

RL4E). Meanwhile, comparative proteomics and phosphoproteomic data confirmed 519 

the increased expression of APEX1 as well as the increased phosphorylation of NPM1 520 

at Ser125 in NPM1-OE-RIOK1-KD-RKN cells (Figure RL4E). 521 

 522 

These results indicated the decreased cell proliferation rates led by knocking down 523 

RIOK1 could only be rescued by the wild type NPM1 overexpression, which further 524 

emphasized the role of phosphorylation of NPM1 in medicating RIOK-dependent 525 

regulation of the tumor cell proliferation. 526 

 527 



To further illustrate whether the phosphorylation of NPM1 affected its interaction with 528 

APEX1, we performed IP-MS using both NPM1-mut-OE-RIOK1-KD-RKN and 529 

NPM1-OE-RIOK1-KD-RKN (Figure RL4F). As a result, 17 proteins were identified 530 

to interact with the wild type NPM1, but not NPM1S125A. Among them, APEX1 531 

presented the highest abundance, proving that NPM1 Ser125 is the pivotal site for the 532 

interaction between NPM1 and APEX1 (Figure RL4G-H). The above results 533 

illustrated the potential mechanism that RIOK1 could impact sarcoma tumor cell 534 

proliferation through phosphorylating NPM1 which then interacted with APEX1 and 535 

promoted tumor cell proliferation accordingly. 536 

Figure RL4. (D) Proliferation of the RNK cell line associated with various treatments (n = 4). 537 

(E) The boxplots presenting the expression of KI67, APEX1 and phosphorylation of NPM1 538 

among NPM1-OE-RIOK1-KD-RKN, NPM1-mut-OE-RIOK1-KD-RKN and EV-RIOK1-KD-539 

RKN. (F) The schematic work flow of the IP-MS experiment for the NPM1. (G) The heatmap 540 

reveals the expression patterns of DNA base excision proteins across the NPM1-OE-RIOK1-541 

KD-RKN, NPM1-mut-OE-RIOK1-KD-RKN (n = 3 repeats per group). (H) Diagram illustrated 542 

RIOK1 activates NPM1 through Ser125 and then NPM1 interacts with APEX1 to promote cell 543 

proliferation.  544 

 545 

We updated the Figure RL4 in the revised Figure 4 and Supplementary Figure 12 546 

and added the words in the revised manuscript on lines 631-669.Meanwhile, following 547 



reviewer’s suggestion, we also toned down our statements as following “Taken together, 548 

our data illustrated the potential mechanism underline how the axis of RIOK1-phos-549 

NPM1-APEX1 might promote tumor cell proliferations.” 550 

 551 

5. The TME deconvolution analysis suggests some interesting relationships. Since 552 

this type of analysis is usually done from transcriptomic data, I wonder to what 553 

extent is well established for proteome analysis. Was this validated with an 554 

alternative deconvolution method or by a couple of IHC markers to validate 555 

enrichment of immune cell populations in some of the samples analyzed? 556 

Response: 557 

Thanks for the reviser’s suggestion. In the previous version, to evaluate the tumor 558 

microenvironment of sarcoma, we inferred cellular compositions in the 559 

microenvironments of sarcomas utilizing xCell deconvolution algorism (Genome Biol, 560 

PMID: 29141660) based on proteomic data. We utilized inferred cell deconvolution 561 

data to classify the sarcomas into 3 immune subgroups with distinctive immune features. 562 

 563 

In agreement with the reviewer, we acknowledged that the cell deconvolution analyses 564 

were usually based on transcriptomic data. Meanwhile, previous researches have 565 

revealed tumor microenvironment infiltration estimated by proteomic data had a high 566 

Pearson’s correlation with ones estimated by transcriptomic data (Cell, PMID: 567 

31675502; Cell, PMID: 32649874; J Hematol Oncol, PMID: 35659036; Nat. Commun, 568 

PMID: 36720864). Moreover, published research has indicated the potential of using 569 

proteomic data for xCell analysis could illustrate the tumor microenvironment 570 

infiltration. For example, in the multilevel proteomic research of diffuse-type and 571 

intestinal-type gastric cancer (Nat Commun, PMID: 36788224), the immune clustering 572 

of xCell-deconvoluted tumor microenvironment components based on proteomic data 573 

revealed that Th1/Th2 ratio could serve as an indicator for immunotherapeutic 574 

effectiveness, which was validated in an independent GC anti-PD1 therapeutic patient 575 

group. In addition, a proteogenomic search of cholangiocarcinoma (Hepatology, PMID: 576 

35716043) revealed that a higher level of xCell-derived CD4+ T cells based on 577 

proteomic data was associated with the favorable prognosis, which was further 578 



confirmed in a combined cohort. These researches showed the findings uncovered by 579 

xCell based on proteomic data could be further validated by other independent 580 

experiments, indicating the importance of proteomic data in the tumor 581 

microenvironment.  582 

 583 

In the revision, to further confirm the immune features inferred by proteomic data based 584 

xCell analysis, we conducted the following analysis and experiments: (1) we utilized 585 

the other two cell deconvolution analysis tools (CIBERSORT and ESTIMATE 586 

algorithms) to infer the immune features of the sarcoma tumor microenvironments; (2) 587 

we investigated the expression patterns of cell-type specific proteins to confirm the 588 

distinctive cell type distribution among different immune subtypes of sarcomas; (3) We 589 

also utilized IHC staining to verify the distinctive cell type distribution among different 590 

immune subtypes of sarcomas. 591 

 592 

1. Tumor microenvironment deconvolution analysis using CIBERSROT and 593 

ESTIMATE algorithms, confirmed distinctive immune features inferred by the 594 

xCell algorithm. 595 

To confirm our cellular composition analysis by xCell algorithms, we utilized 596 

ESTIMATE and CIBERSORT methods to infer each patient's total immune cell 597 

infiltration scores and distinctive cell type enrichment scores. We then compared both 598 

total immune scores and cell-type specific enrichment scores among the three immune 599 

subtypes (clustering based on cellular deconvolution scores of the xCell algorithm). 600 

The results confirmed the consistent conclusion inferred by the three deconvolution 601 

methods. As for the total immune and stroma scores, both CIBERSORT and 602 

ESTIMATE confirmed the conclusion inferred by xCell algorithms. Particularly, the 603 

immune subtype that harbored the highest immune infiltration score was IM-S-3, and 604 

the immune subtype that held the highest stromal scores was IM-S-1. Meanwhile, as 605 

for cell-type specific enrichment scores among the three immune subtypes, in 606 

concordant with the distinctive cell-type enrichments revealed by xCell analysis, 607 

CIBERSORT also indicated that the IM-S-3 showed the highest enrichment scores of 608 

CD8+ T cell, M1 macrophage and M2 macrophage, and IM-S-2 showed the highest 609 



memory B cell enrichment scores (Figure RL5A-B). These results confirmed the 610 

feasibility of our proteomic-based xCell deconvolution analysis in predicting the 611 

distinctive cell type enrichment in sarcoma tumor microenvironments. 612 

 613 

 614 

Figure RL5. The immune cell signatures and cell markers in different immune clusters 615 

(A) The heatmap illustrates the immune and stromal cell types enriched in different immune 616 

clusters; (B) Boxplots illustrate cell signature scores inferred by xCell and CIBERSORT 617 

algorithm among three immune clusters. 618 

 619 

Figure RL5 (C) Boxplots illustrate the immune scores and stromal scores calculated by xCell 620 

and ESTIMATE algorithm among the three immune clusters. 621 

 622 



2. The expression patterns of cell types specific markers confirmed the distinctive 623 

cell type distribution among immune subtypes of sarcomas. 624 

To confirm the distinctive tumor microenvironment inferred by cell deconvolution 625 

analysis, we focused on the significantly enriched cell types of each immune subtype 626 

and evaluated the mass-spectrum-based abundance of their distinctive markers among 627 

three immune clusters. As a result, for IM-S-1 that enriched with Keratinocyte, we 628 

evaluated the protein expression of Keratinocyte markers, and observed dominant 629 

expression of CD34, KRT14, KRT9 and KRT5 in IM-S-1. Meanwhile, for IM-S-2 that 630 

enriched with endothelial cells, we evaluated the expression of endothelial  cell 631 

markers and detected MCAM showed significantly elevated expression in IM-S-2. 632 

Moreover, for IM-S-3 that enriched with CD4+ T cells and macrophages, we 633 

investigated the expression of CD4+ T cell markers and macrophage markers, and found 634 

the protein expression of CD4+ T cell markers (CD4, CD38, and ISG20) and 635 

macrophage markers (CD14, CD163, CSF1R, and FCGR1A) presented significantly 636 

higher levels in IM-S-3 (Figure RL5A, 5D). These results also verified our proteomic-637 

based xCell deconvolution analysis. 638 

 639 

Figure RL5 (D) Boxplots illustrate proteomic abundance of immune cell markers in immune 640 

clusters. 641 

 642 

3. IHC staining verified the distinctive cell type distribution among different 643 



immune subtypes of sarcomas 644 

To further verify our TME deconvolution analysis, we randomly selected several 645 

markers for distinctive cell types of each immune subtype (KRT5 & KRT9 for 646 

Keratinocyte, CD4 & ISG20 for CD4+ T cells, CD19 & IgM for B cells) and obtained 647 

their expressions through IHC staining (Figure RL5E). These markers showed 648 

consistent enrichment in immune clusters with related xCell-enriched cell types 649 

(Figure RL5A, 5E). For example, CD4+ T cells had the highest infiltrated scores in the 650 

IM-S-3 group. Consistently, the IHC results also presented the highest CD4 and ISG20 651 

expressions in the IM-S-3 group. Meanwhile, IHC staining using CD19 and IgM 652 

confirmed the elevated expressions of these two B cell markers in the IM-S-2. Moreover, 653 

IHC staining using KRT5 and KRT9 verified the dominant expression of these 654 

keratinocytes in IM-S-1. In sum, these IHC staining provided a convincible proof for 655 

our TME convolution result. 656 

Figure RL5 (E) IHC staining presenting expressions of immune and stromal cell markers in 657 

three immune clusters. 658 

 659 

In sum, both ESTIMATE and CIBERSORT algorithm confirmed xCell inferred cell 660 

types distributions among the three immune subtypes. Further cell marker expression 661 

analysis and IHC staining also revealed the consistence of the tumor microenvironment 662 

features of the three distinctive immune clusters. In the revision, we have updated 663 

Figure RL5 in Supplementary Figure 14, we updated these above analyses in lines 664 

710–722 of the “Results” section of the revised manuscript. 665 



 666 

6. The discussion is too long and has some paragraphs that are not well written. 667 

See for example the paragraph starting on line 647.  668 

Response: 669 

We thank the reviewer for this constructive suggestion and sincerely apologize for the 670 

unclear description of the discussion section. The main points that we want to present 671 

in the discussion section are summarized as follows: 672 

(1) Summarizing the hypothesis and purpose of the study. 673 

(2) Comparing and contrasting to previous studies of our main findings such as the 674 

common and specific features of different histological subtypes of sarcomas. 675 

(3) Discussing the potential therapeutical options of the sarcomas. 676 

 677 

According to the reviewer’s suggestion, we thoroughly revised the discussion section, 678 

and concisely wrote the essential interpretation and main pieces of supporting evidence, 679 

which have been described in the result section. We further added limitations of the 680 

study, as well as potential future research. The revised discussions were presented as 681 

follows: 682 

 683 

Discussion 684 

In this study, we establish a Chinese pan-sarcoma cohort including 272 patients and 12 685 

usual or unusual sarcoma histologic subtypes. We performed integrate proteomic and 686 

phosphoproteomic data to reveal the differentially overrepresented signaling pathways 687 

in STS histologic subtypes, metastasis-related proteins, and therapeutically relevant 688 

subgroups. Our study with this cohort would serve as a complement to the previous 689 

genome and transcriptome studies and exhibit a range of clinic-histologic spectrums of 690 

pan-sarcoma. 691 

 692 

The heterogeneity and variability of sarcoma histological subtypes make it difficult to 693 

understand the features of histological subtypes and guide clinical management. 694 

Employing the hierarchical clustering, we could reveal the intrinsic common features 695 

of different histological subtypes of sarcoma and define subgroups across histological 696 



subtypes from the proteomic viewpoint. Although, at histological level, WDLPS, 697 

MLPS, and DDLPS all belong to the category of liposarcoma, our proteomic-based 698 

hierarchical clustering revealed the DDPLS showed the similar proteomic features with 699 

MFS than with MLPS and WDLPS. Specifically, the cell proliferation scores were 700 

significantly elevated in both MFS and DDLPS. These findings confirmed the previous 701 

transcriptomic research that indicated the DDLPS showed comparatively elevated cell 702 

proliferation features at mRNA level1. Importantly, by performing comparative analysis, 703 

we found the RAB signaling pathway was dominantly enriched in DDLPS, and further 704 

illustrated that RAB2A might led to tumor cell proliferation of DDLPS by increasing 705 

autophagy process. These results implicated that inhibiting autophagy might be a 706 

promising therapeutical option for patients with DDLPS. 707 

 708 

MFS was once considered a subset of UPS (“myxoid malignant fibrous histiocytoma”), 709 

but they have been classified as distinct clinical entities based on their different 710 

clinicopathologic features2. Despite the clinical classification, the molecular diversity 711 

of these two subtypes have not been uncovered, thus for now, the treating strategies for 712 

UPS and MFS remain the same. Our research revealed that MFS showed enriched 713 

transport-related pathways, whereas UPS showed enriched RNA process and 714 

metabolism pathways. The diverse proteomic features of UPS and MFS implied the two 715 

different histological sarcoma subtypes could be benefited from distinctive 716 

therapeutical approaches in the feature.  717 

 718 

AS represents a rare group of soft-tissue sarcomas and are aggressive endothelial cell 719 

tumors of vascular or lymphatic origin3,4. Angiogenesis is thought to be associated with 720 

the pathogenesis of AS and is regarded as a potential target for treatment. However, 721 

some clinical trials of anti-angiogenesis drugs in AS don’t have positive results or only 722 

showed limited improved DFS, including bevacizumab (VEGF-A antibody), trebananib 723 

(an angiopoietin-1 and -2 peptibody), and sorafenib (VEGFR and B‑Raf inhibitor)5,6. 724 

By performing integrative analysis and functional experiments, our study identified 725 

SHC1 as the key regulator, which could elevate actin cytoskeleton reorganization and 726 



led to unfavorable outcomes of AS patients. These results implied that SHC1 might 727 

serve as a promising therapy target for AS patients. 728 

 729 

The diverse immune features have been reported to be associated with the prognosis of 730 

sarcoma patients, but the majority of these researches were either down in animal 731 

models or have one layer of omics data. For instance, Magrini and colleagues have 732 

utilized transcriptomic data from sarcoma mice model to illustrate that the sarcoma 733 

tumor cells could express C3 which could then recruit macrophages through C3-C3aR 734 

axis, thus C3 deficiency-associated signatures of macrophages could lead to favorable 735 

prognosis in sarcoma7. Since we have also observed elevated C3 protein expression in 736 

tumor tissues, we then investigated the potential association among C3 protein 737 

expression, the recruitment of macrophages and patients’ prognosis. As a result, the 738 

significant positive correlation between C3 and macrophage enrichment was observed 739 

in our pan-sarcoma dataset. Further integrative analysis with patients’ prognosis revealed 740 

that the C3-deficiency macrophage signature based on proteomic was associated with patients’ 741 

prognosis, consistent with the result gotten from transcriptome previously. Meanwhile, 742 

previous research conducted by Petitprez et al. have utilized transcriptomic data based 743 

immune analysis to decipher the immune diversity in pan-sarcomas8. They have proved 744 

the enrichment of B cells led to favorable out comes in several sarcoma histological 745 

subtypes (LMS, AS, UPS and MFS). We then evaluated the prognostic relevance of B 746 

cell enrichment, as a result, the similar clinical relevance of B cells was also observed 747 

in the four histological subtypes in our cohort, implied the concordance in evaluating 748 

immune features either by transcriptomic or by proteomic data. Moreover, to further 749 

elevate the clinical applicable of utilizing B cells to prognostic index, we further 750 

evaluated the prognostic relevance of the B cell markers’ protein expression in our 751 

sarcoma cohort and published TCGA cohort. As a result, among the 12 B cell markers 752 

that have been detected in our dataset, 7 B cell markers showed significant association 753 

with patients’ prognosis in our pan-sarcoma cohort. 3 of these B cell markers (PTPRC, 754 

CD9, IGLL5) showed consistent prognostic relevance at transcriptomic level in TCGA 755 

cohort (Cell, PMID: 29100075). These results implying the potential clinical utilization 756 

of these 3 B cell markers for prognostic prediction in feature.  757 



 758 

Immune therapy has been applicated to many malignancies and presents improved 759 

clinical outcomes, such as melanoma. Some clinical studies for immune therapy in STS 760 

have been completed and obtained positive results for advanced, metastatic, or 761 

unresectable STS9, 10. Despite the progression of immune therapy in STS, the 762 

heterogeneity of TME components within STS histologic subtypes makes it a challenge 763 

to distinguish patients responding to immune therapy. Intriguingly, based on TME 764 

components, we defined a subtype of STS (IM-S-3) with enriched immune infiltration 765 

and immune evasion markers (CD274 and CD80) which might respond to immune 766 

therapy, especially PD-L1 inhibitors. Besides the heterogeneity in STS histologic 767 

subtypes, the interaction between tumor biologic process and TME in STS is quite 768 

important for the potential combination therapies for sarcoma11. Our results implied 769 

that the CTNNB1 may contribute to the transcription of CD274 in the immune-enriched 770 

group of STS. Meanwhile, MAPK10 participates in this process by phosphorylation of 771 

CTNNB1 Ser675. Based on our research, we provide a viewpoint that combined 772 

blockade of MAPK10 and CD274 might be an effective strategy for STS. Meanwhile, 773 

combined blockade of CTNNB1 and CD274 could possibly achieve the same effect. 774 

These conclusions still require further research. 775 

 776 

The aims of this study were to provide a proteomic and phosphoproteomic landscape 777 

to decipher the sarcomas’ heterogeneity, the prognosis-related markers, and abnormally 778 

changed biology pathways. There are some limitations due to the sample collection and 779 

technology as follows: 780 

1. The sarcoma cohort in this study is single-centered from Fudan University, 781 

Zhongshan Hospital and included only Chinese patients, so the conclusions may lead 782 

to potential selection bias. Additional prospective studies are needed to validate our 783 

findings in multi-center and cohort of other ethnicities. 784 

2. We found specific subtype-enriched proteins which might be serviceable in early 785 

diagnosis and histological subtype detection, but we couldn’t exclude the possibility 786 

that this protein could have stemmed from other affected organs or may be indirectly 787 

induced by the effects of the tumors on their microenvironment or even systemically. 788 



Further experiments or clinical data are necessary complement to validate the roles of 789 

this proteins in sarcoma. 790 

3. The proteomic data in this study was generated through bulk proteomic approach 791 

from tumor and NAT tissues and couldn’t fully reflect the heterogenous tumor regions 792 

and the tumor-NAT boundary regions. Integrating single cell and spatial omics would 793 

be useful to further explore the intra-tumoral heterogeneity in the future research. 794 

4. The samples in this study were all collected from treat-naïve patients and were all 795 

primary tumors without remote metastasis or local relapse. The information about 796 

metastasis and local relapse come from 60-month follow up. The conclusion in this 797 

study that SHC1 and MAPK10 promotes metastasis required further confirmatory 798 

studies on metastatic samples. Other conclusions were also just based on localized 799 

diseases, it will have to be determined if these conclusions are also tenable in locally 800 

relapsed and metastatic tumors. 801 

 802 

Please see the details in the ‘Discussion’ section of revised manuscript labeled in red 803 

text. 804 
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 836 

7. Although the last integrative analysis presented in Figure 6 brings together the 837 

different aspects analyzed in this study, it is unclear what it means in the 838 

perspective of heterogeneity of STS subtypes. Some subtypes are enriched in 839 

specific proteomic clusters which are then enriched in different immune signatures, 840 

but still, there is a lot of variability on how HC are distributed.  841 

Response: 842 

We apologize for the incomplete description and summary in Figure 6. In concordant 843 

with the reviewer’s comment, the aim of Figure 6 is to present the result of integrative 844 

analysis across the histological subtypes, hierarchical cluster, proteomic subtyping, and 845 

immune subtyping. In our previous analysis, we focused on presenting how immune 846 

subtyping could uncover the inner heterogeneity of TME in a distinctive proteomic 847 

subtype. Particularly, the samples of PC-Ra could be further divided into IM-S-1 and 848 

IM-S-3, where IM-S-3 showed higher immune cell infiltrations and immune checkpoint 849 

inhibitors (Figure 6A). In the revised version, we added the interaction analysis 850 



between hierarchical clusters and proteomic clusters or immune clusters to further 851 

illustrate the distribution of hierarchical clusters and correlated proteomic features. 852 

Figure RL6. Integration analysis of clustering result from different levels 853 

(A) Graphical summary showing the characteristic pathways and major molecular findings of 854 

different level subtypes including histologic subtypes, hierarchical clusters, unbiased consensus 855 

proteomic clusters, and immune clusters. The relationships of these subtypes are also displayed. 856 

 857 

Firstly, we portrayed Sankey plots with hierarchical clusters as the center to present the 858 

concordance among histological sarcoma subtyping, hierarchical clustering, proteomic 859 

subtyping, and immune subtyping (Figure RL6B-C). As a result, for the relationship 860 

between hierarchical clusters and proteomic subtyping, we observed more than half of 861 

the HC2 patients (MLPS and WDLPS) were grouped into PC-Sm (32 of 47) and HC5 862 

(UPS) and HC6 (LMS) were both mainly clustered into RC-Cc (HC5: 33 of 43, HC6: 863 

36 of 52). Besides, HC3 (MFS, OtherFS, DDLPS, and MPNST) and HC4 (RMS and 864 

SS) were mainly distributed into two proteomic subtypes: PC-Ra (HC3: 35 of 75; HC4: 865 

12 of 33) and PC-Cc (HC3: 25 of 75; HC4:17 of 33). These results revealed our 866 

proteomic subtyping could uncover the heterogeneity within the two HCs and also 867 

common proteomic features that might be shared by samples from diverse HCs (Figure 868 



RL6B-C). 869 

 870 

Meanwhile, as for the relationships between hierarchical clusters and immune clusters, 871 

the immune features of samples belonging to HC2, HC4, HC5, and HC6 showed 872 

concordance within each HC. Specifically, 35 out of 47 samples of HC2 were grouped 873 

into IM-S-1, 20 out of 27 samples of HC4 were clustered into IM-S-2, and 28 out of 43 874 

samples of HC5 were grouped into IM-S-3 (Figure RL6B-C). On the other hand, the 875 

immune heterogeneity within the distinguished HCs was observed in HC1 and HC3. 876 

Samples belonging to these two HCs were mainly distributed into IM-S-1 and IM-S-3 877 

equally (HC1: 12 in IM-S-1 and 9 in IM-S-3; HC3: 30 in IM-S-1 and 30 in IM-S-3). 878 

Figure RL6. (B) Sankey plot illustrating relationships between hierarchical clusters and 879 

proteomic clusters or immune clusters; (C) Sankey plot illustrating relationships between 880 

sarcoma histology subtypes and proteomic clusters or immune clusters. 881 

 882 

In the revision, we performed further analysis to decipher the diverse proteomic and 883 

immune features within one hierarchical clustering. Specifically, we focused on HC3 884 

which showed proteomic and immune environment diversity and could be clustered 885 

into 2 proteomic clusters (PC-Ra and PC-Cc) and 2 immune clusters (IM-S-1 and IM-886 

S-3). According to the distribution of HC3 in proteomic and immune clusters, we 887 

classified HC3 into 4 subgroups: HC3-Ra-IM1, HC3-Ra-IM3, HC3-Cc-IM1, and HC3-888 

Cc-IM3 and performed further analysis to illustrate the potential link between 889 

proteomic and immune features. As a result, comparing the proteomic features among 890 

the four subgroups revealed that although comparing to HC3-Cc-IM1 and HC3-Cc-IM3, 891 



both HC3-Ra-IM1 and HC3-Ra-IM3 showed elevated expression of MAPK10 which 892 

is the distinctive feature of PC-Ra, the protein expression of MAPK10 was significantly 893 

higher in HC3-Ra-IM3 (Figure RL6D). Meanwhile, comparing the immune features 894 

among the four subgroups, we observed that the immune scores of HC3-Cc-IM3 and 895 

HC3-Ra-IM3 were obviously higher than the other two subgroups (Figure RL6E). 896 

Intriguingly, the enrichment of CD4+ T cells and the immune checkpoint protein CD274 897 

was obviously higher in HC3-Ra-IM3 ((Figure RL6F-G).  898 

 899 

The above observations implied the potential link between MAPK10 and elevated 900 

expression of CD274. Since MAPK10 is a kinase, to illustrate the mechanism 901 

underlying this potential link, we screened the phosphorylation level of MAPK10’s 902 

substrates and found the phosphorylation of the CTNNB1 at Ser675 was significantly 903 

correlated with both the protein expression of MAPK10 and CD274. Previous 904 

researches have reported that the phosphorylated CTNNB could interact with 905 

transcription factor and promote the transcription of CD274 (J Exp Med, PMID: 906 

32860047). Thus, the elevated expression of CD274 was probably led by the MAPK10-907 

mediated phosphorylation signal transduction. Our results revealed the diverse 908 

proteomic features and immune features within one HC, and further indicated the 909 

potential link between them. 910 



Figure RL6. (D) Boxplots illustrating enrichment of protein abundance of MAPK10, the 911 

phosphorylation level of CTNNB1 Ser675, and the signaling pathway, “positive regulation of 912 

MAPK cascade” in the HC3-Ra-IM3. (E) Boxplot illustrating enrichment of CTNNB1 Ser675 913 

in HC3-Ra-IM3. (F) Scatter plots present positive correlations between phosphorylation level 914 

of CTNNB1 Ser675 and protein abundance of MAPK10, CD274, or CD80 in HC3 group. 915 

 916 

Figure RL6. (G) Boxplots illustrating the enrichment of CD4+ T cell signature in HC3-Ra-IM3. 917 

 918 

Noticeably, besides the heterogeneity within one HC, the diverse immune features 919 

between HCs were also observed. Specifically, HC5 (UPS) and HC6 (LMS) were both 920 

clustered into PC-Cc and featured with fast tumor cell proliferation, which could be 921 

confirmed by the elevated cell proliferation index (Figure RL6H). Yet, the two HCs 922 

showed distinctive immune features. Particularly, the HC5 showed elevated CD8+ T 923 

cell infiltration (Figure RL6I). To illustrate the potential mechanism, we compared the 924 

protein expression and pathway enrichment scores of immune-related processes 925 

between HC5 and HC6. As a result, we observed the dominant enrichment of the TCR 926 

signaling pathway in HC5, and TCR-related proteins such as PTPN6, NFKBIE, IKBKG, 927 

BCL10, etc. were significantly elevated in HC5 (Figure RL6I). These observations 928 

suggested that even presenting the same proteomic features, the hierarchical clusters 929 

could have different TME features, which supported the necessity of clustering from 930 



different levels. 931 

Figure RL6. (H) The boxplot presents proliferation index in different hierarchical clusters; (I) 932 

The heatmap presents the enrichment of CD8+ T cells, T cell receptor signaling pathway, and 933 

related proteins in HC5. 934 

 935 

In sum, we performed clustering from three aspects: histology (hierarchical clustering), 936 

proteome, and immunology. From the hierarchical clustering, we found the similarity 937 

of variable histological subtypes of sarcoma. From the proteomic clustering, we found 938 

key kinases and biological pathways to distinguish sarcoma patients. From the 939 

immunology clustering, we uncovered TME heterogeneity of sarcoma and clinically 940 

related immune features. Integration of these three clustering systems could give a more 941 

comprehensive definition of sarcoma subgroups and present their specific 942 

characteristics. In the revised version, we updated our statements on Figure 6 and 943 

Supplementary Figure 16 and added more details on how the three clustering systems 944 

are associated with each other on lines 790-816 of the “Results” section. 945 

 946 

8. There are some typos and some sentences are not well constructed or are unclear. 947 

This is particularly noticeable in the discussion. Some examples below:  948 

Response:  949 

We appreciate the reviewer’s comments and revised the typos and sentences. 950 

Specifically, our main revisions are presented as follows: 951 

 952 

Line 73. “A potential explanation is that these mechanisms could not reflect the 953 



functional effects, as they reside many regulatory layers away from the protein.” 954 

Response:  955 

Thanks for the comments, we have rewritten the sentence as follows: “A potential 956 

explanation for this phenomenon is that previous researches focus on genomic or 957 

transcriptomic data, which could not panoramically reflect the molecular features of 958 

STS.” 959 

 960 

Line 106. “It is necessarily required for immune therapy that more detailed 961 

information about the characteristics of immune infiltration and the effective 962 

immune components.” 963 

Response:  964 

We appreciate the suggestion and we have revised the sentence to the following 965 

sentence: “To enhance the efficiency of immune therapy, it is important to characterize 966 

the diverse immune cell infiltration signatures of STS and to uncover the heterogeneity 967 

of TME in STS.” 968 

 969 

Line 594. “When considering targeting the molecular in the TGFβ signaling 970 

pathway (such as SHC1), ES might have a similar response with AS.” 971 

Response: 972 

Thanks for the comment, we have revised the sentence as the following sentence: “Our 973 

data revealed that ES and AS patients might benefit from SHC1 targeting therapy.” 974 

 975 

Besides the above, we have also carefully revised lines 49-119 in the introduction, and 976 

lines 819-924 in the discussion section, please see the revised manuscript for details. 977 

 978 

Minor comments: 979 

1. Line 257: “We found the activity level of two pathways enriched in HC1, actin 980 

cytoskeleton reorganization (Pearson’s correlation, r = 0.21 p-value = 0.0049) and 981 

epithelial cells migration (Pearson’s correlation, r = 0.22 p-value = 0.0027), 982 

changed *tightly followed the abundance variation of SHC1 (Figure 2F). 983 

 984 



I would not say there is a *tight correlation between SHC1 abundance and 985 

Epithelial cell migration. It is just a correlation.  986 

Response: 987 

We appreciate the reviewer for this helpful suggestion and we have changed the 988 

sentence to the following sentence: “We found there’re significantly positive 989 

correlations between protein abundance of SHC1 and two HC1-enriched biological 990 

pathways, actin cytoskeleton reorganization (Pearson’s correlation, r = 0.21 p-value = 991 

0.0049) and epithelial cells migration (Pearson’s correlation, r = 0.22 p-value = 0.0027).” 992 

 993 

2. Fig. 2K it would be better to show in the plot the IC50 of all cell lines individually 994 

and they are only 6. 995 

Response: 996 

We thank the reviewer for the comment and we have labeled in the plot the IC50 of all 997 

cell lines individually in Figure 2K (Figure RL7A-C). 998 

Figure RL7. (A) Dose-response curves (left panel) and IC50 values (right panel) of 999 

carbamoylcholine (the SHC1 inhibitor) in AS (blue), ES (purple), and WDLPS (brown) cell 1000 

lines. (B-C) The bar plots indicated the IC50 of six cell lines to SHC1 inhibitor (B, the 1001 

comparison among 6 distinct cell lines, C, the comparison between HC1 and HC2 cluster). 1002 

 1003 

3. The literature references are not always correct. For example, reference for 1004 

CellX should be 62 (not 63 as mentioned in the text). 1005 

Response: 1006 

We thank the reviewer for the comment and we have carefully checked the reference 1007 

and revised the citations accordingly. Furthermore, we have revised all the citations 1008 

through the manuscript. 1009 



Reviewer #2 (Remarks to the Author): Expert in tumour immunology and 1010 

immune landscapes in sarcoma 1011 

 1012 

The present study undertakes a comprehensive proteomic profiling of 272 STS 1013 

patients representing 12 major subtypes. The authors identify six subtypes on the 1014 

base of hierarchical classification, three subtypes based on proteomic analysis and 1015 

three subtypes based on immune signatures. For some clusters they identified 1016 

some mechanism/s relevant for patient prognosis. Interestingly, some of the main 1017 

mechanisms identified with bioinformatics approaches are verified by wet 1018 

laboratory experiments. 1019 

The study provides a valuable proteomic resource for the scientists working on 1020 

sarcomas. The study is correctly written, although the logic of the analyzes carried 1021 

out is not always fluent and sometimes it is difficult to follow. 1022 

Moreover, there are some concerns: 1023 

1) The three main clustering analysis should be performed also taking into account 1024 

the anatomical site distribution and the therapies applied to the patients, in order 1025 

to verify if the clustering may be influenced by the location of the tumor or by the 1026 

therapy. 1027 

Response: 1028 

We thank the reviewer for the suggestions. We agree with the reviewer that anatomical 1029 

site distribution as well as the therapies applied to the patients should be like into 1030 

account. In the revision, in order to explore whether the proteomic clustering was 1031 

influenced by anatomical site distribution etc., comparative analyses were made among 1032 

the 3 proteomic clusters, respectively. 1033 

 1034 

1. Correlation of proteomic clustering and anatomical site distribution 1035 

For the samples collected in our cohort, their anatomical sites could be classified into 5 1036 

different locations: extremity (E), head and neck (H), Intraabdominal /pelvis 1037 

/retroperitoneum/visceral (IB), Intrathoracic/mediastinal (IT), and Trunk. To assess the 1038 

intersection of our proteomic clusters with anatomical sites, we performed a correlation 1039 

analysis between proteomic clusters with anatomical sites. As a result, there was no 1040 



significant difference in anatomical sites among the proteomic clusters (p-value = 0.381, 1041 

Chi-square test). 1042 

 1043 

2. Correlation of proteomic clusters and drug treatment 1044 

All the 272 samples collected in our study were from treatment-naïve patients. All the 1045 

patients received primary resection for sarcomas without any anti-cancer treatments 1046 

prior to surgery. Postoperative surveillance and treatment were conducted consistently 1047 

according to Zhongshan Hospital’s guidelines. Specifically, 64 patients received 1048 

chemotherapies, and 27 patients received target therapies after sugary. We compared 1049 

the overall survival between patients with and without postoperative treatments, and 1050 

observed no significant difference (Log-rank test, p-value > 0.1). We further performed 1051 

a correlation analysis between postoperative treatment and our proteomic clusters to 1052 

assess. As a result, there was no significant difference in the distribution of postoperative 1053 

treatment among the proteomic clusters (p-value = 0.633 (target therapy) & 0.077 1054 

(chemotherapy), Chi-square test, Table RL3). 1055 

 1056 

In addition, statistical analysis uncovered that there’s no significant difference of age 1057 

and gender among proteomic clusters (p-value = 0.264 (age) & 0.916 (gender), Chi-1058 

square test, TableRL3). These results indicated that the proteomic clustering is an 1059 

independent risk factor of the prognosis, which could be better to predict the survival 1060 

time. 1061 

 1062 

Table RL3. The baseline characteristics of patients belonging to different proteomic 1063 

clusters. 1064 

In sum, there was no significant difference in the distribution of the anatomical site 1065 

distribution or the therapies applied to the patients among the proteomic clusters. In the 1066 



revision, we have updated these comparative analyses in the “Result” section on lines 1067 

439-444 in the revised manuscript. 1068 

 1069 

2) in figure 5A complement and coagulation cascade pathways are enriched in the 1070 

IM-S-1 cluster corresponding to the stroma-enriched subtype and B cells in the 1071 

IM-S-2. Results already published on the role of complement activation and B cells 1072 

in sarcomas (doi: 10.1038/s43018-021-00173-0 and doi: 10.1038/s41586-019-1906-1073 

8) should be mentioned and discussed. Are the main findings of these two papers 1074 

true by proteomic point of view? For example, is the C3aR or complement soluble 1075 

proteins/receptors expression associated with M2-like macrophages and/or UPS 1076 

patient survival? Are B cell markers associated with increased overall survival? 1077 

Do they correlate with metastasis? 1078 

Response:  1079 

We thank the reviewer for the instructive suggestion. As commented by the reviewer, 1080 

in our research, by performing immune cell deconvolution and immune features-based 1081 

clustering, we classified our pan-sarcoma dataset into 3 immune subtypes with 1082 

distinctive immune characteristics. Specifically, we found the IM-S-1 featured with 1083 

complement and coagulation cascade, and IM-S-2 featured with B cell enrichment. 1084 

Following the reviewer’s suggestion, we summarized the main findings of the two 1085 

transcriptomic papers and added further analysis to investigate whether their findings 1086 

on sarcoma tumor microenvironment could be validated at the proteomic level. The 1087 

detailed analyses for each paper were presented as follows: 1088 

 1089 

1. About the impact of complement activation on sarcoma progression. 1090 

The first paper conducted by Magrini and colleagues performed a systematic 1091 

assessment of complement activation and effector pathways in sarcomas. Their main 1092 

findings were: (1) they utilized a mice model and found that C3 and its receptor C3aR 1093 

promoted 3-MCA-inducted sarcoma genesis; (2) they found that C3 and C3aR 1094 

participated in macrophage recruitment; (3) they used TCGA data to confirm C3 1095 

deficiency-associated signatures of macrophages related to favorable prognosis. We 1096 

then investigated their main conclusions in our data. Particularly: 1097 



1.1 The expression of C3 is elevated in the tumor tissues of our sarcoma cohort. 1098 

Since the Magrini, et.al. reported the role of C3-C3aR in sarcoma genesis, especially in 1099 

UPS, we then evaluated the expression of C3 and C3aR in the tumors and NATs. As a 1100 

result, we observed significantly elevated expression of C3 in our pan-sarcoma cohort 1101 

(Figure RL8A). We further evaluated the expression of C3 in the 12 histological 1102 

subtypes and observed the protein expression of C3 was significantly elevated in tumors 1103 

of DDLPS, MLPS, MFS, et al (Figure RL8A).  1104 

Figure RL8. Impacts of C3-C3aR axis and B cell markers from the proteomic viewpoint. 1105 

(A) Boxplots illustrate the proteomic expression of C3 in NATs and tumors. 1106 

 1107 

As for C3aR, its expression was detected in 3 samples, thus it was excluded for further 1108 

analysis. This might be caused by the fact that the C3aR is a membranal protein and is 1109 

enriched in macrophages. Since Magrini et al. have reported that C3aR promotes 1110 

sarcoma progression through lectin pathway, we further evaluated the enrichment of 1111 

lectin signaling pathway between tumors and NATs, and found that the enrichment 1112 

scores of lectin signaling pathway were significantly higher in tumors of our pan-1113 

sarcoma cohort, and in tumors of histological subtypes, like UPS, DDLPS, MFS, et al. 1114 

(Figure RL8B). These results revealed the elevation of C3 and lectin signaling 1115 

pathways in sarcoma tumor tissues, especially in UPS at the proteomic level, and 1116 

confirmed its role in sarcoma genesis. 1117 

  1118 



Figure RL8. (B) Boxplots present the enrichment scores of the lectin signaling pathway in 1119 

NATs and tumors. 1120 

 1121 

1.2 The protein abundance of C3 presents a positive correlation with macrophage 1122 

signature. 1123 

Another major finding reported by Magrini, et al. is the role of C3 in macrophage 1124 

recruitment. To verify this conclusion in our pan-sarcoma proteomic cohort, we 1125 

performed a correlation analysis between the protein expression of C3 and macrophage 1126 

signature. As a result, the protein expression of C3 was observed to be positively 1127 

correlated with the enrichment of macrophages in our pan-sarcoma cohort and in 1128 

histological subtypes LMS, SS, WDLPS, and AS (Figure RL8C, D). These results 1129 

indicated the role of C3 in recruiting macrophages in sarcomas. 1130 

Figure RL8. (C) The scatter plot presents a positive correlation between C3 protein abundance 1131 

and macrophage signatures in pan-sarcoma; (D) Scatter plots presents a positive correlation 1132 

between C3 protein abundance and macrophage signatures in LMS, SS, WDLPS, and AS. 1133 



 1134 

1.3 The C3 deficiency-associated signatures of macrophages is related to patients’ 1135 

favorable prognosis. 1136 

We first evaluated the prognostic relevance of the C3’s protein expression. As a result, 1137 

the protein expression of C3 showed no significant correlation with patients’ prognosis 1138 

(Figure RL8E). Consistently, Magrini and colleagues evaluated the correlation 1139 

between mRNA expression of C3 and prognosis utilizing transcriptomic data in TCGA 1140 

SARC and they also didn’t get access to a positive result. Then to further investigate 1141 

the prognostic role of C3, Magrini, et al. focused on C3-recruited macrophages and 1142 

established a signature to represent sarcoma-infiltrated macrophages with the C3-1143 

deficiency phenotype and evaluated its prognostic relevance. As a result, they found 1144 

high C3-deficiency macrophage signature was associated with increased overall 1145 

survival times in TCGA SARC cohort. To estimate whether this finding could be 1146 

confirmed at the proteomic level, we calculated the C3-deficiency macrophage 1147 

signature utilizing the proteomic data in our cohort following the same method as 1148 

Magrini, et al. described. As a result, we observed a significantly positive association 1149 

between the C3-deficiency macrophage signature and patients’ favorable outcomes in 1150 

our pan-sarcoma cohort (Figure RL8F). These results confirmed the C3 deficiency-1151 

associated signature of macrophages is related to patients’ favorable prognosis at the 1152 

proteomic level and implies the potential of using C3 deficiency-associated signatures 1153 

of macrophages as the prognostic index for sarcoma in the future. 1154 

Figure RL8. (E) Kaplan-Meier curve for OS stratified by C3 proteomic abundance in pan-1155 

sarcoma; (F) Kaplan-Meier curves for OS and DFS stratified by levels of C3-deficiency 1156 

macrophage signatures in pan-sarcoma; 1157 

 1158 



2. About the B cells are associated with survival in sarcoma. 1159 

The second paper conducted by Petitprez, et al. presented an immune classification of 1160 

soft tissue sarcomas and identified B cells as a prognostic factor for sarcomas. We then 1161 

evaluated the prognostic relevance of B cells in our dataset. 1162 

 1163 

2.1 The enrichment of B cells is associated with the prognosis in specific sarcoma 1164 

histological subtypes. 1165 

We first estimated the enrichment of B cells using ssGSEA algorism based on B cell 1166 

signatures from xCell (Genome Biol, PMID: 29141660) and investigated its association 1167 

with patients’ prognosis. As a result, although we didn’t observe a significant 1168 

association between B cell enrichment and patients’ prognosis in our whole pan-1169 

sarcoma cohort, we observed that LMS, UPS, MFS, and AS patients with high B cell 1170 

signatures trended to have longer overall survival times (Figure RL8G). 1171 

Figure RL8. (G) Kaplan-Meier curve for OS stratified by B cell signatures in LMS, UPS, MFS, 1172 

and AS. 1173 

 1174 

2.2 Some B cell markers are relevant to prognosis at the proteomic level. 1175 

Based on Petitprez et al.’s finding, which indicated the prognostic relevance of B cells 1176 

in sarcomas, we further evaluated the clinical applicability of utilizing specific B cell 1177 

markers as a prognostic index for sarcomas. We investigated the association between 1178 

the protein expression of B cell markers (referring to the human cell marker database 1179 



[http://xteam.xbio.top/CellMarker/]) and patients’ prognosis. As a result, among the 12 1180 

B cell markers that have been detected in our dataset, 7 B cell markers showed 1181 

significant association with patients’ prognosis in our pan-sarcoma cohort. We further 1182 

verified the prognostic relevance of these 7 B cell markers in TCGA dataset and found 1183 

3 out of 7 B cell markers (PTPRC, CD9, IGLL5) showed consistent prognostic 1184 

relevance at the transcriptomic level in TCGA SARC cohort (Cell, PMID: 29100075) 1185 

(Figure RL8H). These results imply the potential clinical utilization of these B cell 1186 

markers for prognostic prediction in feature. 1187 

Figure RL8 (H) Kaplan-Meier curve for OS stratified by B cell markers. top: our cohort, 1188 

stratified by proteomic abundance; bottom: TCGA SARC cohort, stratified by mRNA 1189 

expression. 1190 

 1191 

We thank the reviewer for suggestions about the comparative analysis between our 1192 

study and these two researches. In the revision, we investigated the major findings of 1193 

those two papers in our proteomic data. As a result, we verified the high expression of 1194 

C3 in sarcoma tissues and the positive correlation between C3 protein abundance and 1195 

macrophage signature. Utilizing proteomic data to establish the C3-deficiency 1196 

macrophage signature, we further proved the availability of this signature in predicting 1197 

prognosis. Meanwhile, we found high B cell signature is correlated with increased 1198 

overall survival times in specific sarcoma histological subtypes, especially in MFS. 1199 

Specific B cell markers, including PTPRC, CD9, and IGLL5, have prognostic relevance 1200 



at both proteomic and transcriptomic levels. We have updated the above findings in the 1201 

“Discussion” sections of our revised manuscript on lines 858-885 and Supplementary 1202 

Figure 17. 1203 

 1204 

3) The authors should discuss some limitations of the study, such as: 1205 

- the requirement of future validation in independent cohorts.  1206 

- considering the extensive intra-tumoural heterogeneity, the inability of bulk 1207 

proteomic approach to dissect the contribution of distinct heterogenous tumour 1208 

regions. 1209 

- the study is based on localised disease, thus it will have to be determined if these 1210 

findings will be true also for locally relapsed and metastatic tumours. 1211 

Response:  1212 

Thank the reviewer for the comment. We have added Limitations in the discussion 1213 

section of the revised manuscript as following: 1214 

 1215 

Limitations 1216 

The aims of this study were to provide a proteomic and phosphoproteomic landscape 1217 

to decipher the molecular heterogeneity of sarcomas, the prognosis-related markers, 1218 

and abnormally changed biology pathways. There are some limitations due to the 1219 

sample collection and technology as follows: 1220 

(1) The sarcoma cohort in this study is single-centered from Fudan University, 1221 

Zhongshan Hospital and included only Chinese patients, so the conclusions may 1222 

lead to potential selection bias. Additional prospective studies are needed to 1223 

validate our findings in multi-center and cohort of other ethnicities. 1224 

(2) We found specific subtype-enriched proteins which might be serviceable in early 1225 

diagnosis and histological subtype detection, but we couldn’t exclude the 1226 

possibility that this protein could have stemmed from other affected organs or may 1227 

be indirectly induced by the effects of the tumors on their microenvironment or 1228 

even systemically. Further experiments or clinical data are necessary complement 1229 

to validate the roles of this proteins in sarcoma. 1230 

(3) The proteomic data in this study was generated through bulk proteomic approach 1231 



from tumor and NAT tissues and couldn’t fully reflect the heterogenous tumor 1232 

regions and the tumor-NAT boundary regions. Integrating single cell and spatial 1233 

omics would be useful to further explore the intra-tumoral heterogeneity in the 1234 

future research. 1235 

(4) The samples in this study were all collected from treat-naïve patients and were all 1236 

primary tumors without remote metastasis or local relapse. The information about 1237 

metastasis and local relapse come from 60-month follow up. The conclusion in this 1238 

study that SHC1 and MAPK10 promotes metastasis required further confirmatory 1239 

studies on metastatic samples. Other conclusions were also just based on localised 1240 

diseases, it will have to be determined if these conclusions are also tenable in 1241 

locally relapsed and metastatic tumors. 1242 

 1243 

Please see the details on the end of the ‘Discussion’ section in the revised manuscript. 1244 

 1245 

Reviewer #3 (Remarks to the Author): Expert in MS-based cancer proteomics 1246 

 1247 

Comments on “Proteomic characterization identifies clinically relevant subgroups 1248 

of soft tissue sarcoma” by Tang et al. 1249 

The authors present proteome data from 272 soft tissue sarcoma tissues and 91 1250 

matched tumor-adjacent tissues (total of 363 samples). In addition, 1251 

phosphoproteome data were generated from 138 sarcoma and 24 tumor-adjacent 1252 

tissues. Data analysis is based on clustering the data, extract functional predictions 1253 

from the clusters, and follow-up with some cell line experiment to understand the 1254 

role of top-scoring proteins in the specific functional categories. The authors are - 1255 

in general – overstating the evidence from the molecular mechanisms they are 1256 

interrogating (see comments). Overall, I did not find the study to be very exciting. 1257 

I think that Nature Communications is a good place for resource-style papers like 1258 

this, and proteomics studies on soft tissue sarcoma have the potential to help us 1259 

better understand the diseases and to identify new treatment strategies. Also, 361 1260 

sample is a quite large number. What I am missing is evidence that proteomics is 1261 

adding crucial information beyond what we know about the disease. I also think 1262 



that the follow-up experiments need more depth. I am on the fence regarding 1263 

recommending to consider a publication after major revisions, but I am happy to 1264 

look the manuscript after the below comments have been addressed. 1265 

 1266 

(1) The authors state that 15,552 proteins were identified across all samples with 1267 

an average of 5,593 proteins being quantified per sample on average. It is very 1268 

unlikely that 5.5 k proteins per sample using unfractionated sample leads to a total 1269 

of > 15 k proteins across 363 samples. I wonder if the false-discovery filtering at 1270 

the protein level was done for each individual sample but not for all datasets 1271 

combined. It is the latter, that should have been done. Merely filtering for each 1272 

individual run will greatly inflate the protein FDR for the entire dataset (as false 1273 

assignments will be different for each run). It is also not clear if a parsimony 1274 

filtering was used on the identified proteins. This should also be done the combined 1275 

dataset. The same question applies to the phosphoproteomics analysis: was the 1276 

filtering done on the combined dataset (which it should have been) or only on each 1277 

individual dataset? 1278 

Response: 1279 

We sincerely thank the reviewer for the comment and apologize for the unclear 1280 

description of protein identification methods in our previous manuscript. In our 1281 

research for each experiment, we employed “Firmiana” a one-stop proteomic cloud 1282 

platform (Nat Biotechnol, PMID: 28486446) for protein quantification. To optimize 1283 

the number of proteins identified, we applied a very stringent filter with 1% FDR at the 1284 

peptide level and 1% FDR at the protein level. The same cutoff strategies of FDR at 1285 

protein/peptide level based on label-free quantification have been widely used in recent 1286 

researches (Nature, PMID: 30814741; Cell, PMID: 32649877; Nat Commun, PMID: 1287 

28429721; Nat Commun, PMID: 29520031). As a result, an average of 5,593 proteins 1288 

was quantified per sample. To count the total identified proteins, we combined all the 1289 

experiments and 15,552 proteins were observed, the combined number of identified 1290 

proteins was only utilized for presenting the detected protein numbers, but not utilized 1291 

for further analysis.  1292 

 1293 



In concordant with the reviewer’s suggestion, for all the analyses including hierarchical 1294 

cluster, proteomic subtyping, tumor microenvironment analysis, etc. we utilized a 1295 

protein matrix that applied 1% FDR filtering at the protein level for all datasets, which 1296 

contained 10,118 proteins in total. We further referred to recently published proteomic 1297 

cohort researches of different cancer types and compared cohort sample size, the 1298 

average number and the total number of identified proteins between these researches 1299 

and our study. As a result, both the average and total identified protein numbers were 1300 

comparable with no significant differences between our study and previously reported 1301 

samples (Ref1, Ref2, Ref3, Ref4, Ref5 in Table RL4).  1302 

Table RL4. The total and average protein numbers of recent proteomic studies and our 1303 

study 1304 

Moreover, for the phosphoproteomic analysis, a label-free based quantification analysis 1305 

was performed using Proteome Discover (version 2.3) (Cell, 2020). 1306 

Phosphophorylation sites were localized with ptmRS module (J Proteome Res, 2011). 1307 

Peptide spectrum matches (PSMs) were filtered with 75% localization probability for 1308 

all phosphorylation sites were included for further analysis. For global 1309 

phosphoproteomic analysis, the FDR at the peptide level and the protein level were also 1310 

set as 1%. In total, 37,842 phosphosites belonging to 6,483 phosphoproteins were 1311 

identified (an average of 7,912 phosphosites belonging to 3,120 phosphoproteins for 1312 

each individual experiment). We also compared our results with previous published 1313 

researches. As a result, the number of average and total number of identified 1314 

phosphosites and phosphoproteins were also comparable with those published 1315 

researches (Ref1, Ref2, Ref6 in Table RL5).   1316 

 1317 



Table RL5. The phosphosite and phosphoprotein numbers of recent proteomic studies 1318 

and our study. 1319 

 1320 

In sum, the combined proteome was only used for presenting the detected protein 1321 

numbers. As for downstream bioinformatic analysis, the proteomic and 1322 

phosphoproteomic matrix that have applied FDR filtering for all dataset were utilized, 1323 

thus our main findings remained unchanged. In the revision, we have added the number 1324 

of proteins that have applied FDR filtering for all datasets and utilized for analysis: 1325 

“Proteomic analysis identified 15,552 proteins in total, with 5,593 proteins per sample 1326 

on average. We then applied FDR filtering for all datasets, and 10,118 proteins were 1327 

utilized for further analysis.” We have also added the description of the protein and 1328 

phosphoprotein identification in the “Methods” section, as follows: “For conducting 1329 

bioinformatic analysis, the proteomic/phosphoproteomic datasets, that have applied 1330 

FDR filtering for all datasets were utilized.” Please see 153-155 lines in the “Result” 1331 

section and 1052-1055 lines in the “Methods” section of the revised manuscript for 1332 

details. 1333 

 1334 

(2) Peptides/proteins were quantified using a label-free approach (iBAQ). 1335 

Reproducibility is shown in Supp Fig 1 A. I would like to see the median CV across 1336 

all the HEK standard samples as well as the CV in dependence to the signal-to-1337 

noise ratio. 1338 

Response: 1339 

We sincerely appreciate the reviewer’s comment. In our previous manuscript, for the 1340 

quality control of MS performance, the HEK293T cell lysate was measured every three 1341 

days as the quality control standard. A pairwise Pearson’s correlation coefficient was 1342 

calculated for all quality control runs, and the results showed the median correlation 1343 



coefficients of proteome standards were 0.9 (0.85-0.95). We also referred to previously 1344 

published works, and the correlation coefficient of the standards was comparable to our 1345 

results (Ref 1, Ref 2, Ref3, Ref4, Ref5, Ref6, and Ref7) (Table RL6).  1346 

 1347 

To comprehensively respond to the reviewer’s comment, we divided the responses into 1348 

two parts: 1349 

 1350 

1. About the coefficient variations (CVs) across all the HEK standards. 1351 

In the revision, we have calculated the coefficient of variation (CVs) across the 15 HEK 1352 

standards. As a result, the median CVs of HEK293 standards were 0.23 and the mean 1353 

CVs were 0.29 (Figure RL9A-B). We also referred to previously published researches, 1354 

and the CVs across replicates of previously published researches were also comparable 1355 

to our results (Table RL6) 1356 

 Figure RL9. CVs and signal-to-noise of the proteomic data 1357 

(A) The scatter plot illustrates the CV of each protein (using iBAQ) across all HEK293 stand 1358 

samples. (B) Cumulative distribution curve illustrating the distribution of CVs. 1359 

 1360 

Table RL6. The standards’ correlations and CVs of our work and recently published 1361 

studies 1362 



 1363 

2. About the CVs independence to signal-to-noise (S/N) ratios. 1364 

In the revision, following the reviewer’s comments, we calculated the CVs across the 1365 

HEK293 standards based on signal-to-noise (S/N) ratios. As a result, the median CVs 1366 

was 0.23 and the mean CVs was 0.30 (Figure RL9C-D), which were similar to the 1367 

median and mean CVs calculated based on iBAQs. The correlation between the iBAQ 1368 

based CVs and S/N ratio based on CVs was around 0.95 (Spearman correlation p < 1369 

0.05). These results confirmed the reproducibility for repeat experiments, and 1370 

demonstrated the consistent stability of our MS platform. 1371 

Figure RL9. (C) The scatter plot illustrates the CV of each protein (using S/N ratio) across all 1372 

HEK293 stand samples. (D) Cumulative distribution curve illustrating the distribution of 1373 

CVs. 1374 

 1375 

In sum, we have added the results of CVs in the supplementary figure X of the revised 1376 

manuscript, and added the methodologies of CV analysis on lines 161-164 of the 1377 

“Methods” section and 161-164 lines of the ‘Result’ section. 1378 

 1379 



(3) Supp Fig 2 A. The PCA plot shows quite an overlap of NAs and tumor samples. 1380 

It would be great to see an unsupervised clustering of NAs and tumor sample and 1381 

some cluster purity measurement to evaluate the separation of tumor and normal 1382 

samples. 1383 

Response: 1384 

Thanks for the constructive comment. To systematically respond to the reviewer’s 1385 

comments, we divided the response into 3 parts: 1386 

1. The criteria for sample collection and assessments 1387 

In this study, for tumor samples, 272 formalin-fixed, paraffin-embedded (FFPE) 1388 

sarcoma tumor tissues and 91 paired tumor-adjacent tissues were acquired from 1389 

Zhongshan Hospital, Fudan University from 2010 to 2019. One 4 μm trick slide from 1390 

each FFPE block was sectioned and stained by hematoxylin and eosin (H&E) for 1391 

histological evaluation. Specifically, each tumor/ tumor adjacent sample was checked 1392 

by three expert pathologists to confirm the sample quality according to the following 1393 

criteria: 1394 

 1395 

For tumor samples: (1) pathologists evaluated and defined tumor area on the slices of 1396 

FFPE specimens with tumor cell rate (tumor purity) > 90%; (2) the histological 1397 

subtypes of sarcoma were diagonalized by pathologists according to WHO 1398 

classification of Soft Tissue & Bone Tumor (Adv Anat Pathol, PMID: 32960834). As 1399 

for tumor-adjacent samples: (1) pathologists evaluated and defined the tumor-adjacent 1400 

areas on the slices of FFPE specimens with no tumor cell rate; (2) NATs were chosen 1401 

based on tumor locations and the original lineages of tumors for different histological 1402 

sarcoma subtypes, according to WHO classification of Soft Tissue & Bone Tumor (Adv 1403 

Anat Pathol, PMID: 32960834).  1404 

 1405 

2. Unsupervised clustering of NATs and tumor samples. 1406 

In agreement with the reviewer, an unsupervised clustering of tumors and NATs could 1407 

help to illustrate the separation of tumor samples and NATs. Thus, in the revision, we 1408 

conduct unsupervised consensus clustering of NAT and tumor samples with the 1409 

ConsensusClusterPlus R package (Bioinformatics, PMID: 204275). The following 1410 



detail settings were used: number of repetitions = 1,000 bootstraps; pItem = 0.8 1411 

(resampling 80% of any sample); pFeature = 1 (resampling 100% of any protein); 1412 

clusterAlg = “K-means”; and distance = “Euclidean”. As a result, 2 clusters were 1413 

determined based on the average pairwise consensus matrix within consensus clusters, 1414 

the delta plot of the relative change in the area under the cumulative distribution 1415 

function (CDF) curve, and the average silhouette distance for consensus clusters.  1416 

 1417 

We then calculated specificity and purity to evaluate the distribution of tumors and 1418 

NATs and tumors in these 2 clusters (cluster1: NAT-distance and cluster2: NAT-similar) 1419 

(Figure RL10A). Specifically, for sample’s specificity, the following formula was 1420 

utilized: specificity = max {Nc1/Ntotal, Nc2/Ntotal}. Ntotal means the whole number of 1421 

tumors or NAT samples. Nc1 and Nc2 mean the samples belonging to cluster1 or cluster2 1422 

in Ntotal. As for cluster purity, the following formula was utilized: purity = max {CN/Ctotal, 1423 

CT/Ctotal}. Ctotal means the whole number of cluster1 or cluster2. CN and CT means the 1424 

numbers of tumors or NATs in Ctotal. As a result, in concordant with the PCA analysis, 1425 

around 89% of the NATs were grouped into cluster1, and 56% of the tumors were 1426 

grouped into cluster2. Forty-four percent of tumors were grouped with NATs, implying 1427 

that these tumors might not show significantly diverse proteomic features compared to 1428 

NATs (Figure RL10B). The unsupervised clustering confirmed the results of PCA 1429 

analysis, we then tried to illustrate the potential reasons under this phenomenon. Since 1430 

our cohort contained 12 histological types of sarcomas and NATs paired with them also 1431 

included various tissue types, we then hypothetically assumed that the overlap between 1432 

tumors and NATs might be caused by the diverse tumor heterogeneity of different 1433 

histological subtypes of sarcoma. 1434 



Figure RL10. Unsupervised clustering of NATs and tumor samples 1435 

(A) The table about unsupervised clustering results of NATs and tumor samples;  1436 

(B) The PCA result of NATs and tumor samples. 1437 

 1438 

3. The overlap between tumors and NATs in PCA analysis might be caused by the 1439 

tumor heterogeneity of different histological subtypes of sarcomas 1440 

To illustrate whether the overlap between tumors and NATs in PCA analysis was 1441 

associated with different histological subtypes of sarcomas, we conducted PCA analysis 1442 

for each histological type of sarcomas, separately. As a result, the tumors were perfectly 1443 

separated with NATs in each histological type of sarcomas. The representative PCAs 1444 

are shown in Figure RL10C.  1445 

 1446 

Figure RL10. (C) PCA plots illustrate separation levels between NAT and tumor samples in 1447 

histological subtypes. 1448 

 1449 

These results confirmed our assumption that the overlap between tumors and NATs was 1450 

caused by the tumor heterogeneity of diverse histological sarcomas, further revealed 1451 

the value of research in deciphering the tumor heterogeneity of different histological 1452 

sarcomas. In the revision, we have added the histological type-based PCA analysis for 1453 

tumors and NATs in Supplementary Figure 3. Meanwhile, we added the above 1454 

analysis on lines 169-187 of the ‘Result’ section. 1455 

 1456 

(4) What criteria were used to define the clusters (HC1-6)? This is not clear based 1457 

on the dendrogram alone. The dendrogram implies that there was very clean 1458 

clustering histological subtypes. I am missing a plot showing how well the subtypes 1459 



were separated from each other using unsupervised clustering (see also comment 1460 

3). 1461 

Response: 1462 

We thank the reviewer for the critical comment. We apologize for the unclear 1463 

presentation of the clustering cutoffs and details in our previous manuscript. To 1464 

systematically response to the comment, we will address this comment from 3 aspects: 1465 

1. The process to create the dendrogram; 1466 

2. The criteria to determine the cluster number; 1467 

3. Biological insights based on hierarchical clusters. 1468 

 1469 

2. The process to create the dendrogram 1470 

To investigate the intrinsic common features of STS histological subtypes, we 1471 

employed hierarchical clustering on the 12 STS histologic subtypes. R (version 4.2.0) 1472 

and the R package “factoextra” (version 1.0.7) were utilized for data process and 1473 

visualization.  1474 

 1475 

Firstly, we performed ANOVA analysis to filter proteins with high variable values 1476 

among different histology subtypes. The protein expression matrix had been processed 1477 

as described in the “Method” section of the manuscript. 2536 proteins were finally 1478 

filtered out with less than 0.001 p-values. Then, we calculated the mean values of these 1479 

filtered proteins for each sarcoma histology subtype. The “Pearson” distances between 1480 

each two subtypes were calculated utilizing these mean values (Supplementary Table 1481 

2). Next, based on the “Pearson” distances, we created the dendrogram with “hclust” 1482 

and “fviz_dend” functions in R using default parameters (Figure RL11A). 1483 



Figure RL11. Process and details of hierarchical clustering 1484 

(A) The cluster dendrogram of 12 histological subtypes of sarcoma 1485 

 1486 

2. The criteria to determine the cluster number 1487 

The cluster number of hierarchical clustering is determined by the height where the 1488 

cluster dendrogram is cut. To find the appropriate cluster number (k), we cut the cluster 1489 

dendrogram at different heights to get the cluster numbers from 2 to 10 (Figure RL11B). 1490 

Referring to previous research, we utilized the silhouette coefficient to estimate the 1491 

similarity of samples in one cluster and the difference of samples among different 1492 

clusters. The silhouette coefficients reached the peak when the cluster number was 5 or 1493 

6 (Figure RL11C).  1494 

 1495 

To further investigate the clinical availability of our hierarchal cluster, we evaluated the 1496 

association between hierarchal clustering with patients’ prognosis. As a result, when the 1497 

cluster number is 6, patients belonging to different clusters presented distinguished 1498 

overall survival time (log-rank test, p < 0.03) (Figure RL11D), suggesting its potential 1499 

clinical utilization. Therefore, we cut the dendrogram at 0.95 and clustered the 12 1500 

histological subtypes of sarcoma into 6 subgroups: HC1 (AS and ES), HC2 (MLPS and 1501 

WDLPS), HC3 (MFS, DDLPS, and otherFS), HC4 (RMS and SS), HC5 (UPS), and 1502 

HC6 (LMS) (Figure RL11E). 1503 



Figure RL11. (B) The circled cluster dendrograms of sarcoma histological subtypes with 1504 

cluster numbers from 2 to 10. (C) The scaled mean values of silhouette coefficients for different 1505 

cluster numbers. (D) Kaplan-Meier curves for overall survival times when cluster number is 5 1506 

or 6. 1507 

 1508 



Figure RL11. (E) Cluster dendrogram for hierarchical clustering when cluster number is 6 1509 

 1510 

3. Biological insights based on hierarchical clusters 1511 

Besides clinical availability, our HC clustering showed strong biological relevance, 1512 

each subgroup showed distinctive biological features, helping to uncover the intrinsic 1513 

common features of different histological subtypes belonging to the same hierarchical 1514 

cluster. Particularly, in our previous version, we found that HC1 contains AS and ES, 1515 

both of which could be distinguished from other clusters with elevated expression of 1516 

SHC1-TGFβ signaling pathways.   1517 

 1518 

In the revision, we conducted further analysis to investigate how hierarchical clusters 1519 

could decipher the common features and heterogeneity among 12 histological subtypes 1520 

of sarcoma. As a result, we found that our hierarchical clustering divided the lipid 1521 

sarcoma (WDLPS, MLPS, and DDLPS) into two clusters. Particularly, DDLPS were 1522 

clustered together with fibrosarcomas (MFS and otherFS) and MPNST in HC3. 1523 

WDLPS and MLPS were clustered into another cluster (HC2). Considering different 1524 

differentiation levels of WDLPS, MLPS, and DDLPS, these findings revealed the 1525 

difference of tumor differentiation within lipid sarcomas might lead to the diverse 1526 

molecular features between DDLPS and WDLPS, further implying that the degree of 1527 

tumor differentiation might serve as an important factor in determining the molecular 1528 



features of sarcomas within lipid sarcomas. Because DDLPS is more metastatic and 1529 

proliferative than WDLPS (Adv Anat Pathol, PMID: 32960834), we compared the ratio 1530 

of KI67-positive tumor cells in WDLPS and DDLPS. DDLPS showed an obviously 1531 

higher ratio of KI67-positive tumor cells than WDLPS (Figure RL11F). Consistently, 1532 

HC3 also presented the higher ratio of KI67-positive tumor cells than HC2, implying 1533 

that HC3 featured fast cell proliferation characteristics (Figure RL11F). 1534 

Figure RL11. (F) Boxplots illustrating the ratio of KI67-positive tumor cells in HC2 and 1535 

HC3 (left) and histological subtypes belonging to HC2/HC3 (right). 1536 

 1537 

GSVA analysis revealed that DDLPS (HC3) could be distinguished from WDLPS and 1538 

MLPS (HC2) by elevated enrichments of Rab pathway (Figure RL11G-H). The 1539 

elevated protein expression of Rab GTPases including RAB14, RAB5A, RAB2A, etc. 1540 

in HC3 confirmed the increased Rab pathway in HC3 (Figure RL11I). 1541 

Figure RL11. (G) The heatmap of specifically enriched pathways in hierarchical clusters; (H) 1542 

Boxplots showing GSVA scores of Rab regulation of trafficking and Rab pathway in 1543 

histological subtypes belonging to HC2/HC3. 1544 

 1545 



Moreover, among the Rab GTPases that showed elevated expression in HC3, we 1546 

observed that the protein abundance of RAB2A and RAB14 were significantly 1547 

correlated with patients’ prognosis (Figure RL11J).  1548 

Figure RL11. (I) The heatmap presenting Rab GTPases enriched in HC3; (J) The forest plot 1549 

showing the hazard ratios of Rab GTPases enriched in HC3. 1550 

 1551 

Previous researches have reported that Rab GTPases participated in cell autophagy 1552 

(Cell Death Differ, PMID: 24440914; Cell Biosci, PMID: 33557950). RAB2A has 1553 

been proved to regulate the formation of autophagosome and autolysosome (Autophagy, 1554 

PMID: 30957628). Researches have indicated that the elevated autophagy might be 1555 

associated with tumor proliferation (Clin Cancer Res, PMID: 26567363), we then 1556 

hypothetically assumed that the elevated autophagy might lead to significantly fast 1557 

tumor cell proliferation and cell proliferation index in HC3. 1558 

 1559 

Aim to confirm this assumption, we compared the autophagy pathway between HC2 1560 

and HC3, and found that both the autophagy pathway enrichment scores as well as 1561 

autophagy markers (ATG5, ATG7, MTOR, WIPI1) showed elevation in HC3 than HC2 1562 

(Figure RL11K-M). Moreover, proliferation index of sarcoma is both correlated with 1563 

protein expression of RAB2A and autophagy pathway GSVA scores (Figure RL11N). 1564 

These findings illustrated that comparing to WDLPS and MLPS which belong to HC3, 1565 

DDLPS, which belongs to HC2, showed fast tumor cell proliferation features, which 1566 

might be caused by the RAB2A-associated autophagy process. 1567 



Figure RL11. (K) The scatter plot presenting the positive correlation between RAB2A and 1568 

autophagy pathway; (L) Boxplots presenting the enrichment scores of autophagy in different 1569 

clusters; (M) Boxplots presenting the abundances of autophagy markers in different clusters; 1570 

(N) The scatter plot presenting the positive correlation between proliferation index and 1571 

autophagy pathway (left) or abundance of RAB2A (right). 1572 

 1573 

In sum, our hierarchical clustering showed clinical relevance and could help to illustrate 1574 

the common features among different histological sarcomas and could further decipher 1575 

the distinctive biological features of lipid sarcomas varies with degrees of 1576 

differentiation. In the revised manuscript, we have updated the methods for hierarchical 1577 

clustering in the “Methods” section and updated our analysis on the HC2 and HC3 in 1578 

the “Result” section (line297-330). Also, we updated Figure RL2 in the revised 1579 

Figure2, Supplementary Figure 8&9. 1580 

 1581 

(5) line 250. A correlation between TGFbeta proteins and SHC1 does not 1582 

necessarily mean that SHC1 plays a key role in TGFbeta signaling. It may suggest 1583 

that it plays a role, but this needs more evidence. This should be re-worded. 1584 

Response: 1585 

We appreciate the reviewer for this helpful suggestion. We apologize for the unclear 1586 

description of the relationship between SHC1, TGFbeta protein, and the elevated cell 1587 

migration features of HC1.  1588 

 1589 



In our previous version, we grouped the 12 histological types of sarcomas into 6 1590 

hierarchical clusters (HC), among which HC1 containing both AS and ES showed the 1591 

worst prognosis. Differential expression analysis combined with GO pathway analysis 1592 

revealed HC1 featured with enrichment of the TGFβ signaling pathway. To further 1593 

elucidate the mechanism underlying the poor prognosis of HC1 patients, we focused on 1594 

the HC1 specifically elevated proteins that enriched in the TGFβ signaling pathway, 1595 

and identified SHC1 as the top-ranked HC1 elevated protein that associated with 1596 

patients’ poor prognosis. As an adaptor protein, SHC1 has been reported to interact with 1597 

various ligands and activate downstream processes, including TGFbeta signaling 1598 

pathway (EMBO J, PMID: 17673906). We then performed correlation analysis and 1599 

observed positive correlation between SHC1 with both the expression of TGFB3 and 1600 

the GSVA scores of both TFGbeta signaling pathway and epithelial cell migration 1601 

pathway (Spearman’s correlation, p-value < 0.05). For this reason, we then 1602 

hypothetically assumed that SHC1 might play an important role in leading the poor 1603 

prognosis of HC1 sarcoma, through cooperating with TGFB3 and promoting tumor cell 1604 

migration. In agreement with the reviewer’s comment, more evidence could help to 1605 

elucidate the relationship among SHC1, TGFbeta and elevated tumor cell migrations of 1606 

HC1 cluster. In the revision, to illustrate the above relationships, we utilized ASM cell 1607 

line, the cell line of AS, to represent the HC1 cluster. We constructed the SHC1-1608 

overexpressed vector and transfected it into the ASM cell line (SHC1-OE-ASM). 1609 

Meanwhile, we also utilized shRNA to knock down SHC1 (SHC1-KD-ASM). RT-PCR 1610 

analysis was utilized to verify the expression of SHC1 in SHC1-OE-ASM and SHC1-1611 

KD-ASM. The results confirmed the significantly elevated expression of SHC1 in 1612 

SHC1-OE-ASM and significantly decreased expression of SHC1 in SHC1-KD-ASM 1613 

(Figure RL12A). We then evaluated the cell migration rates using transwell assay. As 1614 

a result, SHC1-OE-ASM showed increased cell migration ability, whereas SHC1-KD-1615 

ASM exhibited decreased cell migration ability (Figure RL12B). 1616 



Figure RL12. Functional experiments to validate the role of SHC1 in the TGFbeta 1617 

signaling pathway in sarcoma cell lines 1618 

(A) the expression of SHC1 in SHC1-OE-ASM, SHC1-KD-ASM and controlled cells by RT-1619 

PCR. (B) The Effects of SHC1 on the migration of ASM cells were confirmed by transwell 1620 

assay. The bar plots indicated the migrated cell counts of ASM cells under different treatments. 1621 

 1622 

We then treated SHC1-OE-ASM and OE-Ctrl-ASM with TGFB3 and evaluated the 1623 

tumor cell migration rates. As a result, SHC1-OE-ASM treated with TGFB3 showed 1624 

significantly elevated tumor cell migration rates, whereas OE-Ctrl-ASM showed no 1625 

significantly changes in tumor cell migration rates by treating with TGFB3 (Figure 1626 

RL12C). These results confirmed the role of TGFB3 in activating SHC1-medicated 1627 

tumor cell migrations. 1628 

Figure RL12. (C) The effects of TGFB3 on the migration of ASM cells were confirmed by 1629 

transwell assay. The bar plots indicated the migrated cell counts of ASM cells under different 1630 



treatments. 1631 

In sum, our data illustrated the TGFB3 might participate in promoting tumor cell 1632 

migration through cooperating with SHC1. According to reviewer’s comments, we also 1633 

toned down our statements as follows: “Consistently, we found a significantly positive 1634 

correlation between the protein abundance of SHC1 and the TGFβ signaling pathway 1635 

enrichment score (Pearson’s correlation, r = 0.15, p-value = 0.028), suggesting that 1636 

SHC1 might participate in the TGFβ signaling in sarcoma (Figure 2E). Among the 1637 

TGFβ families, TGFB3 showed a statistically positive correlation with SHC1 1638 

(Pearson’s correlation, r = 0.25, p-value = 0.026), suggesting the potential association 1639 

between TGFB3 and SHC1, and implying they might cooperate to impact downstream 1640 

signaling pathways (Figure 2E)”. Besides above updates, we also added the results of 1641 

the functional experiments on lines 378-384. 1642 

 1643 

(6) Line 283: In sum, …. None of that is shown with enough evidence. The language 1644 

should be toned down. Higher kinase expression does not necessarily mean higher 1645 

kinase activity. Did ADD2 S2 phosphorylation level drop with inhibition of SHC1? 1646 

How specific is the inhibitor. What is the kinase phosphorylating ADD S2? 1647 

Response: 1648 

Thanks again for the constructive suggestions. We apologized for the unclear 1649 

description on the relationship among SHC1, phosphorylation of ADD2 and tumor cell 1650 

migrations. In the revision, to decipher this relationship, we performed the following 1651 

analysis and functional experiments:  1652 

 1653 

1. Comparative and correlation analysis revealed PTK2 as the core kinase that 1654 

linked SHC1 and the phosphorylation of ADD2.  1655 

Published researches have indicated that SHC1 participated in various biological 1656 

process, and might regulate downstream pathways through phosphorylation (Nature, 1657 

PMID: 23846654; Nat Commun, PMID: 28276425; Front Cell Dev Biol, PMID: 1658 

33693003). Therefore, in our previous version, to further illustrate how SHC1 led to 1659 

cell migration, we performed correlation analysis and observed that the 1660 

phosphorylation of ADD2 (functions in cytoskeleton reorganization and epithelial 1661 



migration) at Ser2 showed the most significantly correlation with SHC1. Combined 1662 

with clinical information, we found the phosphorylation of ADD2 at Ser2 was 1663 

significantly associated with patients’ poor prognosis. 1664 

 1665 

Functionally, SHC1 is an adapter protein that could interact with different kinases and 1666 

participated in signal transduction pathways (Nature, PMID: 23846654). In the revision, 1667 

to elucidate the kinase that related to SHC1 and might regulate the phosphorylation of 1668 

ADD2 at Ser2 in HC1, we referred to the public database (PhosphoSite [https:// 1669 

www.phosphosite.org/homeAction.action], Phos-pho.ELM [http:// 1670 

phospho.elm.eu.org/dataset.html], and PhosphoPOINT [http:// 1671 

kinase.bioinformatics.tw/]) and conducted correlation analysis. As a result, among the 1672 

kinases reported to regulate phosphorylation of ADD2, PTK2 was identified as the 1673 

kinase that showed most significantly correlation with SHC1 and comparatively higher 1674 

expression in HC1 cluster (FigurRL13A-B). 1675 

Figure RL13. SHC1 recruits PTK2 to phosphorylate ADD S2 1676 

(A) The Spearman-rank correlation of the expression of PTK2 with SHC1 expression 1677 

(Spearman’s correlation). (B) The violin plot indicated the PTK protein expression among HC 1678 

clusters.  1679 

 1680 

1.2. Inhibiting PTK2 could impact the increased cell migration leading by SHC1. 1681 

To further investigate the role of PTK2 in impacting cell migration, SHC1-OE-ASM 1682 

and OE-Ctrl-ASM cell lines were used and were treated with PTK2 inhibitors. We then 1683 

evaluated the cell migration by transwell assay. As a result, inhibiting PTK2 could 1684 

significantly decreased the cell migration rates increased by SHC1 (Figure RL13C-D). 1685 



Moreover, overexpression of PTK2 in SHC1-KD-ASM significantly increased cell 1686 

migration which was inhibited by knocking down SHC1(Figure RL13D). These results 1687 

implied that the kinase, PTK2, participated in cell migration driven by SHC1. 1688 

Figure RL13. (C-D) The effects of SHC1-PTK2 axis on the migration of ASM cells were 1689 

confirmed by transwell assay. The bar plots indicated the migrated cell counts of ASM cells 1690 

under different treatments. 1691 

 1692 

We further performed phosphoproteomic analysis between SHC1-OE-ASM treated 1693 

with or without PTK2 inhibitor. As a result, the phosphorylation of proteins such as 1694 

ADD2 Ser2, FGD4 Ser702 and EPB41 Ser542, which participate in actin cytoskeleton 1695 

reorganization and epithelial cell migration, showed significantly elevation in SHC1-1696 

OE-ASM and significantly decreasing in SHC1-OE-ASM treated with PTK2 inhibitor 1697 

(Figure RL13E). These observations confirmed the role of PTK2 in phosphorylating 1698 

ADD2 at Ser2 and elevating actin cytoskeleton reorganization pathways. 1699 

  1700 

Figure RL13. (E) The boxplots indicating the phosphorylation intensity of ADD2 S2 and other 1701 

phosphosites participating in actin cytoskeleton reorganization under different treatments. 1702 

 1703 



In sum, our data illustrated the mechanism that by interacting with PTK2 and 1704 

phosphorylating ADD2 at Ser2, SHC1 will enhance the cell migration, and lead to poor 1705 

prognosis of HC1 patients. According to reviewer’s comments, we also updated our 1706 

statements as following: “In sum, the upregulation of SHC1 might interact with kinase 1707 

PTK2, phosphorylating ADD2 at Ser2, enhanced cell migration. This phosphorylation 1708 

cascade might associate with the poor prognosis with HC1 patients (AS or ES).”   1709 

 1710 

In the revision, we have updated Figure RL3 in the revised Supplementary Figure 1711 

10&11 and the “Result” section on lines297-334, line355-384, line 397-417, and line 1712 

520-551. in the revised manuscript. 1713 

 1714 

(7) Fig 3 and Supp Fig 6: Is the inhibition of SHC1 and MAPK10 affecting the 1715 

phosphorylation levels at CTNNB1Ser552 and Ser675? 1716 

Response: 1717 

We appreciate the reviewer’s comment and apologize for the not clearly illustrating the 1718 

mechanism how SHC1 and MAPK10 affect the phosphorylation levels at CTNNB1 1719 

Ser552 and Ser675. In the revision, to elucidate the mechanism, we conducted the 1720 

following analysis and functional experiments: 1721 

 1722 

1. Comparative and correlation analysis revealed CSNK1G1 as the core kinase 1723 

that linked SHC1 and the phosphorylation of CTNNB1 at Ser552.  1724 

As an adaptor protein, SHC1 has been reported to participate in various signaling 1725 

pathways. To illustrate the kinase that related to SHC1 and might regulate the 1726 

phosphorylation of CTNNB1 at Ser552 in Pc-Ra, we also referred to the public database 1727 

(PhosphoSite [https:// www.phosphosite.org/homeAction.action], Phos-pho.ELM 1728 

[http:// phospho.elm.eu.org/dataset.html], and PhosphoPOINT [http:// 1729 

kinase.bioinformatics.tw/]) and conducted correlation analysis. As a result, the among 1730 

the public reported kinases of CTNNB1, CSNK1G1 showed the significantly positive 1731 

correlation with both SHC1 and the phosphorylation of CTNNB1 at Ser55 (Figure 1732 

RL14A-B). Consistently, the phosphorylation of CSNK1G1 also showed elevated 1733 

expression level in PC-Ra (Figure RL14C). 1734 



Figure RL14. phosphorylation levels of CTNNB1Ser552 and Ser675 are impacted by 1735 

SHC1 and MAPK10 inhibitors. 1736 

(A)The scatter plot illustrates the positive correlation between CSNK1G1 and SHC1 1737 

(Spearman’s correlation). (B) The scatter plot illustrates the positive correlation between 1738 

CSNK1G1 and the phosphorylation level of CTNNB1 Ser552 (Spearman’s correlation).(C) 1739 

The boxplot presents the expression of CSNK1G1 in different proteomic clusters. 1740 

 1741 

2. Phosphoproteomic analysis using SHC1-overexpressed cell line confirmed the 1742 

role of CSNK1G1 in phosphorylating CTNNB1 at Ser552.  1743 

To further confirm the role of CSNK1G1 in phosphorylating CTNNB1, we constructed 1744 

the SHC1-overexpressed vector and transfected it into the ISOHAS cell line (the cell 1745 

line of AS) which showed similar expression patterns with PC-Ra-HC1. We then treated 1746 

SHC1-OE-ISOHAS with or without the CSNK1G1 inhibitor and performed 1747 

phosphoproteomic analysis. As a result, the phosphosites of proteins participating in 1748 

angiogenesis, especially CTNNB1 Ser552, significantly decreased in SHC1-OE-1749 

ISOHAS treated with CSNK1G1 inhibitor (Figure RL14D). These observations 1750 

confirmed the role of CSNK1G1 in phosphorylating CTNNB1 at Ser552. The above 1751 

results confirmed our assumption that SHC1 could lead to PC-Ra-HC1 tumor migration 1752 

through phosphorylating CTNNB1 mediated by CSNK1G1. 1753 



Figure RL14. (D) The boxplots indicated the phosphorylation levels of CTNNB1 Ser552 and 1754 

other phosphosites participating in angiogenesis under different treatments.  1755 

 1756 

3. Phosphoproteomic analysis using MAPK10-overexpressed cell line confirmed 1757 

the role of MAPK10 in phosphorylating CTNNB1 at Ser675.  1758 

As for the impact of MAPK10 on the phosphorylation of CTNNB1 at Ser675. We 1759 

constructed the MAPK10 overexpressed vector and transfected it into SW872 cell line 1760 

(MAPK10-OE-SW872) which showed similar expression patterns with PC-Ra-oHCs. 1761 

We then treated MAPK10-OE-SW872 cells and treated with or without MAPK10 1762 

inhibitor. We also conducted phosphoproteomic analysis, and observed the 1763 

phosphorylation of proteins such MAPK13, CTNNB1 and MAPK14 which participate 1764 

in MAPK signaling pathway, showed significantly elevated expression in MAPK10 1765 

overexpressed cells and downregulated in MAPK10 inhibitor treated cell lines (Figure 1766 

RL14E). The above results confirmed our assumption that MAPK10 could lead to PC-1767 

Ra-oHCs tumor migration through phosphorylating CTNNB1 at Ser675. 1768 

Figure RL14. (E) The boxplots indicated the phosphorylation levels of CTNNB1 Ser675 and 1769 

other phosphosites participating in MAPK signaling cascade under different treatments. 1770 

 1771 

In the revision, we have updated the relationship among SHC1-PTK2-phosphorylated 1772 

CTNNB1 at Ser552, and the relationship among MAPK10-phosphorylated CTNNB1 1773 



at Ser675 on lines 520-551 of the “Result” section. We also updated the Figure RL14 1774 

into Supplementary Figure 11 of the revised manuscripts, respectively. 1775 

 1776 

(8) Fig 7P and line 457. There is lots of evidence missing for RIOK1 1777 

phosphorylating NPM1 and thereby regulating the interaction of APEX1 and 1778 

NPM1. Does inhibition/KD of the kinase affect the phosphorylation level 1779 

(phosphoproteomics, WB)? Does the inhibition affect the interaction of the 2 1780 

proteins (IP-MS, WB)? Does it affect the co-regulation of the two proteins 1781 

(proteomics)? 1782 

Response: 1783 

We appreciate the reviewer for this critical suggestion and agree with that more 1784 

evidence should be provided to verify our findings on the RIOK1-phosphorylated-1785 

NPM1-APEX1 axis in promoting tumor cell proliferations. According to the reviewer’s 1786 

suggestion, in the revision, we performed further analysis and functional experiments 1787 

to confirm our findings.  1788 

 1789 

Specifically, we utilize the sarcoma cell line, RKN, for further functional experiments, 1790 

as it originates from LMS and represents the proteomic features of PC-Cc. We 1791 

constructed the RIOK1-overexpressed RKN cell line (RIOK1-OE-RKN) through the 1792 

RIOK1 overexpression plasmid, pCDH-RIOK1-copGFP. Moreover, shRNA of RIOK1 1793 

were designed and transfected into RKN cell line to knock down the expression of 1794 

RIOK1 (RIOK1-KD-RKN). We then performed CCK8 cell proliferation assay and 1795 

evaluated the cell proliferation rates. As a result, RIOK1-OE-RKN showed most 1796 

significantly elevated cell proliferation rates and RIOK1-KD-RKN had significantly 1797 

decreased cell proliferation rates (Figure RL15A). We also treated RIOK1-OE-RKN 1798 

cell line with RIOK1 inhibitor, and the inhibitor significantly decreased the 1799 

proliferation of RIOK1-OE-RKN (Figure RL15A). These observations confirmed the 1800 

impact of RIOK1 on promoting sarcoma tumor cell proliferation. We then performed 1801 

comparative proteomic and phosphoproteomic analysis among RKN sarcoma cell lines 1802 

with different treatments (RKN transfected with empty vector, RIOK1-OE-RKN, 1803 

RIOK1-OE-RKN treated with RIOK1 inhibitor, RKN transfected with scrambled 1804 



shRNA, RIOK1-KD-RKN). As a result, besides APEX1, the proteins participating in 1805 

DNA base excision repair including XRCC1, XRCC4, POLB, as well as cell 1806 

proliferation index KI67 showed elevated expression in RIOK1-OE-RKN (Figure 1807 

RL15B-C). Intriguingly, the phosphorylation of NPM1 at Ser 125 was significantly 1808 

increased in RIOK1-OE-RKN, implying that RIOK1 regulated the phosphorylation of 1809 

NPM1 (Figure RL15C). 1810 

Figure RL15. Functional experiments to validate the role of RIOK1 in phosphorylating 1811 

NPM1 and interaction of NPM1 and APEX1 1812 

(A) Proliferation of the RKN cell line associated with different treatments (n = 4 repeats per 1813 

group). (B) The heatmap reveals the expression patterns of DNA base excision proteins across 1814 

the cells associated with various treatment (n = 3 repeats per group). (C) The boxplots reveal 1815 

the abundance of APEX1, KI67 and phosphorylation of NPM1 at Ser125 in RKN cell line with 1816 

different treatments. 1817 

 1818 

To further investigate the impact of NPM1 phosphorylation on cell proliferation as well 1819 

as on its interaction with APEX1, we then constructed NPM1 phosphorylation site 1820 

mutant plasmid, NPM1S125A, and transfected it into RIOK1-KD-RKN cells (NPM1-1821 

mut-OE-RIOK1-KD-RKN). The non-mutant NPM1 was also transfected into RIOK1-1822 

KD-RKN cells (NPM1-OE-RIOK1-KD-RKN) which were utilized as controls. By 1823 

evaluating the cell proliferation rates, we observed that comparing to RIOK1-KD-RKN 1824 

cells, NPM1-OE-RIOK1-KD-RKN cells should elevated cell proliferation rates, 1825 



whereas the cell proliferation rates of NPM1-mut-OE-RIOK1-KD-RKN showed no 1826 

significant elevation (Figure RL15D). These results indicated the decreased cell 1827 

proliferation rates led by knocking down RIOK1 could only be rescued by the wild type 1828 

NPM1 overexpression, which further emphasized the role of phosphorylation of NPM1 1829 

in medicating RIOK-dependent regulation of the tumor cell proliferation. 1830 

 1831 

To further illustrate whether the phosphorylation of NPM1 affected its interaction with 1832 

APEX1, we performed IP-MS using both NPM1-mut-OE-RIOK1-KD-RKN and 1833 

NPM1-OE-RIOK1-KD-RKN (Figure RL15F). As a result, 17 proteins were identified 1834 

to interact with the wild type NPM1, but not NPM1S125A. Among them, NPM1 1835 

presented the highest abundance, proving that NPM1 Ser125 is the pivotal site for the 1836 

interaction between NPM1 and APEX1 (Figure RL15G-H). The above results 1837 

illustrated the potential mechanism that RIOK1 could impact sarcoma tumor cell 1838 

proliferation through phosphorylating NPM1 which then interacted with APEX1 and 1839 

promoted tumor cell proliferation accordingly. 1840 

Figure RL15. (D) Proliferation of the RNK cell line associated with various treatments (n = 4). 1841 

(E) The boxplots present the expression of KI67, APEX1 and phosphorylation of NPM1 among 1842 

NPM1-OE-RIOK1-KD-RKN, NPM1-mut-OE-RIOK1-KD-RKN, and EV-RIOK1-KD-RKN. 1843 

(F) The schematic work flow of the IP-MS experiment for the NPM1. (G) The diagram 1844 

illustrates the mechanism underlying cell proliferation of PC-Cc driven by NPM1 and APEX1. 1845 



(H) The heatmap reveals the expression patterns of DNA base excision proteins across the 1846 

NPM1-OE-RIOK1-KD-RKN, NPM1-mut-OE-RIOK1-KD-RKN (n = 3 repeats per group). 1847 

 1848 

In the revision, we have added Figure RL15 in Supplementary Figure 12, and 1849 

updated our description on the role of RIOK1-phosphorylated-NPM1-APEX1 axis in 1850 

promoting tumor cell proliferations in PC-Cc, with more evidence (both from 1851 

functional experiments and bioinformatic analysis). Please see the lines 631-669 in the 1852 

“Results” section of the revised manuscript. 1853 

 1854 

(9) Fig 7O and line 527: Evidence is missing. Does inhibition/KD of MAPK10 affect 1855 

the CTNNB1 Ser657 phosphorylation level. Does the inhibition of MAPK10 in 1856 

cells derived from the according strain affect immune infiltration (xenograft 1857 

model)? 1858 

Response: 1859 

We sincerely thank the reviewer for the comment. To comprehensive respond to the 1860 

comment, we divided the response into two parts. 1861 

 1862 

1. The impact of MAPK10 on phosphorylation of CTNNB1 at Ser657 1863 

As we responded to Q7-part3, indeed, by both knocking down the expression of 1864 

MAPK10 or inhibiting its kinase activity could significantly decrease the 1865 

phosphorylation of CTNNB1 at Ser657. Please see the response for Q7 for details. 1866 

 1867 

2. The impact of MAPK10 on tumor immune infiltrations (xenograft model). 1868 

According to the reviewer’s suggestion, we further validated the impact of MAPK10 1869 

on tumor immune infiltration using C57/BL6J mice, which usually used as the model 1870 

for immune microenvironment analysis (Nature Reviews Cancer, PMID: 27687979; 1871 

Cell Reports, PMID: 35732118; Clin Cancer Res, PMID: 15709162). We constructed 1872 

xenograft mice models using SW872 cells in which MAPK10 were stably 1873 

overexpressed or knocked down. Twenty C57/BL6J mice were randomized into four 1874 

groups (n = 5 each), and separately injected MAPK10 overexpressed and MAPK10 1875 

knocked down SW872 cell lines (OE-MAPK10 and sh-MAPK10) and control cell lines 1876 



(OE-Ctrl and sh-Ctrl) to form subcutaneous tumors. Tumor size and weight were 1877 

measured throughout the tumor growth process and tumor volume was calculated. After 1878 

4 weeks, mice were sacrificed and tumors were collected for further proteomic and IHC 1879 

staining analysis. As a result, tumors from mice transplanted with OE-MAPK10-1880 

SW872 showed significantly increased immune cell infiltrations, which were evidenced 1881 

by elevated expression of T cell and macrophage markers (CD4, CD8 and CD163). 1882 

Moreover, the immune checkpoint proteins such as CD274 (PD-L1) and CD80 were 1883 

also observed to be elevated in OE-MAPK10-SW872 mice (Figure RL16A). On the 1884 

contrary, mice which were transplanted with sh-MAPK10-SW872 showed obviously 1885 

decreased immune cell infiltrations, with decreased expression of both immune cell 1886 

markers as well as immune checkpoint proteins (Figure RL16A). 1887 

Figure RL16. The impact of MAPK10 on immune infiltration in mouse xenograft model. 1888 

(A) Boxplots illustrate the expressions of immune cell markers, including CD274, CD80, CD4, 1889 

and CD8 in differently treated mouse xenograft models. 1890 

 1891 

IHC staining further confirmed the increased immune cell infiltrations in OE-1892 

MAPK10-SW872 mice and decreased immune cell infiltrations in sh-MAPK10-1893 

SW872 mice (Figure RL16B). 1894 

 1895 

We updated the above results about the impact of MAPK10 on immune infiltration from 1896 

line 753 to line 772 of the ‘Result’ section. 1897 



Figure RL16. (B) IHC images illustrate the expression of CD8, CD163, and CD274 in 1898 

subcutaneous tumors of the C57/BL6J mice transplanted with SW872 sarcoma cell lines. 1899 

Positive cell percentage is presented on the right. 1900 

 1901 

(10) As the control samples are matched tumor-adjacent tissue, the authors may 1902 

consider comparing sarcoma and control tissue in a patient-specific manner to 1903 

better understand tumor/normal differences (does it matter if I normalize the 1904 

sarcoma proteome by the adjacent tissue proteome for each patient, rather than 1905 

compare all control samples with all sarcoma samples?). 1906 

Response: 1907 

We appreciate the reviewer’s constructive comments. In our previous version, to 1908 

present the features of tumors and NATs, we performed comparative analysis between 1909 

all tumors and all NATs. The results illustrated that proteins elevated in tumor tissues 1910 

majorly enriched in biological pathways such as cell growth, RNA splicing, and antigen 1911 

processing and presentation. On the other hand, proteins dominantly expressed in NATs 1912 

were enriched in ATP metabolic process, glycolytic process, and muscle system process. 1913 

 1914 

To address the reviewer’s comments, in the revision, we conducted further tumor and 1915 

NAT comparative analysis, by normalizing the sarcoma proteome using the adjacent 1916 

tissue proteome for each patient. As a result, the GO features of tumors and NATs 1917 

basically remained unchanged comparing to our previously portrayed molecular 1918 



features of all tumors and all NATs. Specifically, in concordant with our previous results, 1919 

the GO enrichment analysis revealed that sarcoma tumors were also featured with 1920 

biological pathways such as cell cycle, synthesis of DNA, MYC targets up, signaling 1921 

by interleukins, and antigen processing and presentation (Figure RL17A). Meanwhile, 1922 

the muscle system process, actin filament organization, and TCA cycle we observed to 1923 

be enriched by proteins elevated in the NATs (Figure RL17A). These results illustrated 1924 

that the distinctive biology pathways between tumors and NATs is stable and largely 1925 

unaffected by comparison methods. 1926 

Figure RL17. Pairwise comparation between NAT and tumor of sarcoma 1927 

(A) The heatmap presents the significant difference of enriched pathways between tumors and 1928 

NATs through the pairwise comparison. 1929 

 1930 

Moreover, we also compared the difference of biology pathways among histological 1931 

subtypes of sarcoma utilizing the tumors’ proteome which was normalized by paired 1932 

NAT samples. Compared with our previous result, the histological specific features of 1933 

sarcomas basically remained unchanged (Figure RL17B-C). For instance, TGFβ 1934 

signaling and p53 pathway were dominantly enriched in AS, myogenesis were observed 1935 

to be elevated in LMS, and MYC target pathway was significantly enriched in SS&UPS 1936 

(Figure RL17B), etc. The above results confirmed that the distinctive biological 1937 

features of diverse histological subtypes of sarcoma remain the same despite whether 1938 

being normalized by paired NAT samples. 1939 



Figure RL17. (B) Heatmaps illustrates enriched cancer hallmarks in STS histologic subtypes 1940 

through non-pairwise (top) and pairwise (down) methods. (C) Boxplots presents the enriched 1941 

pathways in specific histological subtypes processed through non-pairwise or pairwise method. 1942 

 1943 

Based on the above results, in the revision, following reviewer’s suggestion, besides 1944 

our original results about the comparison of NATs and tumors, we also added the results 1945 

of paired comparison between tumor and NAT in Supplementary Figure 4. Moreover, 1946 

we also added sarcomas’ histological specific features that were also normalized by 1947 

their paired NATs in the Supplementary Figure 5. Please see lines 197-199 and lines 1948 

241-244 in the revised manuscript. 1949 



REVIEWERS' COMMENTS 

 

Reviewer #1 (Remarks to the Author): 

 

The authors have addressed all my questions and provided a detailed explanation on how each 

questions was addressed. 

 

 

Reviewer #2 (Remarks to the Author): 

 

The authors appropriately discussed or answered to comments raised during the review process. 

 

 

Reviewer #3 (Remarks to the Author): 

 

The authors carefully addressed all my suggestions and comments and did several follow-up 

experiments to confirm hypotheses they have stated in the original experiment. I think the paper is 

suitable for publications if the below comments/suggestions are addressed. 

 

(i) I think it is wrong to state that 15 k plus proteins were identified across all datasets based on the 

results of filtering each run individually and then combine the protein lists. As the 10 k protein received 

from the combined dataset protein filtering shows, the FDR of the identified 15 k proteins is about 33 %. 

I suggest just reporting the 10 k proteins (or mentioning the estimated FDR for the 15 k proteins). 

(ii) The authors made follow-up experiments on all my comments and were able to confirm all 

hypotheses stated in the original manuscript. This is quite some work and impressive. The hyoptheses 

included identifying the phosphorylation at ADD2 Ser2, the effect of SHC1 and MAPK10 inhibition on 

CTNNB1 Ser552 and Ser 675, and the regulation of NPM1/APEX1 binding through RIOK1 catalyzed 

phosphorylation of NPM1. The authors should provide the entire proteome and phospho datasets from 

this experiments as supplemental tables and upload the RAW files to the repository. 

 

Comments not affecting my recommendation on publishing: 

(a) a median 30 % CV is quite high for technical replicates. The authors only show S/N to CV correlation 

at the protein level. What I recommend is to look at this relationship at the peptide level, as this may 



readily allow to filter out low S/N peptides with poor CVs without affecting the protein counts too much. 

I don’t think the message in this manuscript will be hugely affected when applying this filter (and I am 

not requesting this), but in general, I would recommend trying to improve CV by some S/N filtering. 

(b) How were the numbers in Table RL6 generated? I did not look at every paper, but a median CV of 

0.99 for a TMT dataset produced by Steve Carr seems completely off (PMID: 33212010). What we 

should consider is the median CVs of technical replicates (not across all samples analyzed in a study, this 

would rather be sample-dependent than method-dependent). For TMT this should be in the 0.05-0.1 

range. I could not find any data in the Carr paper. This is not relevant to the reviewed manuscript, but 

the table seems to be off. 

 



Reviewer #3 (Remarks to the Author): 

 

The authors carefully addressed all my suggestions and comments and did several 

follow-up experiments to confirm the hypotheses they stated in the original experiment. 

I think the paper is suitable for publication if the below comments/suggestions are 

addressed. 

Response:  

We sincerely appreciate the constructive comments that the reviewer has provided, 

which truly help us in improving our work. We have revised the manuscript and 

provided specific point-to-point responses as follows: 

 

Q1. I think it is wrong to state that 15 k plus proteins were identified across all datasets 

based on the results of filtering each run individually and then combining the protein 

lists. As the 10 k protein received from the combined dataset protein filtering shows, 

the FDR of the identified 15 k proteins is about 33 %. I suggest just reporting the 10 k 

proteins (or mentioning the estimated FDR for the 15 k proteins). 

Response:  

We are grateful for the constructive comment that the reviewer has provided. According 

to the reviewer’s comment, we have removed the statement that 15k plus proteins were 

identified across all datasets, and revised the description as follows: “Quality control 

was applied on both peptide and protein level with less than 1%FDR. As a result,10,118 

proteins and 37,842 phosphosites were identified, with 5,593 proteins 

and·6,483· phosphosites per sample on average.” Please see lines 154-157 in the result 

section of the revised manuscript. 

 

Q2. The authors made follow-up experiments on all my comments and were able to 

confirm all hypotheses stated in the original manuscript. This is quite some work and 

impressive. The hypotheses included identifying the phosphorylation at ADD2 Ser2, 

the effect of SHC1 and MAPK10 inhibition on CTNNB1 Ser552 and Ser 675, and the 

regulation of NPM1/APEX1 binding through RIOK1 catalyzed phosphorylation of 



NPM1. The authors should provide the entire proteome and phosphor datasets from 

these experiments as supplemental tables and upload the RAW files to the repository. 

Response:  

We appreciate the reviewer’s comments. We have now deposited all the RAW files of 

the entire proteome and phosphor datasets to the iProX (https://www.iprox.org/). 

Specifically, all the proteome and phosphoproteome datasets for the cohort study can 

be accessed with the ProteomeXchange ID: PXD047297. For functional studies, all the 

raw data can be accessed with the iProX accession: IPX000764500, with the following 

url: https://www.iprox.cn/page/PSV023.html;?url=1701407935333pK2j, and 

password: BbZF. The entire proteome and phosphoproteome datasets from these 

experiments were uploaded to OMIX and can be accessed with the accession no 

OMIX005327. Moreover, we provide source data for all data presented in graphs within 

the Figures. For details, please see the Data Availability section in the revised 

manuscript and the Source data. 

 

Comments not affecting my recommendation on publishing: 

Q1. A median of 30 % CV is quite high for technical replicates. The authors only show 

S/N to CV correlation at the protein level. What I recommend is to look at this 

relationship at the peptide level, as this may readily allow to filter out low S/N peptides 

with poor CVs without affecting the protein counts too much. I don’t think the message 

in this manuscript will be hugely affected when applying this filter (and I am not 

requesting this), but in general, I would recommend trying to improve the CV by some 

S/N filtering. 

Response:  

We thank the reviewer for the constructive suggestion. Taking the reviewer’s 

suggestion, we have calculated the S/N to CV correlation at the peptide level. As a 

result, the median CV calculated based on S/N ratios at the peptide level was 0.25 and 

the mean CV was 0.32. The result is comparable with the CV at the protein level 

(Figure RL1A-B). In agreement with the reviewer, the median CV is a bit high for 

technical replicates. Thus, to improve the CV for technical replicates, we took the 

reviewer’s suggestion and filtered out low S/N peptides with poor CVs (peptides with 

https://www.iprox.org/


CV > 0.30). As a result, the median CV at peptide level was decreased to 0.18 (Figure 

RL1C). Moreover, after filtering out peptides with low CV, we then evaluated the 

number of proteins and calculated the CV at the protein level. As a result, the number 

of proteins was 7,229 (7,564 before peptide filtering) which was not affected too much 

by the filtering process (Figure RL1D). Meanwhile, the median CV, at the protein level, 

was significantly decreased to 0.14 (0.30 before peptide filtering) (Figure RL1E). 

These results indicated the peptide-filtering process significantly decreased the 

variability across the technical repeats at both peptide and protein levels, without 

affecting protein counts. In the revision, we revised our statement about the CVs across 

the technique repeats as follows: “The correlations of these control samples were 0.83-

0.95 and the median coefficient of variation (CV) was 0.14 (Methods, Supplementary 

Figure 1A-C), which is comparable to previously published papers (Nature Medicine, 

PMID: 35654907), presenting the stability of the mass spectrometry across quality 

controls.”, and added description about the S/N filtering process in the Methods section. 

Please see lines 164–167 in the result section, and lines 1122–1127 in the Methods 

section for details. 



FigureRL1. The CVs and S/N of quality control samples’ peptides and proteins 

A-C and E. The left scatter plots illustrate the CV and S/N ratio of proteins/peptides identified 

in all HEK293 stand samples. The right cumulative distribution curves illustrate the distribution 

of CVs. (A) CV and S/N ratio at the protein level (before peptide filtering); (B) CV and S/N 

ratio at the peptide level (before peptide filtering); (C) CV and S/N ratio at the peptide level 

(after peptide filtering); (E) CV and S/N ratio at the protein level (after peptide filtering). (D) 

The bar plot presents the identified protein numbers before and after filtering the peptides. 

 

(b) How were the numbers in Table RL6 generated? I did not look at every paper, but 

a median CV of 0.99 for a TMT dataset produced by Steve Carr seems completely off 

(PMID: 33212010). What we should consider is the median CVs of technical replicates 

(not across all samples analyzed in a study, this would rather be sample-dependent than 

method-dependent). For TMT this should be in the 0.05-0.1 range. I could not find any 

data in the Carr paper. This is not relevant to the reviewed manuscript, but the table 

seems to be off. 



Response:  

We thank the reviewer for the instructive suggestion. We apologize for the unclear 

presentation of the Table RL6. We agree with the reviewer that we should calculate the 

CVs among technical replicates, not across all samples. In the revision, we screened 

out the published papers, and since very few papers provided data for technical 

replicates, we only found the paper by Matthias Mann’s group (Nature Medicine, 

PMID: 35654907) that provided quality control data. They utilized DIA methods, and 

the median CVs across quality assessment samples were 0.12 - 0.19, comparable to our 

results (our result median CV is 0.14). In the revision, we have updated the citation and 

revised our description on the quality control. Please see lines 164–167 in the result 

section, and lines 1122–1127 in the Material and Methods section for details. 
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