
Supplementary Information
Learning the intrinsic dynamics of spatio-temporal processes through Latent Dynamics Networks

Francesco Regazzoni1,∗, Stefano Pagani1, Matteo Salvador1,2, Luca Dede’1, Alfio Quarteroni1,3

1 MOX, Department of Mathematics, Politecnico di Milano, Milan, Italy
2 Institute for Computational and Mathematical Engineering, Stanford University, California, USA

3 École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland (Professor Emeritus)

∗ Corresponding author (francesco.regazzoni@polimi.it)

1 Error metrics

To evaluate the generalization accuracy, we test trained models on unseen data, that is on samples belonging
to a test set denoted by Stest. Specifically, we employ two metrics.

Normalized root mean square error (NRMSE) is obtained as the square root of the mean of the
squares of the normalized errors obtained on the test set:

NRMSE =

√√√√ ∑
i∈Stest

∑
τ∈T i

∑
ξ∈Pi

τ

∥ỹi(ξ, τ)− yi(ξ, τ)∥2

y2norm
.

Pearson dissimilarity (1− ρ) is defined from the Pearson correlation coefficient ρ:

ρ =

∑
i∈Stest

∑
τ∈T i

∑
ξ∈Pi

τ

(ỹi(ξ, τ)− ỹ) · (yi(ξ, τ)− y)

√ ∑
i∈Stest

∑
τ∈T i

∑
ξ∈Pi

τ

∥ỹi(ξ, τ)− ỹ∥2
∑

i∈Stest

∑
τ∈T i

∑
ξ∈Pi

τ

∥yi(ξ, τ)− y∥2

where we denote the average outputs as

y =
∑

i∈Stest

∑
τ∈T i

∑
ξ∈Pi

τ

yi(ξ, τ)

ỹ =
∑

i∈Stest

∑
τ∈T i

∑
ξ∈Pi

τ

ỹi(ξ, τ)

We remark that both metrics (RMSE and 1 − ρ) are robust with respect to multiplicative rescaling of the
outputs. For both of them, the smaller the value of the metric, the higher the accuracy of the predictions.

2 Alternative methods

In this section, we describe alternative methods to LDNets, whose performance is compared in the main text
and in Sec. 3. Some of these methods are based on a space discretization of the solution field.

We consider hence a space-discretization operator A : Y → RNh , with Nh ≫ 1. The operator A typically
consists of a point-wise evaluation of y on a grid of points (e.g. the nodes of a computational mesh),
or of an expansion with respect to a Finite Element basis or to a Fourier basis. The subscript h refers
to the characteristic size associated with the discretization (e.g., the mesh element size for a mesh-based
discretization; the sampling period for a discretization based on the discrete Fourier transform). Hence, we

1



write Y(t) = A(y(·, t)) ∈ RNh . The space-discretization operator is typically accompanied by a discrete-to-
continuous operator A′ : RNh → Y, such that y(·, t) ≃ A′(Y(t)).

Let us consider, for simplicity, the case when the discretization operator is associated with the evaluation
of the output field on a grid of points ξ1, ξ2, . . . , ξNnodes

. Then we have

Yi(τ) = (yi(ξ1, τ),yi(ξ1, τ), . . . ,yi(ξNnodes
, τ)) for i ∈ Strain, τ ∈ T i

In this case, we have Nh = dyNnodes. We are thus restricting ourselves to the case when the training
dataset is such that Pi

τ ≡ P := (ξ1, ξ2, . . . , ξNnodes
). If, instead, observation points vary between samples

or between time steps, interpolation would be required.

2.1 Projection-based reduced-order models

Projection-based reduced-order models (ROMs) allow the efficient simulation of complex spatio-temporal
systems for many different queries of the input u(t) [2–5, 12, 17]. They leverage Galerkin or Petrov-Galerkin
projection of the PDE system onto problem-specific linear manifolds to reduce the complexity of high-
fidelity discretization, deliberately rich in degrees of freedom for the sake of accurately approximating the
PDE solution. Here, to ease the notation, we only consider the case in which the model output coincides
with the FOM state (y ≡ z), that is the observation operator is the identity function. The case when the
operator differs from the identity is a straightforward generalization of the one considered here.

Projection-based ROMs are intrusive, as they require manipulation of the discretization of FOM. Their
construction first involves dimensionality reduction techniques applied to pre-computed samples of the dis-
cretized FOM state:

Z(t) = A(z(·, t)) ∈ RNh ,

collected by numerically approximating the space-discrete counterpart of the FOM, for different samples of
the input u(t) in the training set:

d

dt
Z(t) = F(Z(t),u(t)) for t ∈ (0, T ]

Z(t) = Z0 := A(z0),
(1)

where F is a suitable discretization of the differential operator F . Solution snapshots are stored into a matrix

Z = {A(zi(·, τ))}τ∈T i

i∈Strain
∈ RNh×Nsnapshots

from which ds ≪ Nh basis functions ϕk, k = 1, . . . , ds are extracted by proper orthogonal decomposition
(POD), or other linear dimensionality reduction techniques, like reduced-basis greedy algorithm [12, 18].
This allows expressing the discretized state compactly as

Z(t) ≈ V s(t) =

ds∑
k=1

sk(t)ϕk, (2)

where V = [ϕ1| . . . |ϕds
] is the transformation matrix, collecting the basis functions in its columns, and

s(t) = [s1(t), . . . , sds(t)]
T is the reduced state, a vector made of the coefficients sk associated with each basis

function. In this context, the solution manifold associated with the latent space is thus the column space of
the matrix V .

Given a test manifold spanned by ds basis functions {ψk}
ds

k=1 (collected into a matrix W = [ψ1| . . . |ψds
]),

the projection of the dynamical system (1) generates a system of ds equations for the reduced state of the
form: 

d

dt
s(t) = WTF(V s(t),u(t)) for t ∈ (0, T ]

s(0) = s0 := V TZ0,
(3)

In this formulation, computational efficiency hinges on the form of the discretized operator F. In the linear
and affine cases, the dependence on the solution can be separated from the operator, generating a set or

2



pre-computable terms that ensure computational efficiency in the resolution. In the case nonlinearities are
present in the model, instead, F requires the reduced state to be projected back onto the state space for
its evaluation, before being projected onto the low-dimensional dynamics of (3). This double projection
makes the computational costs of (3) comparable to the ones of (1). Hyper-reduction techniques based on
interpolation and linear dimensionality reduction techniques provide a computationally efficient alternative
for evaluating nonlinearities [7, 12, 18]. In our test case, we first separate the nonlinear part from the linear
one:

F(s(t),u(t)) = Fnl(s(t),u(t)) + Fl(s(t),u(t)),

and we then rely on the discrete version of the empirical interpolation method (DEIM), which employs
an interpolation-based projection of the nonlinearity onto the span of sparsely sampled basis functions,
precomputed with POD [7]. Specifically, the non-linear term Fnl is approximated by

Fnl(s(t),u(t)) ≈ U(PTU)−1PTFnl(s(t),u(t)),

being U the transformation matrix, collecting POD basis functions of the nonlinear term, and P a sparse
matrix that samples Fnl on a subset of interpolation indices. In the following, we will denote this model-order
reduction method as POD-DEIM method.

The success and greatest limitation of projection-based ROM lies in being intrusively linked to high-
fidelity discretization via a linear subspace. This, on the one hand, ensures the ROM consistency, with a
reduced state directly mappable to the system state thanks to (2), and convergence to the FOM as the
dimensionality of the reduced manifold increases. On the other hand, if the solution of the parametric
problem entails large variability, as in the case of advection-dominated problems, the accuracy-efficiency
balance is compromised by the curse of dimensionality.

2.2 Methods based on auto-encoders

For the reasons above, many researchers have shifted to the development of reduced-order models based on
non-linear dimensionality reduction techniques, such as NN-based auto-encoders [6, 10, 14–16, 20]. In this
framework, to reduce the dimensionality of the discretized output field Y, we train an auto-encoder, with
latent code dimension ds, by considering the following minimization problem:

(w∗
enc,w

∗
dec) = argmin

wenc,wdec

∑
i∈Strain

∑
τ∈T i

∥NN dec(NN enc(Yi(τ);wenc);wdec)−Yi(τ)∥2Y

+ αencR(wenc) + αdecR(wdec)

where NN enc and NN dec (with trainable parameters wenc and wdec, respectively) are the encoder and the
decoder, respectively. For normalization purposes, to evaluate distances in the discrete space we employ the
rescaled euclidean norm ∥ · ∥2Y := ∥ · ∥2/(Nnodes y

2
norm).

Once the auto-encoder is trained, i.e. the parameters w∗
enc and w∗

dec are available, we compute the latent
codes associated with each training sample i ∈ Strain and each observation time τ ∈ T i, that we denote as

ŝi(τ) = NN enc(Yi(τ);w
∗
enc) ∈ Rds .

At this stage, we train a second model (denoted by RNN dyn, with trainable parameters wdyn) to predict
the dynamics of the latent codes ŝi(t) as a function of the inputs {ui(τ)}τ∈S i :

w∗
dyn = argmin

wdyn

∑
i∈Strain

∑
t∈T i

∥RNN dyn({ui(τ)}τ∈S i , t;wdyn)− ŝi(t)∥2 + αdynR(wdyn)

In this work, we consider two different architectures for RNN dyn, namely an ODE-Net [8] and an LSTM
[13]. In both cases, we employ normalization layers as described in the main text.

Once both the auto-encoder NN dec ◦ NN enc and the dynamics network RNN dyn have been trained, the
predictions on the test set are obtained as follows, for i ∈ Stest and t ∈ T i:

Ỹi(t) = NN dec(RNN dyn({ui(τ)}τ∈S i , t;w∗
dyn);w

∗
dec),

3



and
ỹi(·, t) = A′(NN dec(RNN dyn({ui(τ)}τ∈S i , t;w∗

dyn);w
∗
dec)).

In what follows, we denote this method as AE/ODE and AE/LSTM, depending on the architecture employed
for RNN dyn.

We remark that the encoder NN enc is only instrumental to recover labeled data ŝi(τ) needed to train
RNN dyn and it is not used to predict the output during the testing phase. In other words, only RNN dyn

and NN dec are retained in the testing phase. The latter observation suggests a third training stage in which,
starting from the pre-trained values (w∗

dyn,w
∗
dec), we further train the RNN dyn and NN dec in a simultaneous

manner, that is in an end-to-end (e2e) way:

(w∗∗
dyn,w

∗∗
dec) = argmin

wdyn,wdec

∑
i∈Strain

∑
t∈T i

∥NN dec(RNN dyn({ui(τ)}τ∈S i , t;wdyn);wdec)−Yi(t)∥2Y

+ αdynR(wdyn) + αdecR(wdec)

To denote the models obtained after this third training stage, we will employ the abbreviation AE/ODE-e2e
and AE/LSTM-e2e.

2.3 Predicting the evolution without latent dynamics

In Test Case 1c, we compare the results obtained with LDNets with a model consisting of an ODE-Net fed
by the query point and by the input signal, that is thus denoted by (x,u(t))-ODE-Net. This consists in
solving the following system of ODEs for each query point x:

∂ỹ(x, t)

∂t
= NN dyn(ỹ(x, t),u(t),x;wdyn) in (0, T ]

ỹ(x, 0) = y(x, 0).
(4)

The results of the comparison are reported in the main text.

3 Results

3.1 Test Case 1: Advection-Diffusion-Reaction equation

In this test case, data are generated through numerical approximation of the PDE model

∂z(x, t)

∂t
− µ1

∂2z(x, t)

∂x2
− µ2

∂z(x, t)

∂x
+ µ3z(x, t) = f(x, t) x ∈ (−1, 1), t ∈ (0, T ],

z(−1, t) = z(1, t) t ∈ (0, T ],

z(x, 0) = z0(x) x ∈ (−1, 1).

(5)

with f(x, t) = A(t) cos(2πF (t)x− P (t)), that is a sine wave with amplitude A(t), frequency F (t) and phase
P (t). The numerical solver employed to generate training and testing data is described in the main text.

We consider three different cases (Test Case 1a, 1b, 1c), according to whether or not the three parameters
(µ1, µ2 and µ3) and the three time-dependent signals (A(t), F (t) and P (t)) are considered as fixed or as
inputs of the model. In all the test cases, we define ynorm as the difference between maximum and minimum
value taken by the output on the whole training set. In all the cases presented below, unless otherwise stated,
we set ∆t = 5 · 10−2.

3.1.1 Sampling of inputs

In order to generate training and testing data, we need to sample the space of inputs. This calls for a
probability distribution on the latter space. For the parameters (µ1, µ2 and µ3), we take for simplicity a
uniform distribution on a suitable hypercube. For the time-dependent signals (A(t), F (t) and P (t)), instead,

4



probability distributions on function spaces are needed. For A(t) and P (t), we consider a Gaussian Process
distribution [19] with mean µ and with the following covariance kernel

K(t1, t2) = σ2 exp

[
− (t1 − t2)

2

2τ2

]
,

characterized by standard deviation σ and characteristic time-scale τ . For what concerns F (t) instead, in
order to let it vary within a bounded set (fmin, fmax), we define it as

F (t) =
1

2

[
fmin + fmax + (fmax − fmin) tanh

(
3

5
γ(t)

)]
,

with γ(t) sampled from a Gaussian Process with mean µ = 0, standard deviation σ = 1 and prescribed
characteristic time-scale τ . The values of µ, σ and τ are indicated below for each test case.

3.1.2 Test Case 1a: finite latent dimension, constant parameters

We consider the case z0(x) = cos(πx) and f ≡ 0. The inputs are the constant parameters u(t) ≡ (µ1, µ2, µ3).
To generate training and testing data, we employ a Monte Carlo sampling of the hypercube defined by the
bounds (µ1, µ2, µ3) ∈ [0, 0.05] × [−0.1, 0.1] × [0, 0.01]. We consider 100 training samples and 500 testing
samples. We select the hyperparameters according to the algorithm presented in the main text. The ranges
of hyperparameter values used in the tuning algorithm are reported in Tab. 1, in the row tuning. The selected
values are instead reported in the row final.

In Tab. 2 we report the training and testing accuracy metrics obtained by training an LDNet with ds = 2
latent variables. In the table we show the accuracy achieved after 500, 5000 or 50000 epochs of BFGS (in
all the cases, we first run 200 epochs of Adam).

3.1.3 Test Case 1b: finite latent dimension, time-dependent inputs

We now consider the case when inputs are time-dependent. We thus fix the values of the parameters to
µ1 = 0.05, µ2 = 0 and µ3 = 0.002, and we consider the time-dependent forcing term f(x, t) defined above.
In order to keep the intrinsic latent dimension equal to 2, we consider a constant frequency (specifically,
F (t) ≡ 0.5). Instead, we let the amplitude A(t) and the phase P (t) vary in time, as described in Sec. 3.1.1.
Specifically, for A(t) we set µ = 2/5, σ = 2/15 and τ = 1, while for P (t) we set µ = 0, σ = 4/3 and τ = 1.

First, we consider 100 training samples and we set ∆t = 0.05. We tune the hyperparameters starting
from the ranges indicated in Tab. 1, and we select the optimal values reported in the same table. The
LDNets predictions ỹ for some test samples are displayed against reference outputs y in Fig. 1.

Now, we perform two tests. First, by keeping ∆t = 0.05, we vary the number of training samples in the
set {25, 50, 100, 200, 400}. Then, we let ∆t vary in the set {0.2, 0.1, 0.05, 0.02}, by keeping the number of
training samples equal to 100. In both the cases, we do not vary the hyperparameters reported in Tab. 1.
The results of these two tests are reported in the main text.

Test Case 1b provides an ideal testbed to assess the capabilities of LDNets in discovering a compact
representation of the FOM state. The state of (5) indeed evolves on a two-dimensional manifold, being the
state fully characterized, at any time t, by two scalars. In other terms, provided that the forcing term is
defined as in Test Case 1b, the model (5) has an intrinsic latent dimension equal to 2. At any time t, in
fact, z(·, t) is a sine wave with frequency 0.5. Among the infinitely many equivalent parametrization, one is
given by the Fourier transform of z(·, t) at frequency 0.5, that is determined by its real and imaginary part,
respectively denoted by Re(ẑ(0.5)) and Im(ẑ(0.5)).

Our results show that, during the training process of an LDNet, the algorithm discovers a compact
representation of the solution field z(·, t), represented by the two latent variables s1(t) and s2(t). We now
investigate whether there is a relationship between the pairs (s1, s2) and (Re(ẑ(0.5)), Im(ẑ(0.5))). With
this goal, we train four different LDNets, starting from a different random initializations of the trainable
parameters. Then, we evaluate the trained LDNets on 24 test samples, and we collect the trajectories
in the latent space (s1, s2). Finally, we plot these trajectories by displaying each point with a color that
depends on the corresponding value of Re(ẑ(0.5)) computed from the reference solution, and we repeat the
same procedure by considering the values of Im(ẑ(0.5)). The results are shown in Fig. 2. We notice that

5



T
e
st

c
a
se
s

H
y
p
e
rp

a
ra

m
e
te
rs

T
ra

in
a
b
le

p
a
ra

m
e
te
rs

N
N

d
y
n

N
N

re
c

∆
t r
e
f

α
d
y
n
,
α
re
c

N
N

d
y
n

N
N

re
c

la
ye
rs

n
eu
ro
n
s

la
y
er
s

n
eu
ro
n
s

#
p
a
ra
m
.

#
p
a
ra
m
.

T
e
st

C
a
se

1
a

tu
n
in
g

2
3
–
3
0

2
3
–
1
5

[1
0
−
1
,1
0
1
]

0
fi
n
al

2
9

2
1
1

0
.5

0
1
6
4

1
8
8

T
e
st

C
a
se

1
b

tu
n
in
g

2
3
–
3
0

2
3
–
1
5

[1
0
−
1
,1
0
1
]

[1
0
−
6
,1
0
−
1
]

fi
n
al

2
10

2
7

2
.3

1
0−

5
1
8
2

9
2

T
e
st

C
a
se

1
c

tu
n
in
g

1
–
3

4
–
6
0

1
,2

4
–
6
0

[1
0−

1
,1
0
1
]

[1
0
−
7
,1
0
−
1
]

fi
n
e
tu
n
in
g

2
tw

ic
e
N
N

re
c

2
4
–
3
0

8
[1
·1
0
−
7
,2

·1
0
−
3
]

f m
a
x

d
s

0.
5

2
2

10
2

5
8

1
.9
5
·1
0
−
3

1
9
2

5
6

0.
5

3
2

16
2

8
8

2
.1
0
·1
0
−
4

4
3
5

1
2
1

0.
5

5
2

26
2

1
3

8
2
.0
0
·1
0
−
6

1
0
7
1

2
8
7

0.
5

7
2

40
2

2
0

8
1
.1
4
·1
0
−
7

2
3
6
7

6
2
1

1
2

2
12

2
6

8
1
.0
5
·1
0
−
3

2
5
4

7
3

1
3

2
14

2
7

8
4
.2
0
·1
0
−
4

3
5
3

9
9

1
5

2
28

2
1
4

8
1
.0
8
·1
0
−
6

1
2
0
9

3
2
3

1
7

2
52

2
2
6

8
1
.6
1
·1
0
−
7

3
6
9
9

9
6
3

2
2

2
14

2
7

8
6
.6
0
·1
0
−
4

3
2
4

9
2

2
3

2
16

2
8

8
3
.9
0
·1
0
−
4

4
3
5

1
2
1

2
5

2
26

2
1
3

8
1
.2
3
·1
0
−
6

1
0
7
1

2
8
7

2
7

2
38

2
1
9

8
1
.5
8
·1
0
−
6

2
1
7
3

5
7
1

S
u
p
p
le
m
e
n
ta

ry
T
a
b
le

1
.
T
es
t
C
as
e
1:

h
y
p
er
p
a
ra
m
et
er
s
ra
n
g
es

a
n
d
se
le
ct
ed

va
lu
es
.
W
e
re
m
a
rk

th
a
t,

in
th
e
fi
n
e
tu
n
in
g
st
a
g
e
o
f
te
st

C
a
se

1
c,

w
e

se
le
ct

tw
ic
e
as

m
an

y
n
eu
ro
n
s
fo
r
N
N

d
y
n
as

fo
r
N
N

re
c
,
in

o
rd
er

to
re
d
u
ce

th
e
n
u
m
b
er

o
f
in
d
ep

en
d
en
t
h
y
p
er
p
a
ra
m
et
er
s.

S
ee

te
x
t
fo
r
d
et
a
il
s.

6



BFGS epochs 500 5000 50000

Training time 8m 5s 1h 5m 10h 8m
NRMSEtrain 1.02 · 10−3 7.08 · 10−5 1.81 · 10−5

NRMSEtest 1.19 · 10−3 7.23 · 10−5 1.88 · 10−5

1− ρtrain 9.42 · 10−6 4.58 · 10−8 3.00 · 10−9

1− ρtest 1.33 · 10−5 4.87 · 10−8 3.30 · 10−9

Supplementary Table 2. Test Case 1a: training and test accuracy metrics for LDNets trained with an
increasing number of BFGS training epochs (500, 5000 and 50000). Training time refer to a single-CPU
standard laptop.

Supplementary Figure 1. Test Case 1b. 100 testing samples, comparing the reference outputs y (left)
with the LDNet predictions ỹ (right). For each sample, the horizontal axis refers to space, and the vertical
axis refers to time.

7



−40

−20

0

20

R
e(
ẑ
(1
/
2
))

−40

−20

0

20

40

I
m

(ẑ
(1
/
2
))

Supplementary Figure 2. Test Case 1b. Trajectories in the latent space (s1, s2) of 24 testing samples
obtained with four different LDNets, by starting from as many different initial guesses for the trainable pa-
rameters (each of them corresponding to different columns). In the first (respectively, second) row, each point
in the latent space is colored according to the corresponding value of Re(ẑ(0.5)) (respectively, Im(ẑ(0.5))).

trajectories significantly differ among the four LDNets. This is not surprising, as latent states are internal
variables in the LDNet, hidden within the input-output relationship. Nonetheless, a common pattern emerges
in the connection between the latent states and the Fourier coefficients: each of the four trained LDNets
underlies a well-defined relation between (s1, s2) and (Re(ẑ(0.5)), Im(ẑ(0.5))). As a matter of fact, each
LDNet discovers a different compact encoding for the FOM state, each of which underlying a relationship
with the Fourier coefficients of the solution. In other terms, despite not being explicitly instructed to do
that, the LDNet discovers an operator that is equivalent to the Fourier transform of the state. At the same
time, the reconstruction NN (NN rec) discovers the inverse operator, as it is able to reconstruct the function
z(·, t) from the two scalars (s1, s2). Remarkably, this is obtained in a fully data-driven manner, without
explicitly using any prior Fourier-based feature extraction.

3.1.4 Test Case 1c: infinite latent dimension

As a final step of Test Case 1, we consider the case when the frequency of the forcing term f(x, t) varies in
time as well (see Sec. 3.1.1). Specifically, to sample F (t) we set τ = 1, fmin = 0.25 and fmax as indicated
below; for A(t) we set µ = 1, σ = 1/3 and τ = 1; for P (t) we set µ = 0, σ = 4/3 and τ = 1.

In this test case, we are interested in studying the impact of the number of latent states ds on the
LDNet accuracy, in three increasingly challenging cases, namely by setting fmax = 0.5, fmax = 1 and
fmax = 2 (see Fig. 3). In all the cases, we consider ds ∈ {2, 3, 4, 5}. For each combination of fmax and
ds, we retune the hyperparameters, in order to compare the (in principle) best accuracy attainable. With
this purpose, we first run a preliminary hyperparameter tuning step, by considering a wide range of values
(see Tab. 1, row tuning). Then, we shrink the variability by selecting the most (generally with respect to
different combinations) promising area of the hyperparameter space, and we perform a fine tuning for each
combination of fmax and ds independently (row fine tuning). The selected hyperparameters are listed in
Tab. 1 and the results of this comparison are reported and commented in the main text.

8



Supplementary Figure 3. Test Case 1c. 80 testing samples for each fmax value considered in this work
(namely 0.5, 1 and 2), comparing the reference outputs y (left) with the LDNet predictions ỹ (right), for
ds = 5. For each sample, the horizontal axis refers to space, and the vertical axis refers to time.

9



3.2 Test Case 2: Unsteady Navier-Stokes

In this test case, data are generated through the PDE model

ρ
∂v

∂t
+ ρ (v · ∇)v − µ∆v +∇p = 0 x ∈ Ω, t ∈ (0, T ],

∇ · v = 0 x ∈ Ω, t ∈ (0, T ],

v = u(t)e1 x ∈ Γtop, t ∈ (0, T ],

v = 0 x ∈ ∂Ω \ Γtop, t ∈ (0, T ],

v = 0 x ∈ Ω, t = 0,

(6)

that is the Navier-Stokes equations, where v represents the velocity field while p defines the pressure field.
We consider a variation of the 2D lid-driven cavity benchmark in which the velocity prescribed on the top
portion of the boundary (Γtop) is a time-dependent input u(t). In particular, as reported in Sec. 3.1.1, we
consider a Gaussian Process Distribution with mean µ = 0, standard deviation σ = 5 and characteristic
time-scale τ = 5.

The numerical solver employed to generate training, validation and testing data is described in the main
text. The training and validation datasets consist of 80 simulations with T = 20, where 200 points are
uniformly sampled in Ω = (0, 1)2. Regarding the testing data, we run 200 simulations with T = 40, a time
span that is twice as long as the one of the training set, and we uniformly take 400 points in space from
the domain Ω = (0, 1)2. We consider a semi-implicit time discretization with ∆t = 2 · 10−1. We employ
Taylor-Hood elements in the FEM solver, i.e. P2 Finite Elements for v and P1 Finite Elements for p.

We fix the number of latent states to 1, 5 and 10 respectively and we perform hyperparameter tuning by
monitoring the following goal-oriented loss function:

E(v, v̂) = ∥v − v̂∥2

v2norm
+ γ

∥∥∥∥ v

ϵ+ ∥v∥
− v̂

ϵ+ ∥v̂∥

∥∥∥∥2 . (7)

Specifically, we pick γ = 1·10−1 and ϵ = 1·10−4. Due to the presence of long tails in the velocity distribution,
in this test case we employ the compressing layer in NN dec (see Methods).

We define in Tab. 3 the initial ranges and final values of the hyperparameters for different numbers of
latent states (1, 5 and 10).

We report in Tab. 4 the NRMSE and Pearson dissimilarity values on the test set for ds = 1, ds = 5
and ds = 10. We notice that the size of both NN dyn and NN rec architectures increases while the test
error of the LDNets decreases with respect to the number of latent states. Similarly to Test Case 1, as the
number of latent states increases the LDNets are more and more efficient in discovering an effective compact
representation of the system state and thus providing reliable predictions. Still, small NRMSEs are attained
even with a small number of latent states.

We test the trained LDNets also in a time-extrapolation regime, that is for t ∈ (20, 40], when the training
samples are generated for t ∈ [0, 20]. As reported in Tab. 4, the test errors obtained in extrapolation are
not significantly different than the ones obtained in the same time horizon seen during training. This is
a remarkable achievement, considering that the dynamical system at hand does not present a periodic or
quasi-periodic regime.

For the sake of completeness, we depict in Fig. 4 the time evolution of the streamlines associated with
a specific sample belonging to the test set, along with the corresponding input signal u(t). We see that the
approximation provided by LDNets with 10 latent variables has an excellent agreement with the FOM.

Moreover, we report in Fig. 5 the time evolution of the latent variables in 6 different test samples belonging
to the test set. It is interesting to observe that, in the case ds = 1, the unique latent variable has similar
trajectories to the input u(t), even if with some delay, thus capturing the dynamics of the main vortices.
When additional latent variables are introduced, we observe trajectories with different shapes, which allows
to capture the dynamics of smaller structures in the fluid velocity field, as testified by the reduced errors of
Tab. 4.

10



T
e
st

c
a
se
s

H
y
p
e
rp

a
ra

m
e
te
rs

T
ra

in
a
b
le

p
a
ra

m
e
te
rs

N
N

d
y
n

N
N

re
c

∆
t r
e
f

α
d
y
n
,
α
re
c

N
N

d
y
n

N
N

re
c

la
ye
rs

n
eu
ro
n
s

la
ye
rs

n
eu
ro
n
s

#
p
a
ra
m
.

#
p
a
ra
m
.

T
e
st

C
a
se

d
s
=

1
tu
n
in
g

1
–
6

5
–
3
5

1
–
6

5
–
3
5

[1
0−

1
,1
0
1
]

0
fi
n
al

2
7

4
2
4

5
.4

0
8
5

1
’9
7
0

T
e
st

C
a
se

d
s
=

5
tu
n
in
g

1
–
6

5
–
3
5

1
–
6

5
–
3
5

[1
0−

1
,1
0
1
]

0
fi
n
al

2
2
7

4
3
3

8
.6

0
1
’0
8
5

3
’7
3
1

T
e
st

C
a
se

d
s
=

10
tu
n
in
g

1
–
6

5
–
3
5

1
–
6

5
–
3
5

[1
0−

1
,1
0
1
]

0
fi
n
al

3
1
9

5
2
8

9
.2

0
1
’1
8
8

3
’6
9
8

S
u
p
p
le
m
e
n
ta

ry
T
a
b
le

3
.
T
es
t
C
a
se

2
:
h
y
p
er
p
a
ra
m
et
er
s
ra
n
g
es

a
n
d
se
le
ct
ed

va
lu
es
.
S
ee

te
x
t
fo
r
d
et
a
il
s.

11



Number of latent states 1 5 10

NRMSEtest (0 < t < 40) 4.08 · 10−3 1.94 · 10−3 1.39 · 10−3

NRMSEtest (0 < t < 20) 4.10 · 10−3 1.93 · 10−3 1.34 · 10−3

NRMSEtest (20 < t < 40) 4.07 · 10−3 1.95 · 10−3 1.44 · 10−3

1− ρtest (0 < t < 40) 5.14 · 10−3 1.16 · 10−3 6.01 · 10−4

1− ρtest (0 < t < 20) 5.48 · 10−3 1.23 · 10−3 6.00 · 10−4

1− ρtest (20 < t < 40) 4.81 · 10−3 1.11 · 10−3 6.02 · 10−4

Supplementary Table 4. Test Case 2: test accuracy metrics for LDNets trained with an increasing
number of latent states (1, 5 and 10).

a

b

0

1

2

3

0

2

4

6

0

2

4

6

0

2

4

0.0

0.5

1.0

1.5

0

2

4

0

1

2

3

0

1

2

0.0

0.1

0.2

0.3

0 5 10 15 20 25 30 35 40

t

−6

−4

−2

0

2

4

u
(t

)

Input signal over time

Supplementary Figure 4. Test Case 2. (a): Streamlines of the velocity field v for one testing sample over
time (t ∈ [0, 40]). Horizontal and vertical axis refer to space in the domain Ω = (0, 1)2. For each subplot,
the left one represents the FOM while the right one represents the LDNet approximation for ds = 10. (b):
Input signal u(t) over time applied to the top portion of the boundary Γtop.

12



−30

−20

−10

0

10

20

u
(t

)
−0.6

−0.4

−0.2

0.0

0.2

0.4

s(
t)

ds = 1

−10

0

10

20

u
(t

)

−0.2

0.0

0.2

0.4

s(
t)

ds = 5

−10

−5

0

5

10

u
(t

)

−0.2

−0.1

0.0

0.1

0.2

0.3

s(
t)

ds = 10

−30

−20

−10

0

u
(t

)

−0.6

−0.4

−0.2

0.0

s(
t)

−20

−10

0

10

20

u
(t

)

−0.4

−0.2

0.0

0.2

0.4
s(
t)

−10

−5

0

5

10

15

u
(t

)

−0.2

0.0

0.2

s(
t)

−20

−10

0

10

20

u
(t

)

−0.4

−0.2

0.0

0.2

0.4

s(
t)

−10

0

10

u
(t

)

−0.2

0.0

0.2

s(
t)

−10

−5

0

5

10

u
(t

)

−0.2

−0.1

0.0

0.1

0.2

s(
t)

−20

0

20

u
(t

)

−0.50

−0.25

0.00

0.25

0.50

0.75

s(
t)

−20

−10

0

10

20

u
(t

)

−0.50

−0.25

0.00

0.25

0.50

s(
t)

−10

0

10

u
(t

)

−0.2

0.0

0.2

s(
t)

−20

0

20

u
(t

)

−0.75

−0.50

−0.25

0.00

0.25

0.50

s(
t)

−20

−10

0

10

20

u
(t

)

−0.4

−0.2

0.0

0.2

0.4

s(
t)

−10

−5

0

5

10

15

u
(t

)

−0.2

0.0

0.2

s(
t)

−30

−20

−10

0

u
(t

)

0 20 40

t

−0.6

−0.4

−0.2

0.0

s(
t)

−20

−10

0

10

20

u
(t

)

0 20 40

t

−0.4

−0.2

0.0

0.2

0.4

s(
t)

−10

−5

0

5

10

15

u
(t

)

0 20 40

t

−0.2

0.0

0.2

s(
t)

Supplementary Figure 5. Test Case 2. Evolution of the latent variables in 6 different samples belonging
to the test set (one for each row), for the three trained models – with 1, 5 and 10 latent variables respectively
– considered in this test case (one model for each column). In each plot we display in colored thin lines the
latent variables s(t) (ticks on left axis), and in black thick line the associated input u(t) (ticks on right axis).

13



Hyperparameters
ds NN enc, NN dec NN dyn ∆tref αenc, αdec αdyn

layers neurons layers neurons

AE/ODE
tuning 4 – 12 1 – 4 4 – 80 1 – 10 4 – 40 [101, 103] [10−5, 10−2] [10−5, 10−1]
final 12 1 75 4 38 1.80 · 101 6.89 · 10−3 2.80 · 10−2

AE/LSTM
tuning 4 – 12 1 – 4 4 – 80 [10−5, 10−2] [10−5, 100]
final 12 1 75 6.89 · 10−3 4.81 · 10−1

Supplementary Table 5. Test Case 3: hyperparameters ranges and selected values for the AE/ODE and
AE/LSTM models. For the encoder (respectively, the decoder) the number of neurons refers to the first
(respectively, last) hidden layer. In the other layers, the number of neurons is linearly varied to connect the
first (respectively, last) hidden layer to the layer of latent variables.

3.3 Test Case 3: 1D electrophysiology model

We consider the Monodomain model coupled with the Aliev-Panfilov ionic model [1]:

∂z

∂t
−D

∂2z

∂x2
= Kz(1− z)(z − α)− zw + Istim x ∈ (0, L), t ∈ (0, T ],

∂w

∂t
=

(
γ +

µ1w

µ2 + z

)
(−w −Kz(z − b− 1)) x ∈ (0, L), t ∈ (0, T ],

∂z(0, t)

∂x
=

∂z(L, t)

∂x
= 0 t ∈ (0, T ],

z(x, 0) = w(x, 0) = 0, x ∈ (0, L).

(8)

with parameters D = 0.1mm2 ms−1, K = 8, α = 0.1, γ = 0.02, µ1 = 0.2, µ2 = 0.3, b = 0.15, L = 100mm,
T = 500ms. Note that z is a non-dimensional potential (which can be mapped to its physiological values
by the relationship (100z− 80)mV) and the model is rescaled with respect to the time constant τ = 12.9ms
(for further details, see [11]).

We consider two stimulation points, namely xstim
1 = L/4 and xstim

2 = 3L/4. The input of the model is
given by u(t) = (Istim(x

stim
1 , t), Istim(x

stim
2 , t)). To generate the training samples, we randomly trigger the

applied stimuli, either in correspondence of xstim
1 , xstim

2 or both points, by randomly picking the stimulation
times. We consider 100 training samples and 100 testing samples. In this test case, we aim to predict the
evolution of the scalar field z(x, t). For the approximation of the AP model, we employ the finite difference
method both in space and time, on a regular grid with 800 points in space and 105 time steps. Then, we
subsample the space-time grid by retaining 100 points in space and 500 time instants.

We compare the results obtained with several methods by employing the same training and testing data.
Specifically, we consider the POD-DEIM method, auto-encoder-based methods (AE/ODE, AE/ODE-e2e,
AE/LSTM, AE/LSTM-e2e) and LDNets. In order to ensure a fair comparison, for all the methods that
require a choice of hyperparameters we use an algorithm for their automatic tuning, as described in the main
text. The ranges used for tuning and the final hyperparameter values are reported in Tab. 5 and 6. In this
test case, we employ the technique described in the main text to impose in a strong manner the equilibrium
condition of the initial state when u(t) = 0. To achieve a significant dimensionality reduction, we set a
maximum number of 12 latent variables both for auto-encoder-based methods and for LDNets. We notice
that the hyperparameter tuning algorithm selects the maximum number of latent states (i.e. ds = 12) for all
the methods. For the POD-DEIM method, we test different number ds of POD modes (i.e., basis functions)
for the state and the nonlinear term, ranging from 12 to 60.

We observe that the results obtained with the POD-DEIM method using 12 modes are unsatisfactory,
compared to the other methods, confirming the importance of adopting nonlinear dimensional reduction
techniques for this class of traveling-front problems. Then, we consider higher number of modes, namely 24,

14



Hyperparameters
ds NN dyn NN rec ∆tref αdyn, αrec

layers neurons layers neurons

LDNet
tuning 4 – 12 1 – 3 4 – 15 1 – 5 4 – 20 [101, 103] [10−5, 10−2]
final 12 1 8 5 17 2.05 · 102 4.70 · 10−3

Supplementary Table 6. Test Case 3: hyperparameters ranges and selected values for the LDNet.

36, 48 and 60. We report in Fig. 6 and Fig. 7 the results. By increasing the number of considered modes, the
accuracy increases. With 60 modes, e.g., the POD-DEIM method is more accurate than auto-encoder-based
methods with 12 latent variables, while LDNets with 12 latent variables are still more accurate.

We observe that, in this test case, the latent variables of the LDNet diverge as time goes by, as the
system under consideration is also characterized by divergent dynamics, associated with waves propagating
from their sources, with no return to the resting state. In constrast, in Test Case 2, wherein we consider
time horizons long enough to contain the reversal in the flow directions, we observe latent variables that
often return close to the origin (see Fig. 5).

3.4 Test Case 4: 2D electrophysiology model with reentrant activity

We consider a two-dimensional isotropic Monodomain equation coupled with the Aliev-Panfilov ionic model
[1, 9]:

∂z

∂t
−∇ · (D∇z) = Kz(1− z)(z − α)− zw + Istim x ∈ Ω, t ∈ (0, T ],

∂w

∂t
=

(
γ +

µ1w

µ2 + z

)
(−w −Kz(z − b− 1)) x ∈ Ω, t ∈ (0, T ],

∇z(x, t) · n(x) = 0 x ∈ ∂Ω, t ∈ (0, T ],

z(x, 0) = w(x, 0) = 0, x ∈ Ω.

(9)

in a square domain Ω with 100mm long edges and parametersD = 0.2mm2 ms−1, K = 8, α = 0.05, γ = 0.01,
µ1 = 0.2, µ2 = 0.3, b = 0.15, T = 450ms. As done in the previous test case, the solution is non-dimensional
and the model is rescaled with respect to the time constant τ .

After a first rightward propagating wavefront, we consider a second circular stimulus

Istim(x, t; r, tapp) = Is(t; tapp)I∥x−xc∥<R,

applied at the center xc = (50mm, 50mm)T of the square domain with radius r, starting at tapp and
with duration 4ms. All simulations are initialized 450ms after the beginning of the first wavefront. The
training dataset is constructed by sampling the radius in [1, 10] mm and the second impulse starting times
tapp in [65, 87.5]ms. The input of the model is thus given by u(t) = (r, Is(t; tapp)). We consider 200
training/validation samples and 75 test samples, to verify the ability of the models to predict the evolution
of the scalar field z(x, t). For the numerical approximation of (9), we employ P1 finite element method
on a structured grid with element size h = 0.5mm and a semi-implicit time advancing scheme, based on
a subdivision of the time domain with a time step ∆t = 0.25ms. To generate the datasets, we subsample
the space-time grid by retaining 2694 points in space and 180 time instants. When training the LDNet we
randomly retain only 20 points for each time instant.

The ranges considered for tuning the hyperparameter and the corresponding selected values are reported
in Tabs. 7–8. The results are reported in the main text.

Supplementary References

[1] R. R. Aliev and A. V. Panfilov. “A simple two-variable model of cardiac excitation”. In: Chaos, Solitons
& Fractals 7.3 (1996), pp. 293–301.

15



0.0

0.5

1.0

so
lu

ti
o
n

b

10−3

10−2

10−1

100

a
b

so
lu

te
er

ro
r

c

0 100x

0.0

0.5

1.0

z
(x
,2

5
0
)

0 100x 0 100x 0 100x 0 100x 0 100x

d

0 100x

0.0

0.5

1.0

z
(x
,3

0
0
)

0 100x 0 100x 0 100x 0 100x 0 100x

e

0 100x

0.0

0.5

1.0

z
(x
,3

5
0
)

0 100x 0 100x 0 100x 0 100x 0 100x

Supplementary Figure 6. We compare the results obtained with the POD-DEIM method, for an in-
creasing number of considered modes (reported in the titles), against the results obtained with our proposed
method. The figure shows the predictions obtained for a sample belonging to the test dataset. The left-most
column reports the FOM solution of the AP model (the abscissa denotes time, the ordinate denotes space).
(a) the space-time solution; (b) the space-time error with respect to the FOM solution; (c)-(d)-(e) three
snapshots of the space-dependent output field at t = 250, 300 and 350, in which we compare the predicted
solution (red solid line) with the FOM solution (black dashed line). For an animated version of this figure,
see Supplementary Movies 20–31.

Hyperparameters
NN enc, NN dec NN dyn ∆tref αenc, αdec αdyn

layers neurons layers neurons

AE/ODE
tuning 1 – 4 50 – 250 1 – 3 5 – 24 [10−2, 101] [10−5, 10−1] [10−6, 10−1]
final 1 220 3 20 1.76 · 10−2 1.98 · 10−4 7.28 · 10−5

Supplementary Table 7. Test Case 4: hyperparameters ranges and selected values for the AE/ODEmodel.
For the encoder (respectively, the decoder) the number of neurons refers to the first (respectively, last) hidden
layer. In the other layers, the number of neurons is linearly varied to connect the first (respectively, last)
hidden layer to the layer of latent variables.

16



POD-DEIM
(ds = 12)

POD-DEIM
(ds = 24)

POD-DEIM
(ds = 36)

POD-DEIM
(ds = 48)

POD-DEIM
(ds = 60)

LDNet
(ds = 12)

10−2

10−1

NRMSE

train

test

Supplementary Figure 7. We compare the results obtained with the POD-DEIM method, for an increas-
ing number of considered modes, against the results obtained with our proposed method. Specifically, we
report boxplots of the distribution of the testing (blue) and training (light blue) errors obtained with each
method. The boxes show the quartiles while the whiskers extend to show the rest of the distribution. The
red diamonds represent the average error on each dataset.

Hyperparameters
NN dyn NN rec ∆tref αdyn, αrec

layers neurons layers neurons

LDNet
tuning 1 – 3 5 – 24 2 – 4 5 – 29 [10−2, 101] [10−6, 10−2]
final 1 24 4 25 1.63 · 10−1 1.30 · 10−3

Supplementary Table 8. Test Case 4: hyperparameters ranges and selected values for the LDNet.

17



[2] A. C. Antoulas. Approximation of large-scale dynamical systems. Vol. 6. Siam, 2005.

[3] P. Benner, S. Grivet-Talocia, A. Quarteroni, G. Rozza, W. Schilders, and L. M. Silveira. Model Order
Reduction - Volume 2: Snapshot-Based Methods and Algorithms. Berlin, Boston: De Gruyter, 2021.

[4] P. Benner, S. Gugercin, and K. Willcox. “A survey of projection-based model reduction methods for
parametric dynamical systems”. In: SIAM Review 57.4 (2015), pp. 483–531.

[5] P. Benner, V. Mehrmann, and D. C. Sorensen. Dimension reduction of large-scale systems. Vol. 35.
Springer, 2005.

[6] S. L. Brunton, B. R. Noack, and P. Koumoutsakos. “Machine learning for fluid mechanics”. In: Annual
review of fluid mechanics 52 (2020), pp. 477–508.

[7] S. Chaturantabut and D. C. Sorensen. “Nonlinear model reduction via discrete empirical interpolation”.
In: SIAM Journal on Scientific Computing 32.5 (2010), pp. 2737–2764.

[8] R. T. Chen, Y. Rubanova, J. Bettencourt, and D. K. Duvenaud. “Neural ordinary differential equa-
tions”. In: Advances in neural information processing systems (NeurIPS 2018 Proceedings) 31 (2018).

[9] P. C. Franzone, L. F. Pavarino, and S. Scacchi. Mathematical cardiac electrophysiology. Vol. 13.
Springer, 2014.

[10] S. Fresca, L. Dede’, and A. Manzoni. “A comprehensive deep learning-based approach to reduced order
modeling of nonlinear time-dependent parametrized PDEs”. In: Journal of Scientific Computing 87.2
(2021), pp. 1–36.

[11] S. Göktepe and E. Kuhl. “Computational modeling of cardiac electrophysiology: a novel finite element
approach”. In: International journal for numerical methods in engineering 79.2 (2009), pp. 156–178.

[12] J. S. Hesthaven, C. Pagliantini, and G. Rozza. “Reduced basis methods for time-dependent problems”.
In: Acta Numerica 31 (2022), pp. 265–345.

[13] S. Hochreiter and J. Schmidhuber. “Long short-term memory”. In: Neural Computation 9.8 (1997),
pp. 1735–1780.

[14] K. Lee and K. T. Carlberg. “Model reduction of dynamical systems on nonlinear manifolds using deep
convolutional autoencoders”. In: Journal of Computational Physics 404 (2020), p. 108973.

[15] R. Maulik, B. Lusch, and P. Balaprakash. “Reduced-order modeling of advection-dominated systems
with recurrent neural networks and convolutional autoencoders”. In: Physics of Fluids 33.3 (2021),
p. 037106.

[16] V. Oommen, K. Shukla, S. Goswami, R. Dingreville, and G. E. Karniadakis. “Learning two-phase
microstructure evolution using neural operators and autoencoder architectures”. In: arXiv preprint
arXiv:2204.07230 (2022).

[17] C. Prud’Homme, D. V. Rovas, K. Veroy, L. Machiels, Y. Maday, A. T. Patera, and G. Turinici.
“Reliable real-time solution of parametrized partial differential equations: Reduced-basis output bound
methods”. In: Journal of Fluids Engineering 124.1 (2002), pp. 70–80.

[18] A. Quarteroni, A. Manzoni, and F. Negri. Reduced basis methods for partial differential equations: an
introduction. Vol. 92. Springer, 2015.

[19] C. E. Rasmussen. “Gaussian processes in machine learning”. In: Summer school on machine learning.
Springer. 2003, pp. 63–71.

[20] P. R. Vlachas, G. Arampatzis, C. Uhler, and P. Koumoutsakos. “Multiscale simulations of complex
systems by learning their effective dynamics”. In: Nature Machine Intelligence 4.4 (2022), pp. 359–366.

18


	Error metrics
	Alternative methods
	Projection-based reduced-order models
	Methods based on auto-encoders
	Predicting the evolution without latent dynamics

	Results
	Test Case 1: Advection-Diffusion-Reaction equation
	Sampling of inputs
	Test Case 1a: finite latent dimension, constant parameters
	Test Case 1b: finite latent dimension, time-dependent inputs
	Test Case 1c: infinite latent dimension

	Test Case 2: Unsteady Navier-Stokes
	Test Case 3: 1D electrophysiology model
	Test Case 4: 2D electrophysiology model with reentrant activity


