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REVIEWER COMMENTS 

Reviewer #1 (Remarks to the Author): 

The manuscript introduces a LD-net architecture, which is specifically designed to learn the spafial-

temporal solufions of PDEs governed by first-order dynamics. This network employs two FCNs, a dynamic 

net and a reconstrucfion network, which funcfion to map the input funcfion to latent variables and 

subsequently map these latent variables to the comprehensive solufion of the PDE. The proposed 

method's efficacy is then tested on the Advecfion-Diffusion-Reacfion equafion, Unsteady Navier-Stokes, 

and the Aliev-Panfilov electrophysiology model. 

I found the paper to be a compelling read, well-arficulated and furnished with clear and easy-to-follow 

mathemafical problem/method definifions. However, my principal concern pertains to the novelty of the 

work. The LD-net method, proposed by the paper, is essenfially the same to the Recurrent Neural 

Operator [1,2], that is developed for the study of homogenizafion problems. Although the contexts of 

applicafion differ considerably, the underlying structure and key conclusions appear to be fundamentally 

similar. 

This crifique does not intend to undermine the present work, given that its applicafion differs 

substanfially from the preceding studies, and it's intriguing to observe a similar structure's effecfive 

applicafion across diverse problems. Nevertheless, I believe it is essenfial for the authors to acknowledge 

the Recurrent Neural Operator, poinfing out similarifies and differences since this architecture is not 

novel to their work. 

There are also some minor issues I'd like to raise: 

It would be beneficial for the authors to consider moving porfions of the LD secfion currently in the 

appendix to the main text, as it contains vital informafion on how the LD-net is constructed and trained. 

Test cases 1 and 2 indicate that the test error decreases as the number of latent variables increases. It 

would be interesfing to know what happens when an excessive number of latent variables, say more 

than 5, are used. Will the error eventually converge to a constant, as is suggested by studies [1,2]? 



Studies [1,2] have also indicated that the latent dynamics that can be discovered from the data are 

constrained by the training dataset. Thus, crifical latent dynamics can be missed if the training data do 

not encompass this informafion. Does the same hold true for the PDEs examined here? 

In conclusion, I believe this paper has considerable potenfial. However, it requires a thorough review and 

subsequent refinement by the authors. Given my observafions, I recommend a major revision before 

further considerafion.

References: 

[1] Bhaftacharya, K., Liu, B., Stuart, A., & Trautner, M. (2023). Learning Markovian homogenized models 

in viscoelasficity. Mulfiscale Modeling & Simulafion, 21(2), 641-679. 

[2] Liu, B., Ocegueda, E., Trautner, M., Stuart, A. M., & Bhaftacharya, K. (2023). Learning macroscopic 

internal variables and history dependence from microscopic models. Journal of the Mechanics and 

Physics of Solids, 105329. 

Reviewer #2 (Remarks to the Author): 

The authors propose a network that ufilizes 1) a neural ODE to propagate reduced order latent

dynamics, and 2) a second network to map the low order dynamics to the high dimensional space. 

The approach is mesh-less, avoiding the use of autoencoders, as the grid-point to be evaluated 

is passed as an input to the network. As the proposed networks do not operate on the high 

dimensional space, they are faster compared to other alternafives in the literature.

The authors test their method on the advecfion diffusion reacfion equafion, where they demonstrate 

that LDNets can capture the dominant low-order Fourier modes, and improve its accuracy 

as the latent space is increased, in trivial test cases. LDNets are also benchmarked in the 2D 

lid-driven cavity flow, where the task is to predict the velocity field form the fime-varying forcing. 

Last but not least, the LDNets are benchmarked to other standard approaches (autoencoders, 



LSTMs, etc.) in the Aliev-Panfilov (AP) model, which is a PDE describing the propagafion of the

electrical potenfial in an excitable fissue, demonstrafing lower error.

The language of the paper is clear. The analysis is scienfifically sound. In general the claims /

conclusions of the paper are supported by the analysis. 

However, there are some methodological concerns. 

1 Comments 

• The novelty of the approach is the introducfion of a reduced order latent space in the neural ODE, as 

all other main features (mesh-less, Neural ODEs, external forcing dependent 

network) of the method can be found in various other works (PINNs, etc.). How does the 

method compare to just using a Neural ODE with inputs the external forcing and the grid 

point? Why does there have to be a latent space? The latent space is used by other methods for 

dimensionality reducfion. It does not seem to be needed in this architecture, as the

gridpoint is provided in the input. 

• In general the authors demonstrate that indeed LDNets can learn low order dynamics driven 

by an external forcing. However, the LDNets do not operate on the high dimensional space. 

While this characterisfic is viewed as a strength of the method, it appears unlikely that the

LDNets can adapt to scenarios where dynamics are driven by the inifial condifion or complex

spafial correlafions, rather than the forcing term, unless some modificafions are incorporated.

This is an important piffall of the proposed approach.

• The errors that the methods (LDNets, AE+LSTMs, etc.) demonstrate in included benchmark (Aliev-

Panfilov model) are very small, close to machine precision. From a machine 

learning standpoint, the task appears to be effecfively solved by all methods. I am not sure

about the relevance of demonstrafing that the proposed approach reaches errors closer to

machine precision compared to other works. 

• In Figure 5 for example, all models fairly low errors. The differences most likely stem from 

architectural choices, and hyper-parameter opfimizafion.

• In Figure 4, it seems that the LDNets learn a latent space qualitafively very different compared to all 

other approaches. The latent space seems to be diverging exponenfially. What

is the intuifion behind that? Is that a desirable characterisfic?
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• The latent dynamics are propagated through a neural ODE. These networks are notoriously 

hard to train, and many works aftempt to alleviate the associated problems [1, 2, 3, 4]. Did

the authors employ any mechanism to alleviate the training problems? 

• The authors do not provide results concerning the training fime, and inference fime (to

represent the whole spafial field in tesfing) and comparisons with other methods.

• Publishing the code and data would assist reproducibility and strengthen the claims of the 

paper. 

References 

[1] Xuanqing Liu, Tesi Xiao, Si Si, Qin Cao, Sanjiv Kumar, and Cho-Jui Hsieh. Neural sde: 

Stabilizing neural ode networks with stochasfic noise. arXiv preprint arXiv:1906.02355, 2019.
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[3] Marin Biloš, Johanna Sommer, Syama Sundar Rangapuram, Tim Januschowski, and Stephan 

Günnemann. Neural flows: Efficient alternafive to neural odes. Advances in neural informafion

processing systems, 34:21325–21337, 2021. 

[4] Arnab Ghosh, Harkirat Behl, Emilien Dupont, Philip Torr, and Vinay Namboodiri. Steer: 
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Answers to Reviewers

We have addressed all the issues raised by the Reviewers, who helped us to signifi-
cantly improve our work. We are confident that the manuscript now shows significantly
more clearly and convincingly the characteristics and capabilities of the proposed
method. We gratefully thank the Reviewers for their feedback on our manuscript and
for the stimuli provided to us.

Please, find below our detailed answers. Modifications to the paper with respect
to the original submission have been highlighted in blue color.

Thank you for your time and your consideration.

Best regards,

Francesco Regazzoni, Stefano Pagani, Matteo Salvador, Luca Dede’, Alfio Quarteroni

Reviewer ] 1

The manuscript introduces a LD-net architecture, which is specifically
designed to learn the spatial-temporal solutions of PDEs governed by first-
order dynamics. This network employs two FCNs, a dynamic net and a
reconstruction network, which function to map the input function to latent
variables and subsequently map these latent variables to the comprehensive
solution of the PDE. The proposed method’s efficacy is then tested on the
Advection-Diffusion-Reaction equation, Unsteady Navier-Stokes, and the
Aliev-Panfilov electrophysiology model.

I found the paper to be a compelling read, well-articulated and fur-
nished with clear and easy-to-follow mathematical problem/method def-
initions. However, my principal concern pertains to the novelty of the
work. The LD-net method, proposed by the paper, is essentially the same
to the Recurrent Neural Operator [1,2], that is developed for the study
of homogenization problems. Although the contexts of application differ
considerably, the underlying structure and key conclusions appear to be
fundamentally similar.

This critique does not intend to undermine the present work, given
that its application differs substantially from the preceding studies, and
it’s intriguing to observe a similar structure’s effective application across
diverse problems. Nevertheless, I believe it is essential for the authors to
acknowledge the Recurrent Neural Operator, pointing out similarities and
differences since this architecture is not novel to their work.
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We thank the Reviewer for bringing the Recurrent Neural Operator (RNO) to
our attention. RNO represents an approach of great interest, of which we were not
aware. We see that LDNets and RNO share some similarities, which mainly lie in
the presence of latent variables that evolve due to a neural network with a recurrent
structure. However, the two methods have fundamental differences, which we illustrate
in what follows.

In the RNO, the strain history at a given point is provided as input to the recurrent
NN, and the evolution of the latent state is provided as input to a second NN, which
provides the stress tensor at the point under consideration. The latent variables thus
represent memory locally in space. In LDNets, instead, we have a single set of latent
variables for the entire domain. The output of interest at a given point in space is
obtained through a second neural network, in which the spatial variable is an input
(the reconstruction neural network thus represents a field, and not, as in the RNO,
point-wise evaluation). Therefore, while the latent variables of the RNO act locally in
space, in LDNets they act globally. This is because the RNO represents a surrogate
for dynamics at the microscale, whereas LDNets surrogate the system as a whole.
This is reflected in important architectural differences: one of the key design choices
of LDNets, which differentiates them from common approaches in the literature, lies
in its meshless nature, which is not present in the RNO because of its local nature.
In conclusion, LDNets and RNO are two very effective methods but with different
purposes and scopes of application.

Therefore, we can state that RNO and LDNets are fundamentally two different
methods. Still, because of the similariy in the way temporal dynamics is captured,
we considered appropriate to add a reference to RNO in the manuscript (section
Methods):

The latent variables s(t) allow to keep track of the state of the system.
These, however, are not defined a priori (unlike methods based on dimen-
sionality reduction techniques, see SI), but the latent space is discovered
during the training process. This is similar to [9] for the case of time sig-
nals as outputs and to the Recurrent Neural Operator (RNO) [1, 6], used
to learn microscopic internal variables capable of tracking the history de-
pendence in multiscale materials. However, while in the RNO the latent
variables correspond to a local material memory, LDNets have a single set
of latent variables for the entire domain.

There are also some minor issues I’d like to raise:

Q1.1 It would be beneficial for the authors to consider moving portions
of the LD section currently in the appendix to the main text, as
it contains vital information on how the LD-net is constructed and
trained.

We have moved to the central part of the manuscript some parts previously
contained in the section Methods, reported in the appendix. Specifically, we have
added details about the initial state, normalization layers, a-priori enforcement
of physical knowledge, training algorithms, hyperparameter tuning. We believe
that the current version of the manuscript is more complete and accessible to
the reader, while still complying with the journal’s guidelines, which require that
the section Methods be reported in the appendix.
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Q1.2 Test cases 1 and 2 indicate that the test error decreases as the number
of latent variables increases. It would be interesting to know what
happens when an excessive number of latent variables, say more than
5, are used. Will the error eventually converge to a constant, as is
suggested by studies [1,2]?

As suggested by the Reviewer, we have investigated more deeply the impact
of the number of latent states on the model generalization accuracy. We have
considered two cases: finite solution manifold dimension and (virtually) infinite
solution manifold dimension. More specifically, we have first considered Test
Case 1b with a number of latent variables ranging from 1 to 5. The results are
reported in the new Figure 2c and commented in the main text (section Results):

Finally, we train LDNets for increasing number of latent variables,
ranging from 1 to 5 (Fig. 2c). As expected, the prediction accuracy
significantly drops when going from 1 to 2 latent variables, that is
when the intrinsic solution manifold dimension is reached. With more
than 2 latent variables, it reaches a plateau, showing only a slight
decrease due to increased model capacity, accompanied by a larger
variance in the output.

Next, we considered Test Case 1c, wherein we extended the initial experiment
from the original manuscript. In this case, we widened our investigation to
include up to 7 latent variables and broadened the hyperparameter search space
by increasing the range of neurons. The results are commented in the revised
manuscript (section Results):

First, we set fmax = 0.5 and we train LDNets for increasing number of
latent states, from 2 to 7. Remarkably, as the number of latent states
increases, LDNets discover more effective encodings, that reflect in
an increasing prediction accuracy (Fig. 2f, blue line). Unlike Test
Case 1b, where the intrinsic size of the solution manifold is 2 and this
leads to a stagnation of the error, here the error decreases significantly
even for higher numbers of latent variables. Still, for higher numbers
of latent variables, we have a slowdown in the decreasing trend of
the error, due to two factors: on the one hand, the finite size (100
samples) of the training set (see in this regard Fig. 2a), on the other
hand, the optimizer that may not find the global minimum of the loss
function. By increasing fmax to 1 and 2, the FOM state gets less prone
to be represented by a compact encoding, since the spectrum of the
solution is wider. Prediction accuracy is indeed lower than in the case
fmax = 0.5, but it improves greatly by increasing the number of latent
variables.

Q1.3 Studies [1,2] have also indicated that the latent dynamics that can
be discovered from the data are constrained by the training dataset.
Thus, critical latent dynamics can be missed if the training data do
not encompass this information. Does the same hold true for the
PDEs examined here?

The Reviewer is right: the effectiveness of the LDNet in capturing the underlying
latent dynamics depends on the richness of the training dataset. The dependency
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of the generalization on the dataset size is quantitatively analyzed in Test Case
2b (see Fig 2a), in which we observe that, as the number of samples increases,
the error on the testing set gets lower.

We have stressed this aspect in the revised manuscript (section Results):

Indeed, because of the non-intrusive nature of LDNets, their abil-
ity to discover system dynamics is limited by the information con-
tained in the training set, as it is common in data-driven model re-
duction/discovery methods [1, 6, 9]. Still, as the input space is covered
more densely, LDNets are able to leverage that information as attested
by the significantly decreasing test error.

In conclusion, I believe this paper has considerable potential. However,
it requires a thorough review and subsequent refinement by the authors.
Given my observations, I recommend a major revision before further con-
sideration.

We thank again the Reviewer for the insightful suggestions and questions, which
provided us with the opportunity to conduct a more profound investigation into our
methodology, ultimately enhancing the quality of our manuscript.

Reviewer ] 2

The authors propose a network that utilizes 1) a neural ODE to propagate
reduced order latent dynamics, and 2) a second network to map the low
order dynamics to the high dimensional space. The approach is mesh-less,
avoiding the use of autoencoders, as the grid-point to be evaluated is passed
as an input to the network. As the proposed networks do not operate on
the high dimensional space, they are faster compared to other alternatives
in the literature.

The authors test their method on the advection diffusion reaction equa-
tion, where they demonstrate that LDNets can capture the dominant low-
order Fourier modes, and improve its accuracy as the latent space is in-
creased, in trivial test cases. LDNets are also benchmarked in the 2D
lid-driven cavity flow, where the task is to predict the velocity field form
the time-varying forcing. Last but not least, the LDNets are benchmarked
to other standard approaches (autoencoders, LSTMs, etc.) in the Aliev-
Panfilov (AP) model, which is a PDE describing the propagation of the
electrical potential in an excitable tissue, demonstrating lower error.

The language of the paper is clear. The analysis is scientifically sound.
In general the claims / conclusions of the paper are supported by the
analysis. However, there are some methodological concerns.

We thank the Reviewer for carefully reading our manuscript and for the relevant
comments and questions, which helped us to improve our work. Below are our detailed
responses.

Q2.1 The novelty of the approach is the introduction of a reduced order
latent space in the neural ODE, as all other main features (mesh-less,
Neural ODEs, external forcing dependent network) of the method can
be found in various other works (PINNs, etc.). How does the method
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compare to just using a Neural ODE with inputs the external forcing
and the grid point? Why does there have to be a latent space? The
latent space is used by other methods for dimensionality reduction.
It does not seem to be needed in this architecture, as the gridpoint is
provided in the input.

The presence of a latent state is a crucial architectural choice for the proposed
method. Indeed, the latent state allows the learned model to track the global
state of the system and it allows nonlocal information to propagate across the
computational domain. To demonstrate this, we have implemented the archi-
tecture suggested by the Reviewer, namely an ODE-Net fed by the input signal
and the query point. We have tested this architecture in one of the test cases
reported in the paper, and compared its results with those of LDNets (see sec-
tion Results, Test Case 1c and the new Figure 3). The results revealed that,
when increasing the number of latent states, LDNets are significantly more ac-
curate in fitting the testing data and in generalizing to unseen inputs than the
architecture without latent states here considered.

We have introduced these results and considerations in the revised manuscript
(section Results):

To further assess the crucial role of including latent states in the
model, we analyze the results obtained by removing the latent vari-
ables, namely by considering an ODE-Net fed by the input signal and
the query point, and tracking the evolution of the output at the con-
sidered point (see SI for more details). We train this architecture by
considering Test Case 1c, with fmax = 0.5. To ensure a fair compari-
son, we employ the same dataset and the same hyperparameter tuning
algorithm used for LDNets. The results (see Fig. 3) reveal that with-
out latent states the prediction accuracy of the model is significantly
reduced. Moreover, the greater the number of latent states, the greater
the ability of the model to capture finer and finer features of the dy-
namics. We conclude that the presence of a latent state is a crucial
architectural choice for LDNets. The latent variables allow nonlocal
information to propagate across the computational domain Ω. With
the architecture considered in this comparison, instead, the solution
evolves in each point unaware of the state of surrounding points, de-
spite the point coordinate is provided to the ODE-Net. Conversely,
LDNets are able to learn systems whose dynamics is determined by
spatial correlations. Notable examples are provided in the next sec-
tions.

We thank the Reviewer for suggesting this comparison.

Q2.2 In general the authors demonstrate that indeed LDNets can learn low
order dynamics driven by an external forcing. However, the LDNets
do not operate on the high dimensional space. While this character-
istic is viewed as a strength of the method, it appears unlikely that
the LDNets can adapt to scenarios where dynamics are driven by
the initial condition or complex spatial correlations, rather than the
forcing term, unless some modifications are incorporated. This is an
important pitfall of the proposed approach.
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We agree with the Reviewer that the proposed approach does not fit the case
where the dynamics depends on a space-dependent initial condition and/or dis-
tributed forcings (i.e., fields). This is acknowledged in the manuscript (page 2)
when we state that the input u(t) needs to be “a set of time-dependent signals
or constant parameters”. On the other hand, the proposed method is able to
capture the evolution of systems whose dynamics is characterized by spatial cor-
relations, thanks to the presence of the latent variables that provide a compact
description of the system state, globally in space. This is demonstrated, e.g., by
Test Case 2, where velocity fields are characterized by the presence of vortices,
and by Test Cases 3 and 4, where, due to the presence of a traveling front,
the value of the solution at a point is significantly determined by the value of
the solution at surrounding points in previous times. Clearly, the number of
required latent states will depend on how complex these spatial dynamics are,
as demonstrated by Test Case 1c, where we vary the maximum frequency of the
input precisely to make the spectrum of the solution manifold increasingly broad
and thus more and more difficult to be captured with few latent variables.

In the new version of the manuscript, we have made it clearer that the type of
inputs considered in this paper does not include initial conditions or input fields
(section Discussion):

We have presented LDNets, a novel class of NNs that learn in a data-
driven manner the evolution of systems exhibiting spatio-temporal
dynamics in response to external input signals.

[...]

A limitation of our work is that it does not consider the case of space-
dependent inputs and of variable initial conditions, which will be the
subject of future works; still, we remark that the class of problems that
can be tackled with the proposed method encompass a broad range of
real-life applications.

Indeed, we deem that this limitation does not undermine the potential impact
of the proposed method, since the class of problems that can be tackled with
the proposed method encompasses a broad range of real-life applications, i.e.,
all cases in which a space-time dynamic is driven by time-dependent control
variables (which could be the power of a motor, the flow rate of a stream, the
controlled release of a drug, the time-variation of the strength of a social measure,
etc.).

Q2.3 The errors that the methods (LDNets, AE+LSTMs, etc.) demon-
strate in included benchmark (Aliev-Panfilov model) are very small,
close to machine precision. From a machine learning standpoint, the
task appears to be effectively solved by all methods. I am not sure
about the relevance of demonstrating that the proposed approach
reaches errors closer to machine precision compared to other works.

The test errors generated by the methods we are benchmarking against our pro-
posed approach are on the order of 10−2 on average and 10−1 in the worst-case
scenario, which is significantly far from machine precision. These error levels are
indeed not negligible, as can be visually appreciated from Fig. 5d-e-f and the
videos provided as Supplementary Materials, which show the presence of major
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fluctuations in transmembrane potential, artifacts that significantly invalidate
the quality of the results. In contrast, the solution produced by LDNets is free
of such artifacts, and almost indistinguishable from the high-fidelity model solu-
tion. Similar comments apply to the newly introduced Test Case 4. Moreover,
although these error levels may be considered very low in Data Science tasks,
Scientific Computing problems typically require much higher levels of accuracy,
making, in our opinion, the results of this work meaningful and of interest to
the community.

Q2.4 In Figure 5 for example, all models fairly low errors. The differences
most likely stem from architectural choices, and hyper-parameter op-
timization.

LDNets exhibit an NRMSE of 7.37 ·10−3, whereas the other methods all register
NRMSE values of 3.37 · 10−2 or higher, which is nearly 4.5 times larger or more.
Furthermore, the worst-case error over the testing set is even tenfold greater
than that of LDNets. Hence, we believe that the differences are significant and
indicative of the superior performance of LDNets. Moreover, we notice that,
in all cases, the choice of hyperparameters comes from a thorough automatic
selection procedure using state-of-the-art algorithms (see Section “Hyperparam-
eter tuning algorithms”). During the hyperparameter tuning procedure, indeed,
the hyperparameter space is explored by means of a Bayesian method, and a
large number of architectural choices are considered. The reported results are
obtained with the optimal hyperparameter configuration selected by the algo-
rithm. In this way, each method is considered with an architecture that has
been optimized using the same criteria and resources, ensuring the most fair
comparison possible.

We have better stressed this important aspect in the revised version of the
manuscript (section Results):

To ensure a fair comparison, we rely on an automatic tuning algorithm
to select the optimal hyperparameter values for the different methods,
setting an upper bound of ds ≤ 12 on the latent space dimension.
The reported results are obtained with the optimal hyperparameter
configuration selected by the tuning algorithm, independently for each
method.

Q2.5 In Figure 4, it seems that the LDNets learn a latent space quali-
tatively very different compared to all other approaches. The latent
space seems to be diverging exponentially. What is the intuition be-
hind that? Is that a desirable characteristic?

We thank the Reviewer for their question, which stimulated a more in-depth
analysis of the proposed method. We concluded that the behavior observed in
Test Case 3 is not intrinsic to LDNets, but is due to the particular features of
this test case. We have added a remark in this regard in the revised version of
the SI (Section 3.3):

We observe that, in this test case, the latent variables of the LDNet
diverge as time goes by, as the system under consideration is also char-
acterized by divergent dynamics, associated with waves propagating
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from their sources, with no return to the resting state. In constrast,
in Test Case 2, wherein we consider time horizons long enough to con-
tain the reversal in the flow directions, we observe latent variables that
often return close to the origin (see Fig. 5).

We have thus introduced in the SI a new figure (Fig. 5) showing the time evolu-
tion of the latent variables in 6 different samples belonging to the test set of Test
Case 2. As expected, in this case, when the input signal reverses its direction,
we observe that many of the state variables also reverse the direction of their
motion, possibly with some delay, thus accounting for inertial effects. Similarly,
in Test Case 1 the dynamics of testing samples does not feature a divergent
behavior, which is reflected by the latent states trajectories (see the new Fig. 3
of the main text).

Also, as noted by the Reviewer, LDNets learn a latent space that qualitatively
differs from that of the other methods. In particular, trajectories are more
regular than for auto-encoder-based methods. We have introduced a paragraph
commenting this aspect in the section Discussion:

We notice that the trajectories of the latent states s(t) obtained with
LDNets are smoother than those obtained with auto-encoder-based
methods (see Fig. 5). This difference can be understood by consid-
ering how the latent state is constructed within auto-encoder-based
methods. First, these methods learn a compact encoding of the high-
dimensional output, thus defining a low-dimensional set of state vari-
ables, and then they attempt to find a law ruling their time evolution.
However, while training the auto-encoder, the latent space is con-
structed with the sole purpose of allowing the output to be accurately
reconstructed, without it necessarily being significant to the system
dynamics. This issue is partially mitigated by a subsequent end-to-
end training phase, which partially redefines the state variables in a
way that is functional not only to reconstruct the solution, but also
to capture the dynamics of the system. LDNets, instead, thanks to
the simultaneous training of the dynamics NN and the reconstruction
NN, do not incur in this issue, as the training algorithm seeks the
latent space that simultaneously pursue the twofold role of tracking
the system dynamics and reconstructing the output at each time.

Q2.6 The latent dynamics are propagated through a neural ODE. These
networks are notoriously hard to train, and many works attempt to
alleviate the associated problems [1, 2, 3, 4]. Did the authors employ
any mechanism to alleviate the training problems?

We have added a remark on this topic in the revised manuscript (section Meth-
ods):

Training ODE-Nets often presents challenges and typically involves an
adaptive time integration to deal with stiff dynamics, which makes the
computational graph potentially very deep and the computational cost
often prohibitive [2, 3, 5, 7]. In this work, instead, we rely on a fixed
time step size to integrate the latent variables. Thanks to the fact that
the latent variables are not fixed a priori, but are defined at training
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stage, the training algorithm tends to define latent variables with non-
stiff dynamics, whose evolution is well captured through a fixed time
step size, regardless of the stiffness of full-order model employed to
generate the data. An evidence for this is provided by Test Case 3:
the ground-truth model (Aliev-Panfilov) features, as it is well known,
very stiff dynamics [4], thus imposing the use of a timestep of 5 · 10−6 s,
whereas the LDNet succeeds in fitting the results with great accuracy
while using a much larger timestep (equal to 1 · 10−3 s). This behavior
is observed in our preliminary work [8] as well.

Q2.7 The authors do not provide results concerning the training time, and
inference time (to represent the whole spatial field in testing) and
comparisons with other methods.

We have reported in the revised manuscript the computational times associated
with both the offline phase (namely, construction of the basis for both the solu-
tion manifold and DEIM for the POD/DEIM method, and parameters training
for the other methods) and with the online phase (namely, the prediction of the
solution for new inputs). The numerical values are reported in Table 1, and the
associated comments are reported in the main text (section Results):

Furthermore, we observe that the POD-DEIM method results in a very
limited speed-up with respect to the other methods considered. This
limitation is intertwined with the necessity, due to numerical stability
reasons, for the POD-DEIM model to be solved on the same temporal
discretization as the high-fidelity model. This requirement represents
a considerable constraint compared to the other methods outlined in
this paper. As a matter of fact, as shown in Table 1, the computational
cost for each sample with the FOM is about 37 s, the POD-DEIM
method with 60 modes allows it to be reduced to about 8 s, when the
other methods all lead to times less than 0.02 s. To this amount of
time must be added the time required to evaluate the solution given
the state variables, which, however, depends on the number of time
steps and points at which this is required. For auto-encoder methods,
the points at which this evaluation occurs are pre-established, taking
8.9 · 10−7 s for each timestep. Conversely, LDNets, thanks to their
mesh-less nature, offer the flexibility to evaluate at arbitrary locations,
requiring 1.9 · 10−7 s for each point in time and space. In this test
case, should we want to evaluate the solution at all time steps and
training points, this would correspond to about 4.5 · 10−4 s for auto-
encoder-based methods and 9.5 · 10−3 s for LDNets. That said, we
observe that, with the exception of POD/DEIM, the inference times
associated with the other methods are virtually negligible compared
to the time required to evaluate the Full Order Model (FOM).

Concerning the offline time, associated with model construction, the
training cost of LDNets (22 887 s) is lower than that of auto-encoder-
based methods, except for AE/LSTM (11 009 s), which, however, yields
a poor accuracy in the predictions. In fact, the accuracy achieved by
AE/LSTM is matched by LDNets after just 1 354 s of training. On
the other hand, the accuracy levels of AE/ODE and AE/ODE-e2e are
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attained by LDNet after 6 510 and 9 090 s, respectively. The POD-
DEIM method, as expected, is characterized by a less heavy offline
phase, which, however, does not lead to a speed-up comparable to the
other methods in evaluation.

Moreover, we have introduced an additional test case (Test Case 4), to further
compare the proposed method with auto-encoder-based methods. In this test
case as well, we have reported training and inference times (see Table 2), and
we have commented them in the text:

The trained model inference time (online time) is comparable among
the three methods considered. The time required to reconstruct the so-
lution from the latent states for auto-encoder-based methods is 1.1 · 10−4 s
per time instant, while for LDNet it is 3.9 · 10−6 s per time and space
point. In all cases, the methods considered lead to a remarkable
speedup with respect to the time required by the FOM (807 s per
simulation). As for the offline stage, the time required to complete
training with the three models is similar (nearly between 75 000 and
95 000 s). The LDNets, however, achieve higher levels of accuracy in
less time. In fact, the accuracy achieved with AE/ODE is reached by
LDNet after only 3 569 s, while that of AE/ODE-e2e after 4 530 s.

We thank the Reviewer for this suggestion.

Q2.8 Publishing the code and data would assist reproducibility and strengthen
the claims of the paper.

After publication, the codes will be made publicly available. For the moment,
the Reviewers can access the code at the URL:

https://polimi365-my.sharepoint.com/:f:/g/personal/10377072_polimi_

it/El8g8HrJYahFgdYOFDzUkgsBnAzpjAH-I6rSJaO-cxMQ0g?e=f9fcLx

To download the files, enter the password:

D4#Bzt63*2uq
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