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Supplementary Note 1: Derivation of var[V̂S]

We obtain the unbiased sample covariance of xi(t) calculated from L samples as follows:
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where xi,` (with i 2 {1, . . . , N} and ` 2 {1, . . . , L}) is the `th sample of xi(t) in the equilibrium, and
zi,` = xi,` � x⇤i . We obtain

E[V̂i] =Cii, (S2)

E

⇣
V̂i

⌘2�
=
(L� 1)E[z4i ] + (L2 � 2L+ 3)E[z2i ]

L(L� 1)
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where E denotes the expectation [1–3].
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For V̂S =
Pn

i=1 V̂i/n, we similarly obtain
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In Eq. (S4), we have omitted subscript ` from zi,` to denote it by zi when it is an arbitrary sample and
does not cause confusion.

Using Eq. (5) in the main text and Eq. (S4), we obtain the variance of V̂S , denoted by var[V̂S ], as
follows:
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Because the stationary distribution of the multivariate OU process is a multivariate Gaussian distribution
[4, 5], we obtain E[z2i z

2
j ] = CiiCjj + 2(Cij)2 including the case of i = j. By substituting this relationship

in Eq. (S5), we obtain
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Supplementary Note 2: Performance of the maximizer of d when dif-

ferent pairs of bifurcation parameter values

are used for calculating d

A Networks with two or three nodes

For the network with two nodes connected by a directed edge and the chain network with three nodes,
we used r = �0.3 and �0.1 in the main text to compute covariance matrices C(1) and C(2) and then d.
In this section, we evaluate the robustness of the maximizer of d with respect to the choice of the two
r values. For each pair of r values drawn from the entire range of r that we used in the main text, we
computed d for all the possible node sets.

First, we consider the two-node network. For each set of the parameter values used in Fig. 3, we
identify the node set among the three candidates, i.e., S = {1}, {2}, and {1, 2}, that maximizes d. We
show the S maximizing d for a range of the two r values in Figs. S1(a), (b), and (c), which correspond
to the parameter values used in Figs. 3(a), (b), and (c), respectively. We showed in the main text that d
is the largest with S = {1, 2} for the parameter values used in Figs. S1(a) and (b), and with S = {1} for
those used in Fig. S1(c) when the two r values are �0.3 and �0.1. Figures S1(a), (b), and (c) indicate
that the node set maximizing d remains the same for all (see Fig. S1(a)) or almost all (see Figs. S1(b)
and (c)) the pairs of r values.

We carried out the same analysis for the chain network with three nodes. We show the node set
maximizing d for each pair of r values in Figs. S1(d), (e), and (f), which correspond to the parameter
values used in Figs. 4(a), (b), and (c), respectively. We showed in the main text that d is the largest
with S = {1, 2, 3}, S = {2}, and S = {1, 3} for the parameter values used in Figs. S1(a), (b), and (c),
respectively, when the two r values are �0.3 and �0.1. We find that the node set maximizing d remains
the same for all the pairs of r values in Figs. S1(d) and (f). In Fig. S1(e), S = {2} maximizes d only when
the two r values are large. In other regions of the two r values, the node set maximizing d is S = {1, 2, 3},
which realizes the second largest d value when the two r values are �0.3 and �0.1.

Putting these results together, we conclude that the maximizer of d is fairly robust for these two- and
three-node networks against the variation in the r value. The only exception is Fig. S1(e). However, even
in this case, S = {2}, which we highlighted in the main text, is the maximizer of d in a reasonably large
region of the two r values.

B Larger networks

For expository purposes, let us assume that the bifurcation parameter is u = uk, k 2 {1, 2, . . . , K̃} such
that uK̃ is the u value closest to the first tipping point. In the main text, we computed covariance
matrices C(1) and C(2) at uk with k = k(1) = round(0.1K̃) and k = k(2) = round(0.9K̃), respectively,
where round() represents rounding to the closest integer. Then, we calculated d for each node set S. In
the remainder of this section, we omit round() to simplify the notation. In this section, we evaluate the
robustness of the performance of the maximizer of d with respect to the choice of k(1) and k(2). Specifi-
cally, we calculate p1 and p2 with (k(1), k(2)) = (0.1K̃, 0.3K̃), (0.1K̃, 0.5K̃), (0.1K̃, 0.7K̃), (0.3K̃, 0.5K̃),
(0.3K̃, 0.7K̃), (0.3K̃, 0.9K̃), (0.5K̃, 0.7K̃), (0.5K̃, 0.9K̃), and (0.7K̃, 0.9K̃), and for each scenario for ui
and �i (i.e., constant across all nodes or heterogeneous), network, dynamical system, and bifurcation
parameter (i.e., u or D).

We show the results for the BA and Chesapeake Bay networks in Figs. S2–S10, those for the Erd�s-
Rényi and node fitness networks in Figs. S11–S19, and those for the freshwater stream food web and
dolphin social networks in Figs. S20–S28. Except for the gene regulatory dynamics, for which the maxi-
mizer of d performs relatively poorly even with the original k(1) and k(2) values (see Figs. 8 and S31), p1
and p2 are always less than 1 if (k(1), k(2)) = (0.1K̃, 0.7K̃), (0.3K̃, 0.9K̃), (0.5K̃, 0.9K̃), or (0.7K̃, 0.9K̃),
only with a single exception (Fig. S19(e)). The p1 and p2 values for these (k(1), k(2)) pairs are substantially
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Figure S1: Robustness of the optimized node set for small networks. In each panel, the horizontal and
vertical axes show the two values of r. Each color represents the node set that maximizes d. (a) N = 2
and (�2,�r) = (0.1, 1). (b) N = 2 and (�2,�r) = (0.1, 0.5). (c) N = 2 and (�2,�r) = (0.2, 1). (d) N = 3
and �1 = 0.1. (e) N = 3 and �1 = 0.7. (f) N = 100 and �1 = 0.015. We set w = 0.5 and �1 = 0.1 for
the network with N = 2 nodes connected by a directed edge (i.e., (a)–(c)). We set w = 0.05 and �2 = 0.1
for the chain network with N = 3 nodes (i.e., (d)–(f)). We set L = 100 for both networks. All the other
parameter values used are the same as those used in Figs. 3 and 4 in the main text. Because one needs
to use two di�erent r values to calculate d, the diagonals are shown in white.

smaller than 1 in most cases. These results indicate that the performance of the maximizer of d is robust
with respect to the choice of k(1) and k(2) as long as the two bifurcation parameter values are reasonably
far from each other (i.e., (k(1), k(2)) = (0.1K̃, 0.7K̃) or (0.3K̃, 0.9K̃)) or one of them is close to the tipping
point (i.e., (k(1), k(2)) = (0.3K̃, 0.9K̃), (0.5K̃, 0.9K̃), or (0.7K̃, 0.9K̃)).
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Figure S2: Performance of the node set maximizing d on the BA and Chesapeake Bay networks when
k(1) = 0.1K̃ and k(2) = 0.3K̃. The squares and circles represent p1 and p2, respectively, for the given n,
dynamics, network, and condition (i.e., whether ui or �i is homogeneously or heterogeneously distributed)
averaged over 50 series of simulations. (a)–(g): BA network. (h)–(n): Chesapeake Bay network. (a) and
(h): Double-well, u. (b) and (i): Mutualistic interaction, u. (c) and (j): Gene regulatory, u. (d) and (k):
Double-well, D. (e) and (l): Mutualistic interaction, D. (f) and (m): Gene regulatory, D. (g) and (n):
SIS, �.
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Figure S3: Performance of the node set maximizing d on the BA and Chesapeake Bay networks when
k(1) = 0.1K̃ and k(2) = 0.5K̃. (a)–(g): BA network. (h)–(n): Chesapeake Bay network. (a) and (h):
Double-well, u. (b) and (i): Mutualistic interaction, u. (c) and (j): Gene regulatory, u. (d) and (k):
Double-well, D. (e) and (l): Mutualistic interaction, D. (f) and (m): Gene regulatory, D. (g) and (n):
SIS, �.
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Figure S4: Performance of the node set maximizing d on the BA and Chesapeake Bay networks when
k(1) = 0.1K̃ and k(2) = 0.7K̃. (a)–(g): BA network. (h)–(n): Chesapeake Bay network. (a) and (h):
Double-well, u. (b) and (i): Mutualistic interaction, u. (c) and (j): Gene regulatory, u. (d) and (k):
Double-well, D. (e) and (l): Mutualistic interaction, D. (f) and (m): Gene regulatory, D. (g) and (n):
SIS, �.
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Figure S5: Performance of the node set maximizing d on the BA and Chesapeake Bay networks when
k(1) = 0.3K̃ and k(2) = 0.5K̃. (a)–(g): BA network. (h)–(n): Chesapeake Bay network. (a) and (h):
Double-well, u. (b) and (i): Mutualistic interaction, u. (c) and (j): Gene regulatory, u. (d) and (k):
Double-well, D. (e) and (l): Mutualistic interaction, D. (f) and (m): Gene regulatory, D. (g) and (n):
SIS, �.
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Figure S6: Performance of the node set maximizing d on the BA and Chesapeake Bay networks when
k(1) = 0.3K̃ and k(2) = 0.7K̃. (a)–(g): BA network. (h)–(n): Chesapeake Bay network. (a) and (h):
Double-well, u. (b) and (i): Mutualistic interaction, u. (c) and (j): Gene regulatory, u. (d) and (k):
Double-well, D. (e) and (l): Mutualistic interaction, D. (f) and (m): Gene regulatory, D. (g) and (n):
SIS, �.
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Figure S7: Performance of the node set maximizing d on the BA and Chesapeake Bay networks when
k(1) = 0.3K̃ and k(2) = 0.9K̃. (a)–(g): BA network. (h)–(n): Chesapeake Bay network. (a) and (h):
Double-well, u. (b) and (i): Mutualistic interaction, u. (c) and (j): Gene regulatory, u. (d) and (k):
Double-well, D. (e) and (l): Mutualistic interaction, D. (f) and (m): Gene regulatory, D. (g) and (n):
SIS, �.
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Figure S8: Performance of the node set maximizing d on the BA and Chesapeake Bay networks when
k(1) = 0.5K̃ and k(2) = 0.7K̃. (a)–(g): BA network. (h)–(n): Chesapeake Bay network. (a) and (h):
Double-well, u. (b) and (i): Mutualistic interaction, u. (c) and (j): Gene regulatory, u. (d) and (k):
Double-well, D. (e) and (l): Mutualistic interaction, D. (f) and (m): Gene regulatory, D. (g) and (n):
SIS, �.
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Figure S9: Performance of the node set maximizing d on the BA and Chesapeake Bay networks when
k(1) = 0.5K̃ and k(2) = 0.9K̃. (a)–(g): BA network. (h)–(n): Chesapeake Bay network. (a) and (h):
Double-well, u. (b) and (i): Mutualistic interaction, u. (c) and (j): Gene regulatory, u. (d) and (k):
Double-well, D. (e) and (l): Mutualistic interaction, D. (f) and (m): Gene regulatory, D. (g) and (n):
SIS, �.
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Figure S10: Performance of the node set maximizing d on the BA and Chesapeake Bay networks when
k(1) = 0.7K̃ and k(2) = 0.9K̃. (a)–(g): BA network. (h)–(n): Chesapeake Bay network. (a) and (h):
Double-well, u. (b) and (i): Mutualistic interaction, u. (c) and (j): Gene regulatory, u. (d) and (k):
Double-well, D. (e) and (l): Mutualistic interaction, D. (f) and (m): Gene regulatory, D. (g) and (n):
SIS, �.
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Figure S11: Performance of the node set maximizing d on the Erd�s-Rényi and node fitness networks
when k(1) = 0.1K̃ and k(2) = 0.3K̃. (a)–(g): Erd�s-Rényi network. (h)–(n): Node fitness network. (a)
and (h): Double-well, u. (b) and (i): Mutualistic interaction, u. (c) and (j): Gene regulatory, u. (d) and
(k): Double-well, D. (e) and (l): Mutualistic interaction, D. (f) and (m): Gene regulatory, D. (g) and
(n): SIS, �.
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Figure S12: Performance of the node set maximizing d on the Erd�s-Rényi and node fitness networks
when k(1) = 0.1K̃ and k(2) = 0.5K̃. (a)–(g): Erd�s-Rényi network. (h)–(n): Node fitness network. (a)
and (h): Double-well, u. (b) and (i): Mutualistic interaction, u. (c) and (j): Gene regulatory, u. (d) and
(k): Double-well, D. (e) and (l): Mutualistic interaction, D. (f) and (m): Gene regulatory, D. (g) and
(n): SIS, �.
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Figure S13: Performance of the node set maximizing d on the Erd�s-Rényi and node fitness networks
when k(1) = 0.1K̃ and k(2) = 0.7K̃. (a)–(g): Erd�s-Rényi network. (h)–(n): Node fitness network. (a)
and (h): Double-well, u. (b) and (i): Mutualistic interaction, u. (c) and (j): Gene regulatory, u. (d) and
(k): Double-well, D. (e) and (l): Mutualistic interaction, D. (f) and (m): Gene regulatory, D. (g) and
(n): SIS, �.
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Figure S14: Performance of the node set maximizing d on the Erd�s-Rényi and node fitness networks
when k(1) = 0.3K̃ and k(2) = 0.5K̃. (a)–(g): Erd�s-Rényi network. (h)–(n): Node fitness network. (a)
and (h): Double-well, u. (b) and (i): Mutualistic interaction, u. (c) and (j): Gene regulatory, u. (d) and
(k): Double-well, D. (e) and (l): Mutualistic interaction, D. (f) and (m): Gene regulatory, D. (g) and
(n): SIS, �.
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Figure S15: Performance of the node set maximizing d on the Erd�s-Rényi and node fitness networks
when k(1) = 0.3K̃ and k(2) = 0.7K̃. (a)–(g): Erd�s-Rényi network. (h)–(n): Node fitness network. (a)
and (h): Double-well, u. (b) and (i): Mutualistic interaction, u. (c) and (j): Gene regulatory, u. (d) and
(k): Double-well, D. (e) and (l): Mutualistic interaction, D. (f) and (m): Gene regulatory, D. (g) and
(n): SIS, �.
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Figure S16: Performance of the node set maximizing d on the Erd�s-Rényi and node fitness networks
when k(1) = 0.3K̃ and k(2) = 0.9K̃. (a)–(g): Erd�s-Rényi network. (h)–(n): Node fitness network. (a)
and (h): Double-well, u. (b) and (i): Mutualistic interaction, u. (c) and (j): Gene regulatory, u. (d) and
(k): Double-well, D. (e) and (l): Mutualistic interaction, D. (f) and (m): Gene regulatory, D. (g) and
(n): SIS, �.

19



1 2 3 4 5
n

0.
0

0.
4

0.
8

1.
2

p 1
, p

2

1 2 3 4 5
n

1 2 3 4 5
n

p1

p2

Homogeneous

Heterogeneous stress
Heterogeneous stress
and noise

1 2 3 4 5
n

0.
0

0.
4

0.
8

1.
2

p 1
, p

2

1 2 3 4 5
n

1 2 3 4 5
n

1 2 3 4 5
n

1 2 3 4 5
n

0.
0

0.
4

0.
8

1.
2

p 1
, p

2

1 2 3 4 5
n

1 2 3 4 5
n

1 2 3 4 5
n

0.
0

0.
4

0.
8

1.
2

p 1
, p

2

1 2 3 4 5
n

1 2 3 4 5
n

1 2 3 4 5
n

(a) (b) (c)

(d) (e) (f) (g)

(h) (i) (j)

(k) (l) (m) (n)

Figure S17: Performance of the node set maximizing d on the Erd�s-Rényi and node fitness networks
when k(1) = 0.5K̃ and k(2) = 0.7K̃. (a)–(g): Erd�s-Rényi network. (h)–(n): Node fitness network. (a)
and (h): Double-well, u. (b) and (i): Mutualistic interaction, u. (c) and (j): Gene regulatory, u. (d) and
(k): Double-well, D. (e) and (l): Mutualistic interaction, D. (f) and (m): Gene regulatory, D. (g) and
(n): SIS, �.
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Figure S18: Performance of the node set maximizing d on the Erd�s-Rényi and node fitness networks
when k(1) = 0.5K̃ and k(2) = 0.9K̃. (a)–(g): Erd�s-Rényi network. (h)–(n): Node fitness network. (a)
and (h): Double-well, u. (b) and (i): Mutualistic interaction, u. (c) and (j): Gene regulatory, u. (d) and
(k): Double-well, D. (e) and (l): Mutualistic interaction, D. (f) and (m): Gene regulatory, D. (g) and
(n): SIS, �.
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Figure S19: Performance of the node set maximizing d on the Erd�s-Rényi and node fitness networks
when k(1) = 0.7K̃ and k(2) = 0.9K̃. (a)–(g): Erd�s-Rényi network. (h)–(n): Node fitness network. (a)
and (h): Double-well, u. (b) and (i): Mutualistic interaction, u. (c) and (j): Gene regulatory, u. (d) and
(k): Double-well, D. (e) and (l): Mutualistic interaction, D. (f) and (m): Gene regulatory, D. (g) and
(n): SIS, �.
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Figure S20: Performance of the node set maximizing d on the freshwater stream food web and dolphin
social networks when k(1) = 0.1K̃ and k(2) = 0.3K̃. (a)–(g): Freshwater stream food web network.
(h)–(n): Dolphin social network. (a) and (h): Double-well, u. (b) and (i): Mutualistic interaction, u. (c)
and (j): Gene regulatory, u. (d) and (k): Double-well, D. (e) and (l): Mutualistic interaction, D. (f) and
(m): Gene regulatory, D. (g) and (n): SIS, �.
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Figure S21: Performance of the node set maximizing d on the freshwater stream food web and dolphin
social networks when k(1) = 0.1K̃ and k(2) = 0.5K̃. (a)–(g): Freshwater stream food web network.
(h)–(n): Dolphin social network. (a) and (h): Double-well, u. (b) and (i): Mutualistic interaction, u. (c)
and (j): Gene regulatory, u. (d) and (k): Double-well, D. (e) and (l): Mutualistic interaction, D. (f) and
(m): Gene regulatory, D. (g) and (n): SIS, �.
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Figure S22: Performance of the node set maximizing d on the freshwater stream food web and dolphin
social networks when k(1) = 0.1K̃ and k(2) = 0.7K̃. (a)–(g): Freshwater stream food web network.
(h)–(n): Dolphin social network. (a) and (h): Double-well, u. (b) and (i): Mutualistic interaction, u. (c)
and (j): Gene regulatory, u. (d) and (k): Double-well, D. (e) and (l): Mutualistic interaction, D. (f) and
(m): Gene regulatory, D. (g) and (n): SIS, �.
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Figure S23: Performance of the node set maximizing d on the freshwater stream food web and dolphin
social networks when k(1) = 0.3K̃ and k(2) = 0.5K̃. (a)–(g): Freshwater stream food web network.
(h)–(n): Dolphin social network. (a) and (h): Double-well, u. (b) and (i): Mutualistic interaction, u. (c)
and (j): Gene regulatory, u. (d) and (k): Double-well, D. (e) and (l): Mutualistic interaction, D. (f) and
(m): Gene regulatory, D. (g) and (n): SIS, �.
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Figure S24: Performance of the node set maximizing d on the freshwater stream food web and dolphin
social networks when k(1) = 0.3K̃ and k(2) = 0.7K̃. (a)–(g): Freshwater stream food web network.
(h)–(n): Dolphin social network. (a) and (h): Double-well, u. (b) and (i): Mutualistic interaction, u. (c)
and (j): Gene regulatory, u. (d) and (k): Double-well, D. (e) and (l): Mutualistic interaction, D. (f) and
(m): Gene regulatory, D. (g) and (n): SIS, �.
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Figure S25: Performance of the node set maximizing d on the freshwater stream food web and dolphin
social networks when k(1) = 0.3K̃ and k(2) = 0.9K̃. (a)–(g): Freshwater stream food web network.
(h)–(n): Dolphin social network. (a) and (h): Double-well, u. (b) and (i): Mutualistic interaction, u. (c)
and (j): Gene regulatory, u. (d) and (k): Double-well, D. (e) and (l): Mutualistic interaction, D. (f) and
(m): Gene regulatory, D. (g) and (n): SIS, �.
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Figure S26: Performance of the node set maximizing d on the freshwater stream food web and dolphin
social networks when k(1) = 0.5K̃ and k(2) = 0.7K̃. (a)–(g): Freshwater stream food web network.
(h)–(n): Dolphin social network. (a) and (h): Double-well, u. (b) and (i): Mutualistic interaction, u. (c)
and (j): Gene regulatory, u. (d) and (k): Double-well, D. (e) and (l): Mutualistic interaction, D. (f) and
(m): Gene regulatory, D. (g) and (n): SIS, �.
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Figure S27: Performance of the node set maximizing d on the freshwater stream food web and dolphin
social networks when k(1) = 0.5K̃ and k(2) = 0.9K̃. (a)–(g): Freshwater stream food web network.
(h)–(n): Dolphin social network. (a) and (h): Double-well, u. (b) and (i): Mutualistic interaction, u. (c)
and (j): Gene regulatory, u. (d) and (k): Double-well, D. (e) and (l): Mutualistic interaction, D. (f) and
(m): Gene regulatory, D. (g) and (n): SIS, �.
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Figure S28: Performance of the node set maximizing d on the freshwater stream food web and dolphin
social networks when k(1) = 0.7K̃ and k(2) = 0.9K̃. (a)–(g): Freshwater stream food web network.
(h)–(n): Dolphin social network. (a) and (h): Double-well, u. (b) and (i): Mutualistic interaction, u. (c)
and (j): Gene regulatory, u. (d) and (k): Double-well, D. (e) and (l): Mutualistic interaction, D. (f) and
(m): Gene regulatory, D. (g) and (n): SIS, �.
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Supplementary Note 3: Uniqueness and stability of the solution satis-

fying x⇤1, x
⇤
2 < 0 in the dynamical system on a

chain with three nodes

We rewrite Eqs. (19) and (20) in the main text as

x2 =� (x1)2

w
� 1� r

w
, (S7)

x1 =� (x2)2

2w
� 1� r

2w
, (S8)

respectively, where we have omitted the asterisk in the superscript. Equations (S7) and (S8) are parabolas
symmetric with respect to the x1 and x2 axes, respectively.

The vertex of the parabola given by Eq. (S7) is V1 = (0,�1 � r
w ). This parabola intersects the

x1 axis at P+
1 = (

p
�w � r, 0) and P�

1 = (�
p
�w � r, 0) if �w � r � 0, i.e., r  �w. Similarly, the

vertex of the parabola given by Eq. (S8) is V2 = (�1 � r
2w , 0). This parabola intersects the x2 axis at

P+
2 = (0,

p
�2w � r) and P�

2 = (0,�
p
�2w � r) if �2w � r � 0, i.e., r  �2w. See Fig. S29(a) for

visualization.
As r increases from �1, V2 and P+

1 collide on the x1 axis before V1 and P+
2 collide on the x2 axis (see

Fig. S29(b)). This is because �1� r
2w < �1� r

w and
p
�w � r >

p
�2w � r, which together imply that

�1 � r
2w �

p
�w � r < �1 � r

w �
p
�2w � r. Points V2 and P+

1 collide when �1 � r
2w �

p
�w � r = 0

and �1� r
2w > 0, i.e.,

r0c ⌘ 2w
h
�(w + 1)�

p
w(w + 1)

i
. (S9)

When �1  r < r0c, there are four equilibria (x⇤1, x
⇤
2), each in a di�erent quadrant (see Fig. S29(a)), which

we refer to as p1 (with x⇤1 > 0 and x⇤2 > 0), p2 (with x⇤1 < 0 and x⇤2 > 0), p3 (with x⇤1 < 0 and x⇤2 < 0),
and p4 (with x⇤1 > 0 and x⇤2 < 0). Therefore, the solution satisfying x⇤1, x

⇤
2 < 0, i.e., p3, is unique.

When r = r0c, equilibria p1 and p4 collide on the x1 axis at V2 (equivalently, P+
1 ). See Fig. S29(b). As

r increases slightly beyond r0c, we find that p1 and p4 disappear, and p2 and p3 remain in the second and
third quadrants, respectively. As r further increases, p2 hits the x1 axis at V2, which coincides with P�

1 ,
and this event occurs when

r = r00c ⌘ 2w
h
�(w + 1) +

p
w(w + 1)

i
. (S10)

See Fig. S29(c). This event always occurs because V1 moves to the negative segment of the x2 axis at
an r value larger than r00c , i.e., at r = �w. It is straightforward to verify that �w > r00c . As r increases
beyond r00c , we find that p2 enters the third quadrant (see Fig. S29(d)). Then, as r further increases, p2
eventually collides with p3 at the r value, denoted by rc, when the two parabolas given by Eqs. (S7) and
(S8) are tangent to each other. When r > rc, there is no equilibrium. The analytical expression of rc is
complicated but characterized in the following text.

We have shown that the equilibrium satisfying x⇤1, x
⇤
2 < 0 is unique when r  r00c . However, there are

two equilibria satisfying x⇤1, x
⇤
2 < 0, i.e., p2 and p3, when r00c < r < rc.

We now examine the stability of p2 and p3 when x⇤1, x
⇤
2 < 0. Matrix A given by Eq. (21) in the main

text is the negative Jacobian. Therefore, the eigenvalues of the Jacobian, denoted by �, is given by the
characteristic equation

det(�A� �I) = �(�� x⇤1)
⇥
�2 � 2(x⇤1 + x⇤2)�+ 4x⇤1x

⇤
2 � 2w2

⇤
= 0, (S11)

where I is the 3⇥ 3 identity matrix.
One eigenvalue �1 ⌘ x⇤1 is trivially negative because we are considering the equilibria satisfying

x⇤1, x
⇤
2 < 0. A necessary and su�cient condition for the other two eigenvalues, denoted by �2 and �3, to

be negative is
�2 + �3 = 2(x⇤1 + x⇤2) < 0 (S12)
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Figure S29: Two parabolas in the (x1, x2) plane. The blue curve represents Eq. (S7). The magenta curve
represents Eq. (S8). For visualization purposes, we set w = 0.1. (a) r = �0.4. (b) r = r0c ⇡ �0.28633.
(c) r = r00c ⇡ �0.153667. (d) r = �0.1535.

and
�2�3 = 4x⇤1x

⇤
2 � 2w2 > 0. (S13)

Equation (S12) is trivially satisfied.
To examine if Eq. (S13) is also satisfied, we focus on p3 and start by assuming that x⇤1 (< 0) and x⇤2

(< 0) are small enough to satisfy Eq. (S13) at r = �1. Otherwise, we cannot discuss the tipping points
as r gradually increases. Equations (19) and (20) in the main text yield

1 + 2x⇤1
dx⇤1
dr + w

dx⇤2
dr = 0 (S14)

and
1 + 2x⇤2

dx⇤2
dr + 2w

dx⇤1
dr = 0, (S15)

respectively. By solving Eqs. (S14) and (S15), we obtain
dx⇤1
dr =

�2x⇤2 + w

2(2x⇤1x
⇤
2 � w2)

(S16)

and
dx⇤2
dr =

�x⇤1 + w

2x⇤1x
⇤
2 � w2

. (S17)
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Equations (S16) and (S17) imply that x⇤1 (< 0) and x⇤2 (< 0) monotonically increase as r increases until
2x⇤1x

⇤
2�w2 > 0 is violated. Therefore, equilibrium p3 is stable for r small enough to satisfy 2x⇤1x

⇤
2�w2 > 0.

In fact, the two parabolas given by Eqs. (S7) and (S8) are tangent to each other at the value of r
satisfying 2x⇤1x

⇤
2 = w2. This event necessarily occurs in the third quadrant and implies that equilibria p2

and p3 collide with each other at r = rc, marking a saddle-node bifurcation. It is a saddle-node bifurcation
because �2 + �3 = 2(x⇤1 + x⇤2) < 0 and �2�3 = 2(2x⇤1x

⇤
2 � w2) = 0 at r = rc, which together indicate that

one real eigenvalue crosses the imaginary axis at r = rc. To verify that the two parabolas are tangent at
r = rc, we use Eqs. (19) and (20) in the main text to obtain

dx2
dx1

= �2x1
w

(S18)

and
dx1
dx2

= �x2
w
, (S19)

respectively. Therefore, the two parabolas are tangent to each other when

dx2
dx1

= �2x1
w

= � w

x2
, (S20)

i.e., 2x⇤1x⇤2 = w2.
Equilibrium p2 also satisfies x⇤1 < 0 and x⇤2 < 0 when r00c < r  rc. However, it is unstable for the

following reason. When r is slightly above r00c , we obtain 2x⇤1x
⇤
2 � w2 < 0 because x⇤2 is only slightly

negative. Then, Eqs. (S16) and (S17) imply that dx⇤1/dr < 0 and dx⇤2/dr < 0, respectively, such that x⇤1
and x⇤2 decreases as r increases. This trend continues until 2x⇤1x⇤2�w2 = 0 is satisfied, i.e., until r reaches
rc. Because Eq. (S13) is violated, p2 is unstable when r00c < r  rc.

We have shown that p3 is the unique stable equilibrium satisfying x⇤1, x
⇤
2 < 0 and that it exists when

r < rc.
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Supplementary Note 4: Stopping criterion for node set selection

Unless the number of nodes in the given network, N , is small, it is infeasible to find the node set S
that maximizes d. Furthermore, although a larger node set S (i.e., S with large n) tends to produce a
larger value of d (see Fig. 6 in the main text), monitoring signals from many nodes may be costly, which
motivates us to look for approximate maximizers of d without making n too large. In the main text, we
only examined n 2 {1, 2, 3, 4, 5, N}. In this section, we provide a stopping criterion when we gradually
increase n to look for better solutions.

Our stopping criterion is as follows. For a given n, there are
�N
n

�
choices of S, where

��
denotes the

binomial coe�cient. Starting from n = 1, if
�N
n

�
is smaller than 5000, we test all S with |S| = n to find

the maximizer of d for that n value. Otherwise, we sample 5000 node sets with n nodes uniformly at
random and find the maximizer of d. These procedures are the same as those used in the remainder of
this paper. Now, as we increment n by one every time, we track how much the maximum of d realized
by the best S for the given n increases. We stop increasing n when the d maximized with |S| = n is not
larger than 1.01 times the d maximized with |S| = n� 1 for the first time. In the code we have released
on Github (https://github.com/ngmaclaren/mixing-EWS), we also provide a variant of this method in
which we greedily optimize the node set as we increase n one by one. In other words, given the node
set with n nodes realizing the largest d, denoted by S̃n, we look for the maximizer of d among the node
sets with n + 1 nodes that contain S̃n. In this manner, one only needs to assess N � n node sets with
n+1 nodes. Therefore, the optimization algorithm runs fast with the greedy algorithm although it is not
guaranteed that the maximized d at each n is su�ciently close to the exact maximum.

We numerically demonstrate our node set optimization algorithm with the stopping criterion using
the coupled double-well dynamics on the BA network used in Fig. 6 in the main text. We show in Fig. S30
the d and ⌧ values as we increase n. Our algorithm stops at n = 11, shown by the dashed line. This is
because the d value for the node set chosen at n = 11 is less than 1% larger than the previous d value (i.e.,
0.3% larger) for the first time when we increase n from n = 1 one by one. Although Kendall’s ⌧ continues
to increase beyond n = 11, the ⌧ value at n = 11 (i.e., ⌧ = 0.889) is not much smaller than those at
larger values of n including the ⌧ value at n = N = 50. (The largest ⌧ value for n > 11 is ⌧ = 0.942.) On
the other hand, the ⌧ value at n = 11 is notably larger than those at smaller n, particularly compared
to n  7. These results support the e�ectiveness of our stopping criterion, which balances the benefit of
making d (and potentially ⌧) as large as possible and the cost of examining S with large n.
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Figure S30: Demonstration of the node set optimization algorithm with the stopping criterion. We used
the coupled double-well dynamics on the BA network with N = 50 nodes used in Fig. 6 in the main text.
The dashed line indicates n = 11, at which the search stops. The dotted line indicates n = 5, which is
the largest n value except n = N used in the main text.
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Supplementary Note 5: Definition of p1 and p2 when large negative ⌧
values are better

For the mutualistic interaction and gene regulatory dynamics, xi transits from the upper to the lower
state as the bifurcation parameter gradually changes. Therefore, larger negative ⌧ values are better.
We defined p1 and p2, i.e., the performance of the node set maximizing d, for this case by applying the
definition of p1 and p2 for �⌧ instead of ⌧ , roughly speaking. Precisely, for a given n, we define p1 as
twice the fraction of node sets whose ⌧ is smaller (i.e., more negative) than that for the maximizer of d.
We define p2 as (⌧⇤ � ⌧min)/(h⌧i � ⌧min), where ⌧min is the smallest (i.e., the most negative, which means
the best) ⌧ value among the node sets with n nodes examined; we recall that h⌧i is the average of ⌧ over
all the node sets with n nodes examined and that ⌧⇤ is the ⌧ value realized by the maximizer of d. If
the maximizer of d is the best node set, realizing the smallest ⌧ , then both p1 and p2 are equal to 0 and
the smallest. A small p1 or p2 value indicates that the maximizer of d provides a relatively good early
warning signal.
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Supplementary Note 6: Performance of the maximizer of d on the

other four networks

We show in Fig. S31 the p1 and p2 values for the Erd�s-Rényi network, node fitness network, freshwater
stream food web network, and dolphin social network. The results are similar to those for the BA network
and the Chesapeake Bay carbon flow network shown in Fig. 7 in the main text.
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Figure S31: Performance of the node set maximizing d for four networks. The squares and circles
represent p1 and p2, respectively, for the given n, dynamics, network, and condition (i.e., whether ui or
�i is homogeneously or heterogeneously distributed) averaged over 50 series of simulations. (aa)–(ag): A
network generated by the Erd�s-Rényi random graph. (ah)–(an): A network generated by the node fitness
model. (ba)–(bg): Freshwater stream food web network. (bh)–(bn): Dolphin social network. The panels
on the leftmost column correspond to the double-well dynamics, and the second to the fourth columns
to the mutualistic interaction, gene regulatory, and SIS dynamics, respectively. The combination of the
dynamics model and bifurcation parameter is as follows. (aa), (ah), (ba), and (bh): Double-well, u. (ab),
(ai), (bb), and (bi): Mutualistic interaction, u. (ac), (aj), (bc), and (bj): Gene regulatory, u. (ad), (ak),
(bd), and (bk): Double-well, D. (ae), (al), (be), and (bl): Mutualistic interaction, D. (af), (am), (bf),
(bm): Gene regulatory, D. (ag), (an), (bg), and (bn): SIS, �.
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(Fig. S31 continued)
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Supplementary Note 7: Regime shifts without critical slowing down

To show the behavior of V̂S when regime shifts occur without critical slowing down, we simulated the
coupled double-well dynamics on a BA network in the following two situations. We used the same BA
network with N = 50 nodes and initial condition as those used in the main text.

First, dynamical noise may induce transitions from the lower to the upper states of xi without critical
slowing down. To investigate this scenario, we poise the dynamical system close to the saddle-node
bifurcation point by setting u = 0, D = 0.05, and � = 0.094. For simplicity, we set �ui = 0 and �i = 0
for all i 2 {1, . . . , N}. We also set r2 = 2 to make the attractive basin of the lower state smaller than that
of the upper state. This is because, with r2 = 2, a transition from the lower to the upper state driven
by dynamical noise, which we focus on here, occurs more easily than a transition from the upper to the
lower state. The other parameter values are the same as those used in the main text. Then, we run a
simulation until the first node, denoted by i0, transits from its lower state (i.e., xi0(t)  2) to the upper
state (i.e., xi0(t) > 2). To calculate Kendall’s ⌧ and the node set S maximizing d, we need a sequence
of sample covariance matrices. In the analysis shown in the main text, we sampled covariance matrices
at every value of the bifurcation parameter. However, in the present scenario, the bifurcation and other
parameters of the model are fixed throughout the simulation. Therefore, we take K̃ = 70 consecutive time
windows of length 100 TUs backward in time starting from the time at which the first node has transited
from its lower state to the upper state. In each time window, we collect L = 100 evenly spaced samples
from each xi(t), i 2 {1, . . . , N} such that the adjacent samples are 1 TU apart. This sampling scheme
within each time window is the same as that used in the main text. Then, we calculate the covariance
matrix in each of the K̃ time windows. We use the round(0.1K̃)th and round(0.9K̃)th covariance matrices
to identify the S maximizing d. We also use the K̃ covariance matrices to calculate ⌧ by pretending that
the kth time window (with k 2 {1, . . . , K̃}) is the kth smallest value of a bifurcation parameter. We
emphasize that there is in fact no bifurcation parameter varying towards the saddle-node bifurcation in
this simulation.

We show in Fig. S32(a) a time course of V̂S for the maximizer of d, that of V̂S with S = {i0}, i.e., the
single node that transits from its lower to the upper state first, and xi(t) for each i. We find that V̂S is not
responsive to the impending regime shift for both the maximizer of S and the i0th node until the transition
is about to occur. The relationship between ⌧ and d for all the node sets with n 2 {1, 2, 3, 4, 5, N}, shown
in Fig. S32(b), indicates that ⌧ is close to 0 for any node set S and that the maximizer of d does not
particularly generate a good early warning signal in terms of ⌧ .

To examine a second scenario of regime shifts without critical slowing down, we use the same parameter
values as those in the last simulations except that we set r2 = 3 and � = 0.05, which are the values used
in the main text. Now we add impulse input to all nodes by suddenly increasing u from u = 0 to u = 5
at t = 104 TU. Because u = 5 is large, all xi(t) values almost suddenly approach and cross the threshold
(= 2; see Fig. 4 of [6] for a schematic), realizing a regime shift without notable critical slowing down.
Then, we compute d and ⌧ in the same manner as in the first scenario.

We show time courses of V̂S for the maximizer of d and for S = {i0}, and xi(t) 8i 2 {1, . . . , N} in
Fig. S32(c). We show the relationships between ⌧ and d for all node sets with n 2 {1, 2, 3, 4, 5, N} in
Fig. S32(d). The results are similar to those shown in Figs. S32(a) and (b). We conclude that our early
warning signals, V̂S , do not anticipate regime shifts that do not accompany critical slowing down, at least
under these two scenarios.
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Figure S32: Early warning signals when regime shifts occur without critical slowing down. (a) V̂S and
xi(t) when dynamical noise induces a regime shift. (b) Relationships between ⌧ and d when dynamical
noise induces a regime shift. (c) V̂S and xi(t) when impulse input induces a regime shift. (d) Relationships
between ⌧ and d when impulse input induces a regime shift. In (a) and (c), we only show one xi(t) value
per TU for each i to prevent the plots from being too congested. In (b) and (d), each circle represents a
node set, and the ⌧ and d values for the node set maximizing d for each n value are highlighted by the
dashed lines. We used the coupled double-well dynamics on the BA network with N = 50 nodes.
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Supplementary Note 8: Comparison of the maximizer of d and Large

SD

In Figs. S33, S34, S35, S36, S37, and S38, we compare the Kendall’s ⌧ values obtained with the maximizer
of d (plotted on the vertical axis) and those obtained with Large SD (plotted on the horizontal axis) for
the BA network, ER random graph, node fitness network, Chesapeake Bay network, freshwater stream
food web network, and dolphin social network, respectively. We tested the four models of dynamics and
the three heterogeneity conditions for each network.
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Figure S33: Relationships between the Kendall’s ⌧ values for the maximizer of d and those for Large SD
on the BA network. (a) n = 1. (b) n = 2. (c) n = 3. (d) n = 4. (e) n = 5. The marker color identifies
the dynamics model. The marker shape identifies the numerical simulation condition: the circles indicate
the homogeneous stress and noise case; the squares indicate the heterogeneous stress and homogeneous
noise case; the diamonds indicate the heterogeneous stress and noise case. The filled and open markers
correspond to the numerical simulations in which the bifurcation parameter is u and D, respectively.
These conventions are indicated by the legends. Because we do not introduce or vary the stress in the
SIS dynamics, for the SIS dynamics, there are no squares, and the diamonds indicate the heterogeneous
noise case. Each marker shows the average ⌧ value over 50 series of simulations. The solid lines represent
the diagonals.
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Figure S34: Relationships between the Kendall’s ⌧ values for the maximizer of d and those for Large SD
on the ER random graph. (a) n = 1. (b) n = 2. (c) n = 3. (d) n = 4. (e) n = 5. See the legends of
Fig. S33 for the detailed explanation of the marker conventions.
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Figure S35: Relationships between the Kendall’s ⌧ values for the maximizer of d and Large SD on the
network generated by the node fitness network. (a) n = 1. (b) n = 2. (c) n = 3. (d) n = 4. (e) n = 5.
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Figure S36: Relationships between the Kendall’s ⌧ values for the maximizer of d and Large SD on the
Chesapeake Bay network. (a) n = 1. (b) n = 2. (c) n = 3. (d) n = 4. (e) n = 5.
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Figure S37: Relationships between the Kendall’s ⌧ values for the maximizer of d and Large SD on the
freshwater stream food web network. (a) n = 1. (b) n = 2. (c) n = 3. (d) n = 4. (e) n = 5.
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Figure S38: Relationships between the Kendall’s ⌧ values for the maximizer of d and Large SD on the
dolphin social network. (a) n = 1. (b) n = 2. (c) n = 3. (d) n = 4. (e) n = 5.
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Supplementary Note 9: Performance of the maximizer of d when the

early warning signal is the standard deviation

of xi(t) averaged over the selected nodes

We show in Fig. S39 the p1 and p2 values for the four dynamics on the BA network and the Chesapeake
Bay network when the early warning signal is the average of the standard deviation rather than the
variance of xi(t) over the n nodes in node set S selected by maximization of d. The results are almost
the same as those when the early warning signal is the variance of xi(t), which are shown in Fig. 8 in the
main text.
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Figure S39: Performance of the node set S maximizing d quantified by p1 and p2 when the early warning
signal is the standard deviation of xi(t) averaged over the n nodes in S. As in Fig. 7, the squares
and circles represent p1 and p2, respectively, for the given n, dynamics, network, and condition (i.e.,
whether ui or �i is homogeneously or heterogeneously distributed) averaged over 50 series of simulations.
(A)–(G): BA network. (H)–(N): Chesapeake Bay network. The combination of the dynamics model and
bifurcation parameter is (A) and (H): double-well, u, (B) and (I): mutualistic interaction, u, (C) and (J):
gene regulatory, u, (D) and (K): double-well, D, (E) and (L): mutualistic interaction, D, (F) and (M):
gene regulatory, D, and (G) and (N): SIS, �.
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Supplementary Note 10: Comparison with the High Input and Low

Input algorithms

In the High Input algorithm, we select the n nodes with the largest value of Ri =
PN

j=1wijxj , where xj is
the average of xi(t) calculated over the L evenly spaced samples after the transient, which we described
in detail in the Methods section of the main text. This quantity is the sum of the input from all the
other nodes if the coupling is linear, as in the case of the coupled double-well dynamics (see Eq. (26)
in the main text). In the Low Input algorithm, we select the n nodes with the smallest Ri values. In
a previous study, early warning signals calculated from the nodes selected by High Input were e�ective
at anticipating transitions of the nodes from their lower to upper state; likewise those calculated with
Low Input were e�ective at anticipating transitions from their upper to lower states [7]. Therefore, we
calculated the Kendall’s ⌧ with the High Input node set for the double-well and SIS dynamics, for which
we gradually changed the bifurcation parameters to induce the transitions from the lower to upper states.
Similarly, we calculated ⌧ with the Low Input node set for the mutualistic interaction and gene regulatory
dynamics.

We compare the Kendall’s ⌧ values obtained with the maximizer of d and those obtained with
High/Low Input in Figs. S40, S41, S42, S43, S44, and S45 for the BA network, ER random graph,
node fitness network, Chesapeake Bay network, freshwater stream food web network, and dolphin social
network, respectively. The results are similar to those for the comparison between the maximizer of d
and Large SD shown in Fig. 9 in the main text and section Supplementary Note 8:.
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Figure S40: Relationships between the Kendall’s ⌧ values for the maximizer of d and those for High/Low
Input on the BA network. (a) n = 1. (b) n = 2. (c) n = 3. (d) n = 4. (e) n = 5. See the legends of
Fig. S33 for the detailed explanation of the marker conventions. Each marker shows the average ⌧ value
over 50 independent series of simulations. The solid lines represent the diagonals.
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Figure S41: Relationships between the Kendall’s ⌧ values for the maximizer of d and those for High/Low
Input on the ER random graph. (a) n = 1. (b) n = 2. (c) n = 3. (d) n = 4. (e) n = 5.
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Figure S42: Relationships between the Kendall’s ⌧ values for the maximizer of d and those for High/Low
Input on the network generated by the node fitness network. (a) n = 1. (b) n = 2. (c) n = 3. (d) n = 4.
(e) n = 5.
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Figure S43: Relationships between the Kendall’s ⌧ values for the maximizer of d and those for High/Low
Input on the Chesapeake Bay network. (a) n = 1. (b) n = 2. (c) n = 3. (d) n = 4. (e) n = 5.
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Figure S44: Relationships between the Kendall’s ⌧ values for the maximizer of d and those for High/Low
Input on the freshwater stream food web network. (a) n = 1. (b) n = 2. (c) n = 3. (d) n = 4. (e) n = 5.
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Figure S45: Relationships between the Kendall’s ⌧ values for the maximizer of d and those for High/Low
Input on the dolphin social network. (a) n = 1. (b) n = 2. (c) n = 3. (d) n = 4. (e) n = 5.
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