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REVIEWER COMMENTS 

 

Reviewer #1 (Remarks to the Author): 

Sudden changes in the stable steady states of complex dynamical systems as a system parameter 

changes, also called regime shifts, are of great concern and constitute a forefront interdisciplinary 

research field. A key issue is early warnings. For networked dynamical systems, early warning signals can 

be obtained from a subset of nodes in the network, but how to determine the optimal subset of nodes 

to extract early warning signals had been unclear. In this paper, the authors developed a mathematical 

theory based on linear stochastic differential equations to address this important question. The use of 

linear stochastic system is justified as the system is assumed to be in the vicinity of some stable steady 

state. The authors focused on regime shift as induced by changes in a bifurcation parameter and 

proposed an index based on the variances of the nodal state to identify a critical subset of nodes from 

which early warning signals can be extracted. Because the index is based on a kind of "average variance" 

of the dynamical state of the nodes, the fluctuations in the early warning signal can be significantly 

reduced as compared with these in previous works. The authors employed six synthetic and empirical 

complex networks and four dynamical processes to demonstrate the workings of the proposed method. 

The work is well motivated and addresses an important problem of current interest. The manuscript can 

be improved in a number of ways. 

1. (major) It is stated that the average value of the sample covariance over a set of nodes should be used 

to improve the early warning signal. An index (d) was proposed and maximizing this index would lead to 

the optimal set of nodes. What is the intuitive picture underlying this method? Are the nodes in the 

optimal set simply those with the least dynamical noise? In any case, some threshold is needed to 

determine the set. How is the threshold determined? 

Section 2 gives the mathematical reasoning behind the proposed index. What is lacking is an intuitive 

physical explanation. Especially, why maximizing the index would give the best subset of nodes from 

which early warning signals can be extracted? For a two-node network, the index defined in Eq. (20) is 

the distance between two normal distributions, and it is necessary to evaluate this index for node 1, 

node 2, and the "average" of the two nodes. It was demonstrated that the "average" gives the maximum 

index value because the averaging process cancels the noises from the two nodes, so it should be used. 

Could it happen that the noises from the two nodes are not canceled out but are added up? - the 

superposition of two signals would depend on their phases, leading to constructive or destructive 

interference. Were the effects of the phases taken into account in calculating the index d? 

The original Sec. 2 is mathematical. Perhaps it should be moved to the Methods section. Instead, a new 

section giving a physical picture of the selection of the optimal set of nodes is desired, especially 

considering the broad readership of Nat. Commun. 

2. (major) To find the optimal set of nodes, it seems necessary to test all possible subsets of nodes in the 

network. If the network is large, the computation load can be enormous. In fact, this is an NP-hard 

problem. All networks tested are relatively small networks - with the number of nodes around 50. Can 

the authors' method be extended to larger networks? 



3. (minor) The first example in Sec. 3, especially Fig. 2, is confusing. It seems that Fig. 2 represents the 

bifurcation diagram of the system rather than its phase portrait especially considering that the paper 

focuses on bifurcation induced tipping and samples the system at fixed values of "r," implying that "r" is 

not a variable. 

Regarding the sentence: "We assume that f(x,r) is continuous in terms of x and r for simplicity." It’s 

confusing just by looking at Fig. 2 and if the system shown is discontinuous, then the assumption of 

continuity in the model should be reevaluated and appropriately discussed. 

Moreover, the presence of two stable equilibria in cases where "r" is less than zero (r < 0) needs further 

clarification or justification. 

4. (minor) The authors claim that it is necessary to sample the system with at least two values of the 

bifurcation parameter. What are the real-world implications of this requirement and its impact on the 

results? How are these two values typically chosen, and is there a preference for selecting values that 

are distant from each other or proximate to the bifurcation point? 

5. (minor) A clear definition of what constitutes a "small" and "large" network should be given. Is it in 

terms of the computational complexity? Are both the number of nodes and the number edges important 

for calling a network "large"? 

6. (minor) Section 4 needs to be reorganized to improve clarity. For instance, it could be divided into 

three subsections to present the results of each dynamical system separately 

 

Reviewer #2 (Remarks to the Author): 

This paper develops a powerful advance in the detection of early warning signals in networked systems. 

The authors present an optimization method to determine which nodes of a network are the best ones 

to monitor in order to extract reliable early warning signals based on phenomena such as critical slowing 

down. Of especial value is the finding that the method excels despite heterogeneity among nodes in 

terms of dynamical noise and stress. The reason this is so important is that many important systems are 

characterized by this heterogeneity among nodes—almost to the point that such systems are sometimes 

not even recognized as networks. Examples include differing countries or different climate subsystems 

systems that are strongly linked and subject to tipping point dynamics. Few existing methodologies 

provide guidance on how/which nodes to monitor with the generality that their analytical framework 

offers. The effect as measured by p1 and p2 seems very strong, and they assessed the method across a 

range of different networks. 

The methodology is sound and the writing and organization are good. The only recommendation I have 

is that the authors should present some results that will more clearly demonstrate the value of the 

approach to less specialized readers. For example, they demonstrate the superiority of their approach by 

generating plots for p1 and p2. This is a perfectly valid and correct method for assessing the approach. 

However, they should also have some plots that simply show variance versus time for the set S, 

compared to some random sample of nodes, for the BA model for example. This will better convey the 

usefulness of the approach to less mathematical audiences. Some of the important but confirmatory 



plots could be moved to the SI appendix to make way for such plots that can speak to a general 

readership. 

 

Reviewer #3 (Remarks to the Author): 

In the article “Anticipating regime shifts by mixing early warning signals from different nodes” by N 

Masuda et al., the authors devise an early warning signal for networks by optimizing the node set using a 

distance measure of distributions at two different bifurcation parameter values. They also compare their 

studies with other methods of optimizing node sets for calculating early warning signals of regime shifts. 

They also validate their approach to combinations of varied networks, stress, and dynamical noise. 

I find the work exciting and intriguing to a broad audience, as they deal with developing optimized early 

warning signals for networks that are of broad applicability to regime shift prediction across diverse 

domains. The manuscript will add to the existing literature on early warning signals of networks, with a 

lot of room for expansion within the present framework. However, I have a few comments and 

suggestions that I strongly feel must be addressed before the manuscript can be accepted for 

publication. 

Below are my comments: 

1. In Fig. 3, the sample covariance is distributed over a very small interval of the order 10^-2, whereas in 

Fig. 4(b), the sample covariance is distributed over a larger interval. While this can be attributed to 

significant noise in the later case, one should remember that in empirical data, where noise cannot be 

differentiated from data, such an inference could result in erroneous signals. This could be voided by 

measuring the change in covariance at lag one and using the normalized form of the same as an 

indicator of regime shift. Testing the change in covariance at higher lags could also improve early 

warning signals. 

2. Secondly, the authors measure the distance d at two different values of the bifurcation parameter (r) 

for constructing the set S of optimized nodes. The bifurcation theory behind the occurrence of a tipping 

point makes it evident that changes occur in the state of the system in the vicinity of the tipping. In this 

study, I understand that the authors select two r values from the bistable region. How do the authors 

choose the different values of r to measure d in the instances of other bifurcation? I recommend the 

authors make it more clear whether they choose it by trial or there is some intuition at what values of 

the bifurcation they calculate the difference in distribution d. Also, I suspect the sensitivity of the d value 

on the choice of r values. A sensitivity analysis showing the effect of choice of r value on the construction 

of the set S theoretically or numerically would add to the novelty of the study.  

3. Additionally, it is important to note that the entire significance of early warning signals is directed to 

their utility in anticipating regime shifts in real data. Throwing some light on how one can extend this 

study to empirical data will add to the generality of the study, which is not apparent in the present form 

of the manuscript. 

4. The study of early warning signals here is only focused on trends obtained from data undergoing a 

regime shift, and their strength is measured using Kendall’s tau. However, it is essential to assess the 

chance of false negatives (i.e., signals in data not undergoing a regime shift) as well. Clearly, previous 



literature has shown evidence of a rise in variance and artificial autocorrelation in data not undergoing 

regime shift. Therefore, it is necessary to perform an analysis of the early warning signals in data not 

undergoing regime shifts and investigate the strength of signals in the same. This is absent in the present 

study. 

Here are some important references that the authors might find relevant. 

Boettiger C, Hastings A. Early warning signals and the prosecutor's fallacy. Proceedings of the Royal 

Society B: Biological Sciences. 2012 Dec 7;27 (1748):4734-9. 

Boettiger C, Ross N, Hastings A. Early warning signals: the charted and uncharted territories. Theoretical 

ecology. 2013 Aug;6:255-64. 

5. In Fig. 5, the authors show that increasing the size of N improves the early warning. However, in 

another instance, the authors mention, “The node set maximizing d tends to work better for smaller 

node sets (i.e., smaller n).” This may be made clear. 

6. I find that a limitation of the algorithm is that there are no stopping criteria in constructing S. I think 

the authors may find it interesting to derive stopping criteria in the construction of the set S as 

increasing the size of N improves the signal, and this can lead one to continue calculating until one 

reaches the size of the network. This may be computationally very expensive and undermines the utility 

of the same when working with higher dimensional real networks. 



Reviewer #1

Sudden changes in the stable steady states of complex dynamical sys-
tems as a system parameter changes, also called regime shifts, are
of great concern and constitute a forefront interdisciplinary research
field. A key issue is early warnings. For networked dynamical sys-
tems, early warning signals can be obtained from a subset of nodes
in the network, but how to determine the optimal subset of nodes to
extract early warning signals had been unclear. In this paper, the
authors developed a mathematical theory based on linear stochastic
differential equations to address this important question. The use
of linear stochastic system is justified as the system is assumed to
be in the vicinity of some stable steady state. The authors focused
on regime shift as induced by changes in a bifurcation parameter
and proposed an index based on the variances of the nodal state to
identify a critical subset of nodes from which early warning signals
can be extracted. Because the index is based on a kind of ”average
variance” of the dynamical state of the nodes, the fluctuations in
the early warning signal can be significantly reduced as compared
with these in previous works. The authors employed six synthetic
and empirical complex networks and four dynamical processes to
demonstrate the workings of the proposed method.

The work is well motivated and addresses an important problem of
current interest. The manuscript can be improved in a number of
ways.

We are glad to hear an overall positive evaluation by the reviewer. We amended
the manuscript according to the reviewer’s valuable comments as follows.

1. (major) It is stated that the average value of the sample covari-
ance over a set of nodes should be used to improve the early warn-
ing signal. An index (d) was proposed and maximizing this index
would lead to the optimal set of nodes. What is the intuitive picture
underlying this method? Are the nodes in the optimal set simply
those with the least dynamical noise? In any case, some threshold
is needed to determine the set. How is the threshold determined?

Intuitively, the nodes in the optimal set tend to be those with the least dynamical
noise, but importantly, it is not the whole story. That is, if xis for the nodes
with the least dynamical noise are correlated with each other (e.g., if those
nodes are adjacent to each other by being directly connected by an edge in the
network), averaging the variance of xi over these nodes does not help to reduce
the fluctuation of the early warning signal. We added text to the beginning
of section 4 (before entering section 4.1) to explain this intuitive picture as a
motivator to numerically analyze the case of networks with larger numbers of
nodes, N .

Maximization of d is a combinatorial optimization problem. Therefore, there is
no threshold involved. On the other hand, when N is large, we cannot obtain
the exact maximizer of d due to the combinatorial explosion. Therefore, we



heuristically determined the optimizer of d already in the previous version of
the manuscript, which is described in detail (i.e., “We exhaustively examined
all possible S with n = 1 or n = 2 and uniformly randomly sampled 5000 sets of
S for each n ∈ {3, 4, 5} due to a large number of combinations.” on lines 271–
272 in the revised manuscript). For further improvement of this combinatorial
optimization aspect, please see our response to item “2.” below.

Section 2 gives the mathematical reasoning behind the proposed in-
dex. What is lacking is an intuitive physical explanation. Especially,
why maximizing the index would give the best subset of nodes from
which early warning signals can be extracted? For a two-node net-
work, the index defined in Eq. (20) is the distance between two
normal distributions, and it is necessary to evaluate this index for
node 1, node 2, and the ”average” of the two nodes. It was demon-
strated that the “average” gives the maximum index value because
the averaging process cancels the noises from the two nodes, so it
should be used. Could it happen that the noises from the two nodes
are not canceled out but are added up? - the superposition of two
signals would depend on their phases, leading to constructive or
destructive interference. Were the effects of the phases taken into
account in calculating the index d?

First, some intuitive explanation was already in the previous version of the
manuscript, i.e., the text earlier in the paragraph containing Eq. (15) in the
revised manuscript. We added more text for intuitive explanation in the same
paragraph before and after Eq. (15). Furthermore, we added a paragraph dis-
cussing the intuitive reason for our choice of d (i.e., the paragraph starting with
“Our choice of” in section 4.3).

Second, for general random variables Z1 and Z2, one obtains

std[Z1 + Z2] =
√
(std[Z1])2 + std[Z2]2 + 2cov(Z1, Z2) ≤ std[Z1] + std[Z2], (1)

where std denotes the standard deviation, cov denotes the covariance, and the
equality holds true if and if Z1 and Z2 are perfectly correlated (such that
cov(Z1, Z2) = std[Z1]std[Z2]). Therefore, the noises from the two nodes are
indeed added up if we just add the early warning signals at node 1 and that at
2 and if these two signals are perfectly correlated. However, we are considering
the “average” of the two nodes, as the reviewer also mentioned. That is, we set
V̂{1,2} ≡ (V̂1 + V̂2)/2. For the average, Eq. (1) is adapted to

std

[
Z1 + Z2

2

]
≤ std[Z1] + std[Z2]

2
≤ max (std[Z1], std[Z2]) . (2)

Therefore, it does not happen that noises from the two nodes are added up
in our framework. The fluctuation (i.e., standard deviation) of V̂{1,2} is never

greater than that of V̂1 or V̂2.

We are not particularly considering phasic signals, but the argument is the
same. For example, if one adds two same sinusoidal curves that are in phase,
then its amplitude is doubled. However, if we divide the sum by two, then it is



the same as one original sinusoidal curve. If two sinusoidal curves have a phase
difference, the sum of them has an amplitude larger than a single sinusoidal
curve but smaller than twice of them. Again, the average means to divide the
sum by two, so the averaged sinusoidal curve has an amplitude smaller than a
single sinusoidal curve. Although we have omitted noise in this argument, we
believe that this argument captures possible consequences in the case of phasic
signals.

We opted not to include these arguments in the manuscript because we think
that they will rather confuse readers (e.g., our theory and models are not about
phasic signals/noises).

The original Sec. 2 is mathematical. Perhaps it should be moved to
the Methods section. Instead, a new section giving a physical picture
of the selection of the optimal set of nodes is desired, especially
considering the broad readership of Nat. Commun.

We moved most of the mathematical derivations in section 2 to section S1.
Because the remaining content of section 2 has the description of the class
of dynamics models we are considering, the description of our main idea, the
definition of V̂S , and intuitive interpretation of our theoretical results, we opt to
keep it in section 2 rather than completely hiding them in the Methods section.
We are fully aware of the broad readership of Nature Communications, but many
Nat Commun papers do have more than a few equations. With the equations
and text remaining in section 2, we believe that it is now a smooth read for
broad readers.

Our mathematics-based method selects the optimal set of nodes that does not
necessarily agree with a physical picture/interpretation. Therefore, we contend
that our node set selection is mathematical/algorithmic. Therefore, we did not
opt to transform this section into a new section giving a physical picture of the
methods. However, to guide readers, we supplied text to explain the intuition
behind our node set selection algorithm; for such additional text, please see our
response to “4.” below.

2. (major) To find the optimal set of nodes, it seems necessary to
test all possible subsets of nodes in the network. If the network is
large, the computation load can be enormous. In fact, this is an
NP-hard problem. All networks tested are relatively small networks
- with the number of nodes around 50. Can the authors’ method be
extended to larger networks?

Indeed, it is an NP-hard problem, which is why we heuristically (and therefore
only approximately) optimized d. We believe that the following sentence (lines
271–272), which had been in the previous version of manuscript already, clarifies
this point and implies that one can run the same heuristic optimization for larger
networks:

“We exhaustively examined all possible S with n = 1 or n = 2 and uniformly
randomly sampled 5000 sets of S for each n ∈ {3, 4, 5} due to a large number
of combinations.”.



To address the problem of the performance (in terms of d) and computational ef-
ficiency, we also devised a stopping criterion and carried out a numerical demon-
stration. We briefly discussed this, including the motivation, in the main text
(lines 272–273 and 455–457) and provided the details, including the numerical
results, in the new section S4. We also provided code to maximize d with the
proposed stopping criterion (please see section S4).

3. (minor) The first example in Sec. 3, especially Fig. 2, is confusing.
It seems that Fig. 2 represents the bifurcation diagram of the system
rather than its phase portrait especially considering that the paper
focuses on bifurcation induced tipping and samples the system at
fixed values of “r,” implying that “r” is not a variable.

Indeed, r is not a variable but a bifurcation parameter. To avoid the confusion,
we replaced “phase portrait” by “bifurcation diagram”.

Regarding the sentence: “We assume that f(x,r) is continuous in
terms of x and r for simplicity.” It’s confusing just by looking at
Fig. 2 and if the system shown is discontinuous, then the assumption
of continuity in the model should be reevaluated and appropriately
discussed.

f(x, r) is continuous. We agree that Fig. 2 was confusing. Thank you for point-
ing this out. We remedied Fig. 2 so that it shows a continuous vector field.

Moreover, the presence of two stable equilibria in cases where “r” is
less than zero (r < 0) needs further clarification or justification.

First, we added the following clarification sentence in the first paragraph of
section 3.1:

“In other words, dx/dt = f(x, r) with r < 0 has a stable equilibrium x∗ = −
√
−r

and an unstable equilibrium x∗ =
√
−r, which collide at x∗ = 0 when r = 0.”.

Second, we added the following text five lines below in the same paragraph:

“This assumption in combination with the continuity assumption for f(x, r) also
implies that the stable equilibrium apart from x∗ = −

√
−r persists for some

r < 0 although its position changes from x = c in general. Therefore, there are
two stable equilibria at least in some range of x < 0 near x = 0, as shown in
Fig. 2.”.

Third, we moved up the sentence introducing Fig. 2 within the same paragraph
to better assist the added sentence.

4. (minor) The authors claim that it is necessary to sample the
system with at least two values of the bifurcation parameter. What
are the real-world implications of this requirement and its impact on
the results? How are these two values typically chosen, and is there
a preference for selecting values that are distant from each other or
proximate to the bifurcation point?



(i) To answer the reviewer’s first question “What are the real-world implications
of this requirement and its impact on the results?”, we carried out a sensitivity
analysis in which we varied the two bifurcation parameter values in the entire
range of the bifurcation parameter used in our analysis. Both for the 2-node and
3-node networks, the results are very robust (in the sense that the node set S
maximizing d stays the same even if we change the two values of the bifurcation
parameter, r) with one exception. Even in the single exceptional case, the
results are still reasonably robust against some variation in the r values. We
described these new results and analysis in the new section S2 and mentioned
them in the main text.

For larger networks, we set the two values of the bifurcation parameter (i.e., u or
D), denoted by r with a slight abuse of notation for the sake of the discussion
here, to r(1) ≈ 0.1(rmax − rmin) + rmin and r(2) ≈ 0.9(rmax − rmin) + rmin,
where rmax and rmin are the largest and smallest values, respectively, of the
bifurcation parameter before the tipping point, and the approximation (i.e., ≈)
only originates from the rounding. In other words, r(1) and r(2) are 10 and 90
percentiles. We did so because, if one r value is far from the tipping point and
the other r value is close to the tipping point, we expect that the difference
between µ1 and µ2, which is the numerator of d (see Eq. (15)), is larger than
the case in which the two r values are closer. Then, the difference in the d value
for different choices of S may be larger, potentially making it easier to find the
maximizer of d.

To test the robustness of our results with respect to the choice of r(1) and r(2),
we carried out a robustness test for all the networks and all the dynamics and the
two bifurcation parameters (i.e., u and D). Specifically, we set r(1) and r(2) to
10, 30, 50, 70, or 90 percentiles of the range of the bifurcation parameter values
used, under the constraint that r(1) < r(2). Then, there are nine pairs of r(1)

and r(2) except the original one (i.e., r(1) and r(2) are the 10 and 90 percentiles,
respectively). We measured the performance of the node set S maximizing d
in terms of p1 and p2. We found that the results are sufficiently robust in that
p1 and p2 values stayed sufficiently below 1 when they did so for the original r
pairs (i.e., r(1) and r(2) are the 10 and 90 percentiles, respectively) unless r(1)

and r(2) are too close and r(2) is far from the tipping point (specifically, unless
the 10%–30%, 30%–50%, 50%–70%, 10%–50%, or 30%–70% pair is used). We
added a paragraph in the robustness subsection in the Results section (i.e., the
paragraph starting with “Our choice of” in section 4.3) to discuss these results
briefly and included the detailed setup and all the numerical results in a new SI
section (i.e., section S2).

(ii) To answer the reviewer’s second question “How are these two values typically
chosen, and is there a preference for selecting values that are distant from each
other or proximate to the bifurcation point?”, we stated in the same added
paragraph (i.e., the paragraph starting with “Our choice of” in section 4.3)
the aforementioned intuition (see (i) just above) underlying our choice of the
original r(1) and r(2) values. We also mentioned that our choice is regardless
of the type of bifurcation. We added the intuitive explanation in this section
rather than the section of the two-node or three-node network earlier because
we consider that having all the discussion of the robustness of the results in
section 4.3 is coherent and makes the flow of the text smoother.



5. (minor) A clear definition of what constitutes a “small” and
“large” network should be given. Is it in terms of the computational
complexity? Are both the number of nodes and the number edges
important for calling a network “large”?

It is in terms of the number of nodes, not the number of edges. The distinction
between small and large is whether or not the analytical computation is possible.
To clarify this, we amended the text as follows:

• We changed the last sentence in the introduction section from

“analytically solvable small networks and with numerically investigated
larger networks”

to

“analytically solvable networks with two or three nodes and with numer-
ically investigated larger networks”.

• We changed the heading of section 3 from

“Coupled nonlinear dynamics on small networks”

to

“Coupled nonlinear dynamics on networks with two or three nodes”.

• We changed the title of Fig. 1 from

“Schematic of small networks.”

to

“Schematic of two networks.”.

• In the third paragraph in the discussion section, we changed

“systems of small size”

to

“systems with a small number of nodes”.

• We changed the text in the first sentence of section 4 from

“in larger networks, we carry out numerical simulations”

to

“in networks with a large number of nodes, we carry out numerical simu-
lations”.



6. (minor) Section 4 needs to be reorganized to improve clarity. For
instance, it could be divided into three subsections to present the
results of each dynamical system separately.

We divided section 4 into four subsections. To accommodate this reorganiza-
tion, we moved the last paragraph in section 4 in the previous version of the
manuscript to the third subsection in the revised manuscript. We also changed
the order of the relevant SI sections, which we did not mark in blue (addition)
or red (deletion) in the change-tracked pdf because this is only the order change
and in the SI.

Finally, apart from responding to the reviewer’s comments, we also implemented
the following changes for better clarity.

• We corrected a typo in the fourth paragraph of Introduction (“an weighted”
→ “a weighted”) and in Eq. (1) (to add dt), and the volume number of a
citation (Scheffer et al. Science 2012) in the reference list.

• We changed the range of the uniform density of the noise strength, σi,
when it is assumed to be heterogeneous across the nodes, from [0, 2σ] to
[0.1σ, 1.9σ], where σ is the mean value. This is because, with [0, 2σ], we
occasionally have noise with extremely small fluctuation (i.e., very small
σi (< 0.1σ)), which is probably not realistic. This change did not modify
the results substantially.

• The performance measures of the proposed node set, p1 and p2, were only
defined for the case in which the nodes transit from their lower to upper
state as the bifurcation parameter changes in the previous version of the
manuscript. In fact, the nodes are assumed to transit from the upper to
the lower state as the bifurcation parameters of the mutualistic interac-
tion dynamics and gene regulatory dynamics decrease, corresponding to,
e.g., species loss as the environment worsens. Therefore, we supplied the
definition of p1 and p2 for this case in the new section S5 and referred it
from the main text. We also revised some text in the same paragraph in
the main text to enhance clarity.

• We found minor errors in the code for calculating mutualistic interaction
dynamics and also p2 in some cases. Therefore, we fixed them. The results
(i.e., figures) changed little.

• We corrected a few figure labels (changes not tracked because they are in
the figures).

• We slightly simplified the convention of rounding for better clarity (lines
553–554), without influencing the results.

• We changed uk to uk in the Methods section to avoid a notational conflict.



Response to Reviewer #2

This paper develops a powerful advance in the detection of early
warning signals in networked systems. The authors present an op-
timization method to determine which nodes of a network are the
best ones to monitor in order to extract reliable early warning signals
based on phenomena such as critical slowing down. Of especial value
is the finding that the method excels despite heterogeneity among
nodes in terms of dynamical noise and stress. The reason this is so
important is that many important systems are characterized by this
heterogeneity among nodes̶almost to the point that such systems
are sometimes not even recognized as networks. Examples include
differing countries or different climate subsystems systems that are
strongly linked and subject to tipping point dynamics. Few exist-
ing methodologies provide guidance on how/which nodes to monitor
with the generality that their analytical framework offers. The effect
as measured by p1 and p2 seems very strong, and they assessed the
method across a range of different networks.

The methodology is sound and the writing and organization are
good.

We are glad to hear a very positive evaluation by the reviewer.

The only recommendation I have is that the authors should present
some results that will more clearly demonstrate the value of the ap-
proach to less specialized readers. For example, they demonstrate
the superiority of their approach by generating plots for p1 and
p2. This is a perfectly valid and correct method for assessing the
approach. However, they should also have some plots that simply
show variance versus time for the set S, compared to some random
sample of nodes, for the BA model for example. This will better con-
vey the usefulness of the approach to less mathematical audiences.
Some of the important but confirmatory plots could be moved to the
SI appendix to make way for such plots that can speak to a general
readership.

Thanks for a great suggestion. We added a figure (Fig. 5 in the revised manuscript)
which simply shows the variance versus u for the optimized node set and a uni-
formly randomly selected node set. We supplied text to explain this figure to
help less specialized leaders.

According to the reviewer’s suggestion, we also moved Fig. 9 in the previous
manuscript, which is a confirmatory plot, to the SI (Fig. S33 in the revised
manuscript) and adjusted the text.

Apart from responding to the reviewer’s comments, we also implemented the
following changes for better clarity.

• We corrected a typo in the fourth paragraph of Introduction (“an weighted”
→ “a weighted”) and in Eq. (1) (to add dt), and the volume number of a
citation (Scheffer et al. Science 2012) in the reference list.



• We changed the range of the uniform density of the noise strength, σi,
when it is assumed to be heterogeneous across the nodes, from [0, 2σ] to
[0.1σ, 1.9σ], where σ is the mean value. This is because, with [0, 2σ], we
occasionally have noise with extremely small fluctuation (i.e., very small
σi (< 0.1σ)), which is probably not realistic. This change did not modify
the results substantially.

• The performance measures of the proposed node set, p1 and p2, were only
defined for the case in which the nodes transit from their lower to upper
state as the bifurcation parameter changes in the previous version of the
manuscript. In fact, the nodes are assumed to transit from the upper to
the lower state as the bifurcation parameters of the mutualistic interac-
tion dynamics and gene regulatory dynamics decrease, corresponding to,
e.g., species loss as the environment worsens. Therefore, we supplied the
definition of p1 and p2 for this case in the new section S5 and referred it
from the main text. We also revised some text in the same paragraph in
the main text to enhance clarity.

• We found minor error in the code for calculating mutualistic interaction
dynamics and also p2 in some cases. Therefore, we fixed it. The results
(i.e., figures) changed little.

• We corrected a few figure labels (changes not tracked because they are in
the figures).

• We slightly simplified the convention of rounding for better clarity (lines
553–554), without influencing the results.

• We changed uk to uk in the Methods section to avoid a notational conflict.



Reviewer #3

In the article “Anticipating regime shifts by mixing early warning
signals from different nodes” by N Masuda et al., the authors devise
an early warning signal for networks by optimizing the node set us-
ing a distance measure of distributions at two different bifurcation
parameter values. They also compare their studies with other meth-
ods of optimizing node sets for calculating early warning signals of
regime shifts. They also validate their approach to combinations of
varied networks, stress, and dynamical noise.

I find the work exciting and intriguing to a broad audience, as
they deal with developing optimized early warning signals for net-
works that are of broad applicability to regime shift prediction across
diverse domains. The manuscript will add to the existing literature
on early warning signals of networks, with a lot of room for expan-
sion within the present framework. However, I have a few comments
and suggestions that I strongly feel must be addressed before the
manuscript can be accepted for publication.

We are glad to hear an overall very positive evaluation. We amended the
manuscript according to the reviewer’s valuable comments as follows.

Below are my comments:

1. In Fig. 3, the sample covariance is distributed over a very small in-
terval of the order 10−2, whereas in Fig. 4(b), the sample covariance
is distributed over a larger interval. While this can be attributed to
significant noise in the later case, one should remember that in em-
pirical data, where noise cannot be differentiated from data, such an
inference could result in erroneous signals. This could be voided by
measuring the change in covariance at lag one and using the normal-
ized form of the same as an indicator of regime shift. Testing the
change in covariance at higher lags could also improve early warning
signals.

We totally agree with the reviewer that noise cannot be differentiated from data
in empirical data. However, we are not doing any inference that depends on the
noise amplitude information. While the sample covariances shown in Fig. 4(b)
are indeed one magnitude (i.e., about 10 times) larger than those shown in
Figs. 3, 4(a), and 4(c), we never compare across these figures when inferring
anything, and the inference protocol does not change depending on the magni-
tude of the observed fluctuation or xi or the intrinsic noise (i.e., σi). Always, we
only measure the sample covariance matrix at two bifurcation parameter values
(corresponding to two different network states in the case of empirical data;
please see our response to item “3.” below for the application of our method to
empirical data), calculate d, and thus determine the optimal node set S. There-
fore, the possibility of erroneous inference along the line the reviewer points out
is excluded. In the new second paragraph in the Discussion section (please also
see our response to “3.” below), we articulated that our method does not use
any information about the network structure or the dynamical equation models



such that it is readily applicable to multivariate time series empirical data. This
implies that the method does not require any information about the dynamical
noise (because the dynamical noise is part of the dynamics model in the present
framework).

We also agree that measuring the variance or covariance at lag one may improve
the performance of early warning signals. We had already discussed this in the
previous version of the manuscript as follows (at the end of the third paragraph
in the Discussion section in the revised manuscript):

“An alternative strategy is to use lagged autocorrelation as early warning signal
because nodes with large intrinsic noise may produce small autocorrelation. Au-
tocorrelation of multivariate OU processes is analytically tractable, whereas it
is more complicated than the variance and covariance [Gardiner2009]. Analysis
of autocorrelation and its average over nodes as early warning signals with the
present theoretical framework warrants future work.”

Given that there is no problem of erroneous inference (please see our discussion
just above), we prefer to keep the analysis of lagged variance/covariance/correlation
for future work, as the aforementioned text states. Indeed, the analytical solu-
tions for lagged correlation would be substantially complicated than the case of
variance (e.g., around p.107 of Gardiner’s book in 2008 which we cited), and we
strongly believe that it deserves another paper.

2. Secondly, the authors measure the distance d at two different
values of the bifurcation parameter (r) for constructing the set S of
optimized nodes. The bifurcation theory behind the occurrence of a
tipping point makes it evident that changes occur in the state of the
system in the vicinity of the tipping. In this study, I understand that
the authors select two r values from the bistable region. How do the
authors choose the different values of r to measure d in the instances
of other bifurcation? I recommend the authors make it more clear
whether they choose it by trial or there is some intuition at what
values of the bifurcation they calculate the difference in distribution
d. Also, I suspect the sensitivity of the d value on the choice of r
values. A sensitivity analysis showing the effect of choice of r value
on the construction of the set S theoretically or numerically would
add to the novelty of the study.

The reviewer’s questions here are (i) how we are choosing the two r values in dif-
ferent bifurcation scenarios and intuitions behind our choice, and (ii) sensitivity
analysis. Let us answer (ii) first and then (i).

(ii) Sensitivity analysis

We carried out a robustness analysis in which we varied the two r values in
the entire range of the r values used in our analysis. Both for the 2-node and
3-node networks, the results are very robust (in the sense that the node set S
maximizing d stays the same even if we change the r values) with one exception.
Even in the single exceptional case, the results are still reasonably robust against
some variation in the r values. We described these new results and the analysis
methods in the new section S2 and mentioned them in the main text.



For larger networks, we set the two values of the bifurcation parameter (i.e.,
u or D), denoted by r with a slight abuse of notation to ease the explanation
here, to r(1) ≈ 0.1(rmax− rmin)+ rmin and r(2) ≈ 0.9(rmax− rmin)+ rmin, where
rmax and rmin are the largest and smallest values, respectively, of the bifurcation
parameter, and the approximation (i.e., ≈) only originates from the rounding.
In other words, r(1) and r(2) are 10 and 90 percentiles. We did so because, if
one r value is far from the tipping point and the other r value is close to the
tipping point, we expect that the difference between µ1 and µ2, which is the
numerator of d (see Eq. (15)), is larger than the case in which the two r values
are closer. Therefore, the difference in the d value for different choices of S may
be larger, potentially making it easier to find the S maximizing d.

To test the robustness of our results with respect to the choice of r(1) and r(2),
we carried out a robustness test for all the networks and all the dynamics and
the two bifurcation parameters (i.e., u and D). Specifically, we set r(1) and r(2)

to 10, 30, 50, 70, or 90 percentiles of the range of the bifurcation parameter
values used under the constraint that r(1) < r(2). There are nine pairs of r(1)

and r(2) except the original one (i.e., r(1) and r(2) are the 10 and 90 percentiles,
respectively). We measured the performance of the node set S maximizing d
in terms of p1 and p2. We found that the results are sufficiently robust in that
p1 and p2 values stayed sufficiently below 1 when they did so for the original r
pair unless r(1) and r(2) are too close and r(2) is too far from the tipping point
(i.e., unless the 10%–30%, 30%–50%, 50%–70%, 10%–50%, or 30%–70% pair is
used). We added a paragraph in the robustness subsection in the Results section
(i.e., the paragraph starting with “Our choice of” in section 4.3) to discuss these
results briefly and included the detailed setup and all the numerical results in
section S2.

Please also note that our theory does not depend on the r(1) and r(2) values,
and therefore we decided to run this robustness test only numerically.

(i) Intuitions behind our choice of the r values

In the same new paragraph in section 4.3, we also stated the aforementioned
intuition underlying our choice of the original r(1) and r(2) values. We also
mentioned that our choice is regardless of the type of bifurcation. We added
the intuitive explanation in this section rather than the section of the two-node
or three-node network earlier because we consider that having all the discussion
of the robustness of the results in section 4.3 is coherent and makes the flow of
the text smoother.

3. Additionally, it is important to note that the entire significance
of early warning signals is directed to their utility in anticipating
regime shifts in real data. Throwing some light on how one can
extend this study to empirical data will add to the generality of the
study, which is not apparent in the present form of the manuscript.

The proposed methods are directly applicable to real data because it does not re-
quire the knowledge of the network structure or the dynamical system equations.
We added a paragraph in the Discussion section (i.e., the second paragraph in
the Discussion section) to explain how to apply our methods to empirical data,
citing example data from ecology and psychopathology.



4. The study of early warning signals here is only focused on trends
obtained from data undergoing a regime shift, and their strength is
measured using Kendall’s tau. However, it is essential to assess the
chance of false negatives (i.e., signals in data not undergoing a regime
shift) as well. Clearly, previous literature has shown evidence of a
rise in variance and artificial autocorrelation in data not undergoing
regime shift. Therefore, it is necessary to perform an analysis of
the early warning signals in data not undergoing regime shifts and
investigate the strength of signals in the same. This is absent in the
present study.

Here are some important references that the authors might find rel-
evant.

Boettiger C, Hastings A. Early warning signals and the prosecutor’s
fallacy. Proceedings of the Royal Society B: Biological Sciences.
2012 Dec 7;27 (1748):4734-9.

Boettiger C, Ross N, Hastings A. Early warning signals: the charted
and uncharted territories. Theoretical ecology. 2013 Aug;6:255-64.

Thanks for constructive comments and giving us important references. In the
Venn diagram in Fig. 1 of Boettiger et al. Theor. Ecol. (2013), the false
positive cases that the reviewer mentioned correspond to regions III and IV.
A major scenario of this case is transcritical bifurcations, shown in region III.
Under transcritical (or Hopf) bifurcations, a (large) regime shift is not observed
while the critical slowing down occurs, so that traditional early warning signals
would increase (which is a false positive). In fact, we did these cases already
in the previous version of the manuscript; the gene regulatory model and the
SIS model, which are two of the four dynamics models used in our study, show
transcritical bifurcations (at least in the case of a single node and well-mixed
populations). In the previous version of the manuscript, we showed that a
rise in our early warning signal, i.e., V̂S , is observed through the transcritical
bifurcations in these models, quantified as large Kendall’s τ values (shown in
old Fig. 9, which is new Fig. S33; also see new Fig. S34–S44). Therefore, our
methods do yield false positives, and this is consistent with previous studies
(e.g., Kefi et al., Oikos (2012), which is cited as a reference for region III in
Fig. 1 of Boettiger et al. (2013)). What was missing in the previous version of
the manuscript was the discussion of this, including that the gene regulatory
model and SIS models show transcritical bifurcations. Therefore, we added a
paragraph in the new robustness subsection in the Results section to discuss
false positives (the second last paragraph in section 4.3).

Because the reviewer mentioned the importance of false negatives, we also car-
ried out additional numerical experiments to assess what occurs in the case of
false negatives. This corresponds to regions II and V in Fig. 1 of Boettiger et
al. (2013) because, in these regions, a large regime shift occurs without accom-
panying critical transitions. Among several scenarios in which this occurs, we
focused on two main scenarios (Boettiger et al. (2013); Scheffer et al., Nature
(2009); Scheffer et al., Science (2012)), i.e., regime shifts driven by dynamical
noise and those driven by large impulse input. Importantly, neither of these
two scenarios accompany changes in the system parameter values. We showed



that a rise in our early warning signals, V̂S , was not observed for any node set
S in these two scenarios, except very near the regime shift. We discussed these
results in a new paragraph added to section 4.3 (i.e., the paragraph starting
with “Not all the regime shifts”) and showed the details in the new section S7.

We also cited these two important references by Boettiger and colleagues in the
introduction and results section. We also cited Hastings & Wysham, Ecology
Letters, 13, 464–472 (2010) in our discussion of false negatives in section 4.3
(i.e., the paragraph starting with “Not all the regime shifts”). We also changed
“near a tipping point” to “near such a tipping point” in the first paragraph
of the Introduction section to indicate that not all tipping points accompany
critical slowing down.

5. In Fig. 5, the authors show that increasing the size of N improves
the early warning. However, in another instance, the authors men-
tion, “The node set maximizing d tends to work better for smaller
node sets (i.e., smaller n).” This may be made clear.

The latter sentence was confusing and inaccurate. We rewrote this sentence as
follows:

“The node set maximizing d tends to work better relative to uniformly random
node sets with the same number of nodes, n, when n is smaller.”.

For the same reason, we replaced

“The node set maximizing d tends to work better (i.e., smaller p1 and p2 values)
when . . .”

in the same paragraph by

“The node set maximizing d tends to work better relative to uniformly randomly
picked node sets, yielding smaller p1 and p2 values, when . . .”.

Similarly, we replaced

“The performance degrades as n increases.”

in the last paragraph of section 4.2 in the revised manuscript by

“The performance of the optimized node set relative to that of uniformly ran-
domly selected node sets with the same number of nodes, n, degrades as n
increases.”.

6. I find that a limitation of the algorithm is that there are no
stopping criteria in constructing S. I think the authors may find it
interesting to derive stopping criteria in the construction of the set S
as increasing the size of N improves the signal, and this can lead one
to continue calculating until one reaches the size of the network. This
may be computationally very expensive and undermines the utility
of the same when working with higher dimensional real networks.



We devised a stopping criterion and carried out a numerical demonstration.
We briefly mentioned the method and results, including the motivation, in the
main text (lines 272–273 and 455–457) and provided the details, including the
numerical results, in the new section S4. We also provided code to maximize d
with the proposed stopping criterion (please see section S4).

Finally, apart from responding to the reviewer’s comments, we also implemented
the following changes for better clarity.

• We corrected a typo in the fourth paragraph of Introduction (“an weighted”
→ “a weighted”) and in Eq. (1) (to add dt), and the volume number of a
citation (Scheffer et al. Science 2012) in the reference list.

• We changed the range of the uniform density of the noise strength, σi,
when it is assumed to be heterogeneous across the nodes, from [0, 2σ] to
[0.1σ, 1.9σ], where σ is the mean value. This is because, with [0, 2σ], we
occasionally have noise with extremely small fluctuation (i.e., very small
σi (< 0.1σ)), which is probably not realistic. This change did not modify
the results substantially.

• The performance measures of the proposed node set, p1 and p2, were only
defined for the case in which the nodes transit from their lower to upper
state as the bifurcation parameter changes in the previous version of the
manuscript. In fact, the nodes are assumed to transit from the upper to
the lower state as the bifurcation parameters of the mutualistic interac-
tion dynamics and gene regulatory dynamics decrease, corresponding to,
e.g., species loss as the environment worsens. Therefore, we supplied the
definition of p1 and p2 for this case in the new section S5 and referred it
from the main text. We also revised some text in the same paragraph in
the main text to enhance clarity.

• We found minor error in the code for calculating mutualistic interaction
dynamics and also p2 in some cases. Therefore, we fixed it. The results
(i.e., figures) changed little.

• We corrected a few figure labels (changes not tracked because they are in
the figures).

• We slightly simplified the convention of rounding for better clarity (lines
553–554), without influencing the results.

• We changed uk to uk in the Methods section to avoid a notational conflict.



REVIEWERS' COMMENTS 

 

Reviewer #1 (Remarks to the Author): 

The authors did an excellent job to address my comments as well as those of the other two referees, 

resulting in a significantly improved manuscript. I recommend it for Nature Communications. 

 

Reviewer #2 (Remarks to the Author): 

The authors have responded to my comments in a satisfactory way. 

 

Reviewer #3 (Remarks to the Author): 

The authors have addressed all the issues I raised, and I think the paper can now be accepted for 

publication in Nature Communications. 
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