SUPPLEMENTARY NOTES
Note 1. Schemas for doping tasks

The English sequence completion schema for the
Doping-English and DopingExtra-English models
are shown below. Each paradigm represents a single line
in the output completion; aside from the "No information"
paradigm, there may be one or more of each of the paradigms
in the output sequence (e.g., there may be multiple separate
one-to-many host-dopant relationships, a single dopant
with no host, multiple results, and multiple modifiers ex-
tracted from the same sentence). The placeholders <HOST>,
<DOPANT*>, <result>, and <modifier*> are used in
place of actual string literal entities. The apostrophe """
character was used to more easily delimit entity captures.
Output sequences not matching one of these patterns were
considered not parsable.

* One host to one-or-more dopants: The host
"<HOST>' was doped with ’<DOPANTI1>',

" <DOPANT2>', and ' <DOPANTN>' .
* Single dopant, no host: ' <DOPANT>' is a dopant.

* Single host, no dopant: The host ’<HOST>’

doped.

was

* Single result: ’<result>’ is a possible doped
result formula.

Modifiers of the
'<modifier2>'...

e One or more modifiers:
doping are ’<modifierl>’,
"<modifierN>’.

* No doping-related information: There is no

doping information.

These sequences returned by the LLM are decoded pro-
grammatically with a simple script that can be found in the
code repository accompanying this publication.

Note 2. GPT-3 fine-tuning and inference parameters

All doping models were trained with 7 epochs. Intermedi-
ate models shown in the learning curve in the main text were
trained with a number of epochs depending on the number
of training samples ¢: 2 epochs for 20 <t < 2%, 4 epochs
for 20 <t <27 and 7 epochs for ¢t = 28, The remaining
models were trained with a batch size of 1 for 4 epochs
with start sequence "\n\n\n###\n\n\n" and stop sequence
"\n\n\nEND\n\n\n". All doping models used GPT-3 in-
ference parameters of 512 max tokens, O temperature,
"\n\n\n###\n\n\n" start token, and "\n\n\nEND\n\n\n
end token. All other models used 1024 max tokens with
remaining parameters identical to the doping models. All
models were trained using the python version of OpenAlI’s
API version 0.27.7.

Note 3. Llama-2 fine-tuning and inference parame-
ters

Llama-2 [1] fine-tunes were performed using a modified ver-
sion of the Facebook Llama-2 recipes repository as of August
11, 2023 (commit 03faba6); the modified repository can
be found at https://github.com/lbnlp/nerre-1lama.
Llama-2 fine-tunes were performed using the 70 billion pa-
rameter version of Llama-2 (11ama-2-70b-hf) with quanti-
zation enabled (8 bit precision) with the following training
configuration parameters:

batch_size_training: 1
num_epochs: 4 or 7
num_workers_dataloader: 1
lr: le-4

weight_decay: 0.0

gamma: 0.85

seed: 42

use_fpl6: False
mixed_precision: True
micro_batch_size: 1
peft_method: str = "lora"
quantization: True

The number of epochs was set to 7 for doping tasks and 4
for the MOF/general tasks.

Llama-2 fine tunes use parameter efficient fine-tuning
(PEFT) using low rank adaptation (LoRa) [2] with the fol-
lowing parameter set:

r: 8

lora_alpha: 32
lora_dropout: 0.05
inference_mode: False

Decoding was performed without sampling using greedy
decoding to be consistent with GPT-3 decoding setting of
temperature=0, with max tokens=512 for doping task and
1024 for general and MOF task. More details on the fine
tuning and inference parameters are available in the modified
repository. All fine-tuning and inference was performed on a
single A100 (Ampere) tensor core GPU with 80GB VRAM.

Note 4. seq2rel parameters

SeqZ2rel models were trained using 267 doping sentences that
had dopant-basemat links, with 4 different training:validation
splits (90:10, 80:20, 70:30, 95:5) and the model with the
highest validation micro-F1 score was selected. Training
configurations for seq2rel used parameters for training gene-
disease association (GDA) used in Giorgi et al.[3], while
modifying the entity tokens to "@DOPANT@", "@BASEMAT@"
and relation token to "@DBRQ". To be specific:

model_name = microsoft/BiomedNLP-PubMedBERT-


https://github.com/slee-lab/llama-recipes/commit/03faba661f079ee1ecaeb66deaa6bdec920a7bab
https://github.com/lbnlp/nerre-llama

base-uncased-abstract-fulltext
max_length=512
max_steps=96
num_epochs=30
batch_size=1
grac_acc_steps=1
decoder_lr=5e-4
encoder_lr=2e-5
encoder_wd=0.01
reinit_layers=1
weight_dropout=0.5
beam_size=4
length_penalty=0.8

Note 5. MatBERT-NER + Proximity method

The MatBERT-NER doping model[4], a BERT-based model
fine-tuned on 455 abstracts manually annotated by human
annotators, produces labels for three entities: DOPANT (iden-
tical definition to "dopant" entity in the main text), BASEMAT
("base material", identical definition to "host" entities in the
main text), and DOPMODQ (similar definition to "modifier" en-
tities in the main text). We discard the DOPMODQ entity, as it
differs definitionally from the "modifiers" entity in this work.

Using the labels provided by the MatBERT model for
DOPANT and BASEMAT, we create links only between tagged
host and and dopant entities if they occur in the same sen-
tence. This is done with an "all-to-all" rule, meaning all hosts
are connected with all dopants within the proximity of a sin-
gle sentence. The resulting set of entities and links between
entities can then be evaluated in identical fashion (via word-
basis metrics) to the LLM-NERRE models explained in the
main text.

Note 6. Class support for materials extraction tasks

Supplementary Table 1: Class support for doping tasks among 77
test (gold) set sentences. "Entites" denotes the number of
multi-word entities while "words" denotes the number of total
words.

. Support Support
Class/Relation (en?i It)ies) (wgfds)
host 60 111
dopant 76 110
host — dopant (link) 72 114
results 12 103
modifiers 7 77

Supplementary Table 2: Class support for the general materials
joint named entity recognition and relation extraction (NERRE)
task from 320 total test set abstracts, including the core entities and
the subset of potential links shown in results.

. Support Support
Class/Relation (englt)ies) (ng) ds)
acronym 41 42
applications 305 513
name 175 269
formula 353 480
structure/phase 276 421
description 233 314
formula — acronym (link) 8 8
formula — application (link) 341 577
formula — name (link) 60 108
formula — structure/phase (link) 296 485
formula — description (link) 202 281

Supplementary Table 3: Class support for the metal organic
framework (MOF) task from 255 total test set abstracts including
the core entities and the subset of potential links shown in results.

. Support Support
Class/Relation (enf)irt)ies) (ng’ ds)
application 559 1089
guest_species 105 110
description 143 451
name 315 346
mof_formula 67 238
name — application (link) 637 1317
name — guest_species (link) 152 154
name — description (link) 87 2901
name — mof_formula (link) 19 26

Note 7. Metrics for Sequence Reconstruction

Exact Match Accuracy. The exact sequence match accu-
racy is defined based on the an exact match between a pre-
dicted completion sequence ¢; and true completion sequence
¢;, averaged over n all samples to be evaluated:

S .
Exact match accuracy = Li % (1)
n
Where 6 is the Kronecker delta:
. 07 if é[ 7é Ci
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Thus, the exact match accuracy is a stringent metric, as
any character addition (e.g., addition of extra whitespace) or
missing character will not result in an exact match. Equiv-
alent permutations in the orders of entities are considered
equivalent; if the models predict verbatim correct JSON
for material 1 and material 2 but they are reported in
the reverse order from the annotation (e.g., material 1,
material 2 vs. material 2, material 1), the match is
considered exact. This condition ensures JSON documents
containing identical information in different orders are con-
sidered equivalent. Exact match sequence accuracy is a lower
bound on the information capture of the models.



Jaro-Winkler Similarity. For a more granular analysis,
we use the Jaro-Winkler similarity, @, as a string compara-
tor metric. As in the exact sequence match, we average over
all i = 1,2,3,...,n evaluation sequences where the predicted
string completion is labelled ¢; and the corresponding true
string completion is ¢;. With weights of the first string, sec-
ond string, and transposition all set equal, the similarity ®;
between a predicted completion string ¢; and a true comple-
tion string c; is defined as:

o 0, ifm=0 3
i= %(%+ﬁ+m7—f), otherwise @

Where m is the number of matching characters between ¢&;
and ¢;, ¢ is the number of transpositions, and |¢;| and |¢;|
are the lengths of the predicted and true completions, re-
spectively. The final average Jaro-Winkler similarity ® is
the arithmetic mean averaged over n samples, ® = Y7 ®; /n.

Parsability. As a final sequence reconstruction metric, we
report the average percentage of samples which can be parsed
from string literal into object form. For the *-JSON mod-
els, this indicates that the output sequence is well-formatted
JSON; for *-ENG models, this indicates the output sequence
adheres to the natural-language like schema on which the
model was trained. In either case, the parsability of the out-
put sequences simply indicates whether the sequence can be
easily transformed into a relational object. If a sequence can
be parsed using the same function to encode training sam-
ples, we return a parsability of one; otherwise, parsability is
zero. We average the parsability over all n samples of the
evaluation dataset to calculate a final average parsability per-
centage.

SUPPLEMENTARY DISCUSSION
Discussion 1. Sequence-level results

Supplementary Table 4 shows results for sequence-level
matching. We find a wide variability between models for
reconstructing test set output sequences exactly, with the
simpler doping models containing exact matches on 58.4 —
71.4% of test sequences. The more complex tasks, MOF-JSON
and General-JSON, have exact match accuracies ranging
from 12.2 to 30.6% of test sequences. Exact matches are in-
herently less probable with longer output sequences, as even
a single error in a very long output sequence results in an
exact match failure. This trend is easier to see with the test
samples’ sequence reconstruction scores binned into groups
based on the number of entities each test set true sample con-
tains. As shown in Supplementary Figure 1 for MOF-JSON
and General-JSON, exact match sequence reconstruction is
the highest for the simplest entries (i.e., those with the lowest
number of entities).

All models have average Jaro-Winkler similarities >
91.2% and parsabilities > 98.7%. In contrast to the exact

match score, Jaro-Winkler similarity and parsability do not
degrade as rapidly with increasing complexity (for which
we use true number of entities as a proxy) of the prompt.
This is encouraging, as the model is able to retain consistent,
parsable formatting even in very long output sequences with
many (20+) interrelated entities. All GPT-3 doping models
could not produce a parsable response for a single example
containing one host material and eight connected dopants;
this is likely due to the doping model’s inference parameter
token limit. If the token limit were increased, it is likely all
LLMs could produce parsable output for all texts.
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Supplementary Figure 1: Sequence reconstruction metrics
segmented by number of entities in the prompt for (a) The
General-JSON model and (b) the MOF-JSON model. The x axis
defines the bins by the number of true entities in the test-set
sample; as we progress from left to right, the bins represent more
complex samples. The left y axis (corresponding to the grey bars)
shows the number of samples in each bin. The right y axis
(corresponding to the colored lines centered on each bin) shows the
average scores of each bin by the metrics of exact string matching
(red), Jaro-Winkler similarity (blue), and parsability (green).
While exact string matches are very unlikely responses for the
models for highly complex samples (20+ entities), the models are
able to retain high sequence similarity and parsability. Source data
are provided as a Source Data file.



Supplementary Table 4: Sequence-level error metrics for completions for all tasks, evaluated and averaged over the test set or
cross-validation for each task. Completions are only considered correct in the exact match if the full output sequence c is recovered
exactly. Average Jaro-Winkler similarities are also shown to measure string similarity continuously on [0, 1], where 1 indicates a perfect
match and 0 indicates no match. Parsability, the ability to format ¢ in the same manner as the training schema, is recorded for each sample
as 0 (not parsable) or 1 (parsable). The average exact correctness, Jaro-Winkler similarity, and parsability are converted to the range
0—100%. Best scores for each of the tasks according to each metric are shown in bold.

Exact Match Avg. Jaro-Winkler Parsable and

Task Base Model Schema Sequence Accuracy (%) Similarity (%) Decodable (%)
GPT-3 davinci-175B Doping-English 59.7 94.3 98.7
GPT-3 davinci-175B Doping-JSON 59.7 94.5 98.7
Doping GPT-3 davinci-175B | DopingExtra-English 58.4 93.9 98.7
Llama-2-70B-8bit Doping-English 64.9 94.6 100
Llama-2-70B-8bit Doping-JSON 71.4 97.5 100
Llama-2-70B-8bit DopingExtra-English 55.8 91.2 100
General materials GPT-3 davinci-175B General-JSON 30.6 94.2 100
Llama-2-70B-8bit General-JSON 28.3 91.7 100
MOFs GPT-3 davinci-175B MOF-JSON 15.7 94.7 100
Llama-2-70B-8bit MOF-JSON 12.2 94.2 100

Discussion 2. Named entity recognition

We show in Supplementary Table 5 the named entity recogni-
tion (NER) scores for recall, precision, and Fj score for each
of the models. These NER scores do not reflect the ability
of models to link entities together. The highest scores per
common entity category (Fj, precision, recall) are shown in
bold, as all tasks are evaluated with multiple models. Entities
are evaluated on an exact per-word match basis rather than
the basis of exact matches between entire multi-word enti-
ties, as it is unclear even to annotators exactly where to de-
note the end of some complex multi-word entities (e.g., "ZnO
nanoparticle crystals" vs. "ZnO nanoparticle" vs. "ZnO").
However, since compositions are the core part of the desired
data for all tasks, all words of any formula entity (and hence
all its links) are marked incorrect if the entire composition is
not captured exactly. Support for each class may be found in
Supplementary Section Note 6.

Doping task. In the doping task, we observe roughly
comparable performance between the Llama-2 and GPT-3
models across all schemas. In particular, the GPT-3 model
fine-tuned using the Doping-ExtraEnglish schema has the
highest host recall (0.921, margin of 1%) and F; (0.901, mar-
gin of 1%), while the Llama-2-Doping-JSON model has the
highest dopant recall (0.892, margin of 4%), dopant preci-
sion (0.872, margin of 2%), dopant F; (0.882, margin of
4%). Overall, all GPT-3 and Llama-2 models across all
schemas are roughly similar, with the Llama-2 Doping—-JSON
model arguably performing the best across entity categories.
Broadly, the Llama-2 models tend to perform better at NER
tasks when done in JSON schema while GPT-3 models tend
to perform better when using English schemas. If we in-
clude the results and modifiers categories, the GPT-
3-DopingExtra-English performs on average the best
across entity categories. This is a notable result, as the

DopingExtra-English models must additionally extract
results and modifiers entities in the output sequence.
We speculate that this discrepancy is due to a combination
of model variability and extra specification of non-dopant
chemical species within the DopingExtra-English model’s
training set. For example, when the DopingExtra-English
model is trained with "high-doping" as a labelled modifier,
it may learn "high" is not a valid dopant entry. This may
be useful in the design of more complex completion schema,
as DopingExtra-English is an example of a more complex
completion schema extracting all of its entities more accu-
rately.

General and MOF tasks. Both of the more complex
General and MOF entity recognition tasks are dominated by
the GPT-3 models. Only in the categories of formula recall,
MOF name recall, and MOF name F; do the Llama-2 models
have the highest scores (0.681, 0.779, 0.742 with margins of
1%, 12%, and 2%, respectively).




Supplementary Table 5: Exact match (E.M.) named entity recognition scores for the three materials engineering tasks. Scores are

computed on the exact-match word basis as described in the main text Methods. Highest scores according to each scoring metric

(precision, recall, F) are shown in bold for each individual entity. Results for the General Materials and MOF tasks are shown as an
averages from over five-fold cross validation. For these two tasks, the cross-validation averaging means the average F will not necessarily
equal the harmonic mean of the average precision and average recall, since F] scores are computed per fold and then averaged.

Task Model Schema Entity E.M. Recall | E.M. Precision | EM. F;

Doping-English host 0.899 0.889 0.893

dopant 0.774 0.844 0.807

Doping-JSON host 0.888 0.888 0.888

GPT-3 davinci-175B dopant 0.714 0.779 0.745

host 0.921 0.881 0.901

DopingExtra-English dopant 0.845 0.855 0.850

results 0.556 0.909 0.689

modifiers 0.429 0.136 0.207

o Doping-English host 0.838 0.932 0.882

g dopant 0.857 0.837 0.847

8 Doping-JSON host 0.910 0.871 0.890

Llama-2-70B-8bit dopant 0.892 0.872 0.882

host 0.899 0.816 0.856

DopingExtra-English dopant 0.809 0.701 0.751

results 0.389 1.00 0.560

modifiers 0.428 0.167 0.240

. host 0.551 0.620 0.583

MatBERT-Doping dopant 0500 0583 0519

Seq2rel-Doping host 0.843 0.431 0.570

dopant 0.652 0.542 0.581

acronym 0.557 0.699 0.613

applications 0.696 0.731 0.712

z | GPT-3 davinei 175B General-JSON fonrﬂela gzgg g;;; g:ggg

5 structure/phase 0.581 0.676 0.622

§ description 0.484 0.510 0.495

= acronym 0.516 0.687 0.512

S applications 0.677 0.722 0.696
[5)

O | Llama-2-70B-8bit General-JSON fonramn;ela 82;; 8:2;2 8:2;2

structure/phase 0.563 0.654 0.600

description 0.480 0.488 0.476

mof_name 0.679 0.795 0.728

mof_formula 0.730 0.816 0.767

GPT-3 davinci 175B MOF-JSON applications 0.734 0.760 0.746

guest_species 0.675 0.796 0.696

i mof_description 0.525 0.548 0.519

S mof_name 0.779 0.711 0.742

mof_formula 0.670 0.811 0.732

Llama-2-70B-8bit MOF-JSON applications 0.696 0.683 0.689

guest_species 0.552 0.722 0.605

mof_description 0.420 0.502 0.449

Discussion 3. Doping task graph example

In Supplementary Figure 2 an example end result from a

LLM-NERRE model is shown in graph format.

We aim

here to recognize not just relationships between individual
entities, but hierarchical relationships with relationship types
which need not be explicitly and comprehensively enumer-
ated beforehand. The LLM-NERRE models presented in the




main text provide a step towards this kind of final product.

Doping of transition metals into ZnS and ZnO nanoparticles ...
The ZnO:Sm3+ system was formed at 5 at.%...

The ZnS sample was also doped with Sn...

...for use as photocatalysts...

ZnS I Zn0O I

L with morphology with morphology

A \ 4
| nanoparticles I | nanoparticles |
was doped with I

G | !

Y '\
with oxidation

| transition metals I state
Ce)

has application

to amount

Sm 5 at.%

photocatalyst

Supplementary Figure 2: An example complex graph resolved
from the outputs of a LLM-NERRE model. The distinction of this
graph from typical entity relationship graphs is the hierarchical
format. This hierarchical graph, in contrast to a flat graph, may
denote that ZnO nanoparticles - as opposed to bulk wurtzite ZnO -
were doped by representing an entity with its own subgraph.
Similarly, the samarium dopant is represented as a subgraph
specifying its oxidation state and amount. Finally, all dopant
relationships for ZnO and ZnS are linked to an application
"photocatalyst". This hierarchical graph specifies a much more
precise series of relationships extracted from text; for example,
"Zn0O (as nanoparticles) was doped with Sm (having an oxidation
state of +3, and to an amount of 5 atomic percent) resulting in a
photocatalyst.” is more precise than a flat-graph relationship such
as "ZnQ is a photocatalyst".

Discussion 4. Manual scoring examples

Here we provide two examples of manual scoring according
to a domain expert using outputs directly from GPT-3 fine-
tuned on the general materials information extraction task.
False positive errors are shown in the model annotations in
; false negatives (missed by the model) are shown in
the human annotations in red. True positives are shown in
the model outputs in blue. Examples are explained below the
model outputs, and certain entities of interest (used in expla-
nation) are shown in teal. We show two examples here. Ex-
ample 1 is simple, while Example 2 is more complex. Note
unicode characters are shown in responses prefixed by "\u".
Example 1: "Self-healing thermoplastic elastomer brush
copolymers having a glassy polymethylmethacrylate back-
bone and rubbery polyacrylate-amide brushes. We synthe-
sized a series of brush copolymers having glassy polymethyl-

methacrylate (PMMA) backbone and flexible polyacrylate-
amide (PA-amide) brushes that exhibit thermoplastic elas-
tomer properties. Importantly, the dynamic hydrogen bonds
in the soft PA-amide matrix enables the material to self-heal
after mechanical damage at room temperature without the
need of any external stimulus."

Human Annotation

[{
"PMMA"’
["thermoplastic elastomer"],

[Illl},

"acronym":
"applications":
"description":
"formula": "",
"name": "polymethylmethacrylate",
"structure_or_phase": [""]

"acronym": "PA-amide",
"applications": |
"thermoplastic elastomer",
"self-healing"
} r
"description":
"formula": "",
"name": "polyacrylate-amide",
"structure_or_phase": [""]

[Illl},

Model output

[{

"PMMA",

["thermoplastic elastomer"],
["backbone"],

"acronym":
"applications":
"description":
"formula": "",
"name": "polymethylmethacrylate",
"structure_or_phase": [""]

"acronym": "PA-amide",
"applications": |
"thermoplastic elastomer",
} r
"description":
"formula": "",
"name": "polyacrylate-amide",
"structure_or_phase": [""]

[""1’

}H

Explanation for example 1: The model correctly deter-
mines there are two materials here, PMMA and PA-amide.
The model misses the critical self-healing aspect of the ma-
terial, meaning the "self-healing" is marked as a false neg-
ative. The description "backbone" is marked as correct be-
cause, while it was not explicitly accounted for in the human



annotation, it is a valid description of PMMA given the con-
text of the passage.

Example 2: "Synthesis and vapor transport growth of
ternary group IIl chalcogenides The CVT method, using
iodine as the transporting gas, has been used to prepare
well defined, large (up to 3 cm long) single crystals of
AB(III)C(VI)2 dichalcogenides where A = Mn, Zn; B = Al,
Ga, C = S, Se, Te. The predominant crystal habit is flat
planar growth except Znl.00Gal.01Te2.13 which grows as
long hexagonal base needles. Mn1.01A11.0451.84 (transpar-
ent yellow) is monoclinic with a = 11.112 A, b = 10.490 A,
c = 23224 fi, B = 87.17° space group P21/m, Dm = 2.79
g/em3, Dx = 2.84 g/em3 and Z = 32; Mnl.04Al1.00Sel.77
(dark metallic grey) has the cubic zincblende (zb) structure
with a = 6.273 A, space group Fm3m, Dm = 3,10 g/cm3,
Dx = 3.01 g/cm3 and Z = 2; Mnl.00Al1.02Te2.18 (metallic
grey) is monoclinic with a = 8.349 A, b = 8.260 A,c = 10.808
fi, B = 84.47°, space group P2/m, Dm = 1.63 g/cm3, Dx =
1.61 g/cm3 and Z = 2; Znl.00Gal.02Sel.89 (orange red) is
cubic (zb) with a = 5.624 A, space group Fm3m, Dm = 5.46
g/em3, Dx = 5.33 g/cm3 and Z = 2; Znl.00Gal.0lTe2.13
(dark metallic grey) is tetragonal (chalcopyrite) with a =
15.2325 dA, ¢ = 9.9287 fi, space group P 421/m, Dx = 1.18
g/em3 and z = 4."

Human Annotation

[{
llacronym" . nmn ,
"applications": [""],
"description™": [""],
"formula": "Mnl.01A11.04S1.84",
"name": " u’
"structure_or_phase": |

"monoclinic",

"a = 11.112 A \u030a,
b = 10.490 A \u030a,
c = 23.224 A \u030a,
\u03b2 = 87.17\u00b0"
\u03b2 = 87.17",
"P21/m"
]
}I
{
"acronym": "",
"applications": [""],
"description™": [""],
"formula": "Mnl.04A11.00Sel.77",
"name": "",
"structure_or_phase": [
"cubic",

"zincblende",
"a = 6.273 A \u030a",
llFmBm"

llacronymll . " ll,
"applications": [""],
"description™": [""],
"formula": "Mnl.00A11.02Te2.18",
"name": uu’
"structure_or_phase": |
"monoclinic",
"a = 8.349 A \u030a,

b = 8.260 A \u030a,
c = 10.808 A \u030a,
\u03b2 = 84.47\u00bO",
"P2/m"
]
}l
{
"acronym": "",
"applications": [""],
"description™": [""],
"formula": "Znl.00Gal.02Sel1.89",
"name": "",
"structure_or_phase": |
"cubic",

"zincblende",
"a = 6.273 A \u030a",
"Fm3m"

"acronym": "",
"applications™": [""],
"description": [""],
"formula": "Znl1.00Gal.01Te2.13",
"name": "",
"structure_or_phase": |
"tetragonal",
"chalcopyrite",
"a = 15.2325 a \u030aa,
c = 9.9287 A \u030a
P 421/m"

Model output

[{
"aCrOnym": Hn,
"applications" c["") ,
"description": [""],
"formula": "Mnl.01Al1.0451.84",
"name" : "u,



"structure_or_phase": |
"monoclinic",
"p21/m",
"a = 11.112 A \u030a,
b = 10.490 A \u030a,
c = 23.224 A \u030a,

\u03b7 = 87.17\u00b0"

"acronym" . nmn ,
"applications": [""],
"description": [""],

"formula": "Mnl.04A11.00Sel.77",

llname n . nn ,
"structure_or_phase": |
"cubic zincblende",

"Fm3m",
"a = 6.273 A \u030a"

"acronym" B nmn ,
"applications": [""],
"description": [""],

"formula": "Mnl.00Al11.02Te2.18",

"name": "",

structure_or_phase": [
"monoclinic",
"P2/m",

"acronym" . mn ,
"applications": [""],
"description": [""],

"formula": "Znl.00Gal.02Sel.89",

"name n . nn ,
"structure_or_phase": [
"cubic",
llFm3m||’
"a = 5.624 A \u030a"

llacronym" : nmn ,
"applications™": [""],
"description™": [""],

"formula": "Znl.00Gal.01Te2.13",

n name ", nn
. !
"structure_or_phase": |
"tetragonal",
"chalcopyrite",

}

Explanation for example 2: In this more complicated
example, there are five materials to be extracted, each with
several structural descriptions. The model is able to re-
solve all five formulae correctly, but struggles on a few
of the structures and lattice parameters. In particular, the
model gives incomplete entities for the lattice parameters of
MH1.00A11_02T62.18 and ZnLOOGal_OlSe2_13; the entire human
annotation for these entities provides the lattice parameters
a, b, ¢, and B, while the model annotation provides only a,
resulting in one false positive entity and one false negative
entry for each of these compositions. Among the other struc-
tural entities, the model resolves all spacegroups and crystal
prototypes correctly except for Zn; ooGa; jpSe; go Where "cu-
bic" and "Fm3m" are extracted, but "zincblende" is missed
by the model. Interestingly, while an error in the human an-
notation for Zn; ooGa; ¢>Se; go reports the wrong lattice pa-
rameter (a = 6.273/0%), the model extracts the correct lattice
parameter (a = 5.624A) as it appears in the passage; this is
counted as a true positive as the model’s extraction is cor-
rect. For Mn oAl goSe; 77, the entity "cubic zincblende" is
marked as correct because the human annotation’s separate
"cubic" and "zincblende" entities are split arbitrarily, and the
model’s output is equivalent.

Discussion 5. Ambiguity of annotations

In practice, annotation can be a complex task even for trained
researchers. We have found qualitatively that the perfor-
mance of the LLM-NERRE models is limited by how con-
sistently and comprehensively the desired schema and enti-
ties can be defined. As opposed to canonical NLP exam-
ples, where distinctions between entities such as "person"
and "place" are relatively clear, scientific texts often contain
entities which could plausibly be considered as one or more
kinds of entity depending on definition. Reducing ambiguity
in the annotation schema is therefore a source of potential
improvement for LLM-NERRE methods. We examine sev-
eral tasks below in regards to ambiguity.

Doping task ambiguity. Definitional ambiguity is partic-
ularly apparent in cases where long-range dopant-host rela-
tionships may be referenced with no clear "correct" answer
to either the annotator or model. However, most sentence-
level dopant-host relationships are very clear to annotators.
As mentioned in the main text, this is a primary motivator
for using a sentence-level annotation scheme rather than an
abstract-level annotation scheme. However, even within a
sentence, there is definitional ambiguity as to what exactly
defines a dopant and host. For example, in a single-doped
host crystal (e.g., MgO-doped LiNbO;) with a second dopant
of interest (e.g., Cr3+), the entities may either be considered a



host doped by one dopant (DOPANT Crs;" — HOST MgO-doped
LiNbO;) or a pure crystal codoped with two species (DOPANT
Cr;" and DOPANT MgO — HOST LiNbO3) depending on the
context of the investigation. Similarly, dopants may not be
referenced as such when added in large amounts (e.g., to a
ceramic glass).

General task schema ambiguity. In the General-JSON
schema, entity class definitions are not entirely consistent
throughout the training set. Class definitions drifted some-
what as annotators found more edge cases during the an-
notation process, and it was still not possible to completely
capture all relevant information contained in a passage with
this schema. Keeping these details in mind, annotation was
done on a "best effort" basis, which seems to still be suf-
ficient to train models capable of complex information ex-
traction tasks. Additionally, this schema is not currently op-
timized for composite materials (e.g., "F-TiO2/NO3-layered
double hydroxide composite"). We annotated examples such
that components of the composite were sometimes listed as
separate materials and sometimes listed as a single mate-
rial. While this partially contributes to lower string-match
F scores, we find the inconsistencies in the annotations does
not significantly impair the model’s ability to deal with com-
posites.

Discussion 6. Zero-shot performance

A natural question arising from the LLM-NERRE method
is whether similar results can be achieved with zero-shot
or prompt engineering approaches in place of fine-tuning.
Zero-shot inference in place of fine-tuning would enable re-
searchers to use LLM-NERRE with much less technical in-
vestment, since they could use online APIs (such as Chat-
GPT’s API) without having to tune their own bespoke mod-
els. However, zero- and few- shot LLM tasks typically mag-
nify the errors found using fine-tuning, even for relatively
straightforward examples in chemistry and materials science.
In general Q/A tasks, the GPT-4 Technical Report [5] finds
zero-shot versions of GPT-4 and GPT-3 have roughly 50%
the performance of their RLHF fine-tuned counterparts. In
the domain of chemistry, Castro Nascimento and Pimentel
[6] report ChatGPT without prompt engineering is capable
of converting only 27% of SMILES strings to/from common
molecules such as ethylene.

However, it is worth discerning between zero-shot models’
ability to act as knowledge engines based on their training
corpus - e.g., recalling point groups of common molecules
such as methane [6] - and their ability to extract information
from novel text outside of the training corpus. The findings
cited above [5, 6] primarily evaluate the former. It’s worth-
while to hypothesize that zero-shot models might be similar
to fine-tuned models when evaluated on the latter task.

To briefly test this hypothesis, we evaluate zero-shot GPT-
4 on simple examples from the tasks shown in the main text.

We illustrate two examples here. We show the test prompt
and then with the human (correct) output and model output.
Incorrect model outputs are shown in red.

General Materials Information Extraction Example 1

A GPT-4 model retrieved on Nov. 11, 2023 was provided
instructions to extract general materials science information
from an abstract. The model was also provided prompt-
completion (abstract-JSON) pairs of the 10 most relevant
abstracts to the test abstract as context. Relevance was de-
termined using GPT-Ada embeddings (text-embedding-ada-
002).

Instruction: "Your current task is to extract data from ma-
terials science research paper abstracts. Here is the JSON
schema you MUST use. Only output the extracted data in
this schema. Do not fill in any information that is not ex-
plicitly in the abstract. If you don’t know something from
the context, just leave that spot blank (don’t guess!) Make a
list of JSON objects. One for each individual material in the
abstract. What is a material? A material is a chemical com-
pound such as ’titania’, ’SiO2’, or 'graphene’. A material is
NOT a device (e.g. 'valve-regulated lead/acid battery’. That
would be an application). For composite materials, make
one entry for each part of the composite and put the fact it’s
a composite (and what composite) as one element in the de-
scription.”

SCHEMA :

[

{

"name": (string)
name or other

The material’s English

identifier (e.g.
copper oxide, poly-propylene, BB-1,
etc). NOT THE FORMULA OR ACRONYM!,

"formula": (string) The chemical formula

for the material (e.g. BiSTi03).
NOT THE NAME OR ACRONYM!,

"acronym": (string)
refer to a material
polyethylene oxide).

FORMULA'!,

"description": (list of string)

Descriptions of the material sample.
For example, if it is a thin film,
nanoparticles, doped with an
impurity, etc.

"structure_or_phase": (list of string)
Any information that indicates the
materials crystal structure or phase

(e.g. 'cubic’, ’'rocksalt’, 'HCP', '
alpha-phase’, etc), Also extract
lattice constants and angles here,
if present. (DO NOT put things like
"nanoporous" that describe the

Any acronym used to
(e.g. PEO for
NOT THE NAME OR



physical structure. Those are
descriptions.)

"applications": (list of string)
Applications the material is being
studied/used for (e.g. ’"Li-ion
batteries’, ’cathode’, ’catalyst’,
etc) If the material is a catalyst,
include the reaction it catalyzes.

by

]

Prompt: ’Organic—inorganic single-crystalline perovskites
have attracted significant attentions due to their exceptional
progress in intrinsic properties’ investigation and applica-
tions in photovoltaics and optoelectronics. In this study,
the large perovskite CH3NH3PbI3 single crystal with the
largest length of 80mm was prepared through the method of
inverse-temperature crystallization. Meanwhile, the mass
production of integrate photodetectors have been fabricated
on the single-crystalline wafer and the photoresponse
performances were investigated. The results show that
the single-crystalline photodetectors have broad spectrum
response to 900nm, rapid response speed (40 us) and
excellent stability. These findings are of great importance for
future promising perovskite single crystalline for integrated
photoelectronic application.’

Output:

Human annotation

[

"acronym":

"applications": |
"photovoltaics",
"optoelectronics",
"photodetectors",
"integrated photoelectronic

nmn
’

n

1y
"name" :
"formula": "CH3NH3PbI3",
"structure_or_phase": [
"perovskite"

nn
I

1,
"description": [
"single-crystalline"

Model output

10

"acronym" . n "’

"applications™": [
"photovoltaics",
"optoelectronics",
"photodetectors"

J r

"name": "CH3NH3PbI3",

"formula": "",

"structure_or_phase": |
"perovskite"

J r

"description": [
"single crystal",
"photodetectors”

]

Explanation: The model correctly retrieves all applica-
tions and provides an acceptable additional application "in-
tegrated photoelectronics” (as determined by a human anno-
tator). However, the model transposes the name and formula
fields despite being specifically warned against it in the in-
structions. Additionally, it incorrectly places an application
("photodetectors") into the material description.

General Materials Information Extraction Example 2

Instruction: An identical instruction as the previous exam-
ple was provided to the model, with a different abstract.
Prompt: "Electrostatically and electrochemically induced
superconducting state realized in electrochemical cells. We
here report the result of in situ magnetization measurements
of electrochemical cells at low temperatures. Upon applying
voltages between the electrodes of the electrochemical cells,
we observed shielding diamagnetic signals from several ma-
terials, indicating superconducting transitions. The super-
conducting states can be induced both electrochemically and
electrostatically with appropriate combination of counter
electrode materials and electrolytes. The present technique
may become a powerful method for searching novel super-
conductors."

Output:

Human annotation

(]

Model output

"electrode materials",
mn
14

"name" :
"formula":

"acronym" . n ",



"description": [],
"structure_or_phase": [],
"applications":

["used in electrochemical cells"]

"name": "electrolytes",
"formula": "",

"acronym": "",
"description": [],
"structure_or_phase": [],
"applications":

["used in electrochemical cells"]

Explanation: We only aim to extract specific materials,
hence the empty human response. No specific materials, by
name or by formula, are presented in the abstract. Yet, the
model returns two materials, "electrode materials" and "elec-
trolytes".

Conclusions on zero-shot learning

The examples shown here are representative of the er-
rors zero-shot LLMs make for scientific relation extraction.
These include basic mistakes such as identifying an appli-
cation as a material description. Zero-shot models often ex-
perience these failure modes on extremely straightforward
texts despite being warned explicitly against them in the
instructions and being provided the context of similar cor-
rect prompt-completion pairs. Reasonable variations on the
model instructions/prompt yield similar underwhelming re-
sults. The LLLM and prompt approach we test here are thus
unsuitable for scientific NERRE tasks.

However, better LLMs and/or improved prompt engineer-
ing will likely improve these results. As White ez al. [7] and
Zheng et al. [8] showed, prompt engineering is a powerful
lever for tuning the responses of LLMs. More, the rapid ad-
vancement of zero-shot LLM performance over the past sev-
eral years is encouraging for future models to perform zero-
shot NERRE.
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