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This document provides the details of the system setup and calibrafion of the single-doxel imager (SDI) system, mulfi-9 

resolufion reconstrucfion with STOne pafterns, the process of solving the opfical flow assisted 4DTV regularizafion 10 

problem with addifional reconstrucfion results, compression rafio analysis, details on the deep learning reconstrucfion 11 

approach, and the test results of deep learning on simulafion data and on test data to the primary manuscript "A 12 

Compressive Hyperspectral Video Imaging System Using a Single-Pixel Detector". 13 

1.  SDI SYSTEM SETUP AND CALIBRATION 14 

The SDI system prototype built in lab is shown in Fig.S1a. To calibrate the spectral measurements of the SDI system, a 15 

spectral calibrafion lamp (Newport 6035 Hg (Ar) lamp) was used as a target to produce a typical mercury spectrum. 16 

With the spafial modulafion micromirrors all fixed at the "on" state, a complete set of 256-channel spectral modulafion 17 

pafterns was displayed on the DMD. A spectrum was recovered from the measurements, as plofted in Fig.S1b. The three 18 

major peaks in the spectrum correspond to the 435.8 nm, 546.1 nm, and 578.2 nm emission lines of the mercury vapor. 19 

We linearly fit the wavelengths to the band numbers according to the posifions of these peaks, and the result is plofted 20 

in Fig.S1c. The range of the measured wavelength is from 361 nm to 827 nm. From this spectrum, we learn that the half 21 

width at half maximum (HWHM) of the peaks is about 6 nm. Assuming the emission lines of mercury are infinitely 22 

narrow, the 6 nm HWHM determines the ulfimate spectral resolufion of the system. Using a narrower slit can increase 23 

the spectral resolufion but will also cause loss of the light signal intensity. The slit width is a parameter of the system 24 

that can be designed depending on the number of spectral bands needed, the expected reconstrucfion quality, the focal 25 

lengths of other lenses in the system, the specificafion of the diffracfion grafing, etc. In the actual hyperspectral imaging 26 

with the SDI, the slit width is 600 𝜇𝑚. We only used 64 wavelength bands, at 7.3 nm/band for the whole spectral range 27 

from 361 nm to 827 nm, so the 6-nm HWHM closely matches the spectral sampling resolufion of the system and is 28 

enough for the experiments. 29 



2 

  30 

Fig. S1. (a) Photo of the SDI prototype, (b) Reconstructed spectrum of the mercury lamp, (c) Reconstructed spectrum plofted on the 31 

fifted wavelength axis. 32 

In the experiments, 9200 spafial-spectral pafterns were loaded to the DMD, with the spafial part of them at the 33 

resolufion of 128 × 128 pixels and the spectral part at 64 bands. These 9200 pafterns included the modulafion pafterns 34 

and all the complementary pafterns. Each paftern covered 1024 × 1792 micromirrors on the DMD. During the 35 

measurements, the DMD displayed these pafterns repefifively at the rate of 5 kHz. The ADC sampled the output of the 36 

detector at 250 kHz. Synchronized with the DMD pafterns with a trigger signal, the ADC sampled 45 values for each 37 

paftern before it stopped and waited for the next paftern. These 45 sampled values were averaged to produce one 38 

measurement result for the corresponding paftern. Imaging of one hyperspectral video took about 36.8 seconds. The 39 

9200-paftern sequence was played 20 fimes by the DMD, and in total 184000 measurements were taken by the SDI. 40 



3 

These measurement results were then processed and fed into the reconstrucfion algorithms to recover the 41 

hyperspectral videos of the scene. 42 

Customized software is used to upload the designed spafial-spectral pafterns to the DMD, and to control their display 43 

parameters in the measurements, such as the paftern durafion, paftern sequence range, and paftern repeat fimes. 44 

During the measurements, the outputs of the detector are digifized by an analog-to-digital converter (ADC) and stored 45 

on the computer. The ADC also receives a trigger signal from the DMD control interface for the measurement 46 

synchronizafion. LabView is used to setup the signal channels of the ADC, to control the sampling rate of the detector, 47 

and to write the converted measurement results to the computer. 48 

 49 

2. MULTI-RESOLUTION RECONSTRUCTION WITH THE STONE PATTERNS 50 

One special property with the STOne pafterns used in the SDI system is the mulfi-resolufion structures embedded in 51 

them1. For a √𝑁  × √𝑁 STOne paftern formed by one of the columns from N × N matrix Φ_s, summing up every 2 × 2 52 

pixel patch of the paftern leads to one of the two cases: a posifive sum when three pixels are posifive and one pixel is 53 

negafive; or a negafive sum when three pixels are negafive and one pixel is posifive, as illustrated in Fig.S2. After 54 

summing up, we get one of the √𝑁/2  × √𝑁/2 embedded low resolufion STOne pafterns. This down-sampling process 55 

can be repeated again and again unfil one of the lowest resolufion 2 × 2  STOne pafterns are obtained. In fact, a 56 

complete set of 𝑁  √𝑁  × √𝑁  STOne pafterns have all 2𝑘 × 2𝑘  STOne pafterns embedded in it, where 1 ≤ 𝑘 ≤57 

𝑙𝑜𝑔2√𝑁, giving its capability to recover at different resolufions. The ordering of the STOne paftern sequence is designed 58 

in a ’structured random’ way, so that any consecufive 4𝑘2 pafterns in the sequence can be treated as a complete set of 59 

embedded 2𝑘 × 2𝑘  STOne pafterns. 60 

 61 

Fig. S2. The mulfi-resolufion structure in the STOne pafterns. Top row: the only two cases of down-sampling a 2 × 2 pixel patch in a 62 

STOne paftern into a pixel in the lower resolufion. Boftom row: a 16 × 16 STOne paftern down-sampled to 8 × 8 STOne paftern, and 63 

further to 4 × 4 and 2 × 2 STOne paftern. 64 
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With these properfies of the STOne paftern sequence, mulfi-resolufion reconstrucfions can be achieved from the 65 

same set of measurements. For example, 1024 measurements with 128 × 128 STOne pafterns are enough to compose 66 

a full STOne transform embedded at 32 × 32 resolufion. Grayscale videos at this resolufion can be calculated by a simple 67 

linear inverse transform without any iterafive operafions. The full 157 frames of the reconstructed 32 × 32 grayscale 68 

videos are illustrated in Fig.S3 and the calculafion takes 0.5 ms per frame in Matlab. This method is useful in gefting a 69 

quick look at the spafial informafion captured by the SDI. 70 

 71 

Fig. S3.157 frames of the 32 × 32 L2-reconstructed grayscale video.  72 

 73 

The embedded low-resolufion pafterns can also be used to recover a low-resolufion version of the hyperspectral 74 

video. The 32 × 32 × 64 low resolufion hyperspectral video reconstrucfion, as shown in Fig.S4 takes 45 seconds per 75 

frame. 76 

                    77 

 78 
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 79 

 80 

Fig. S4. 157 frames of the 32 × 32 × 64 low resolufion hyperspectral video converted to RGB images 81 

 82 

3. RECONSTRUCTION VIA OPTICAL FLOW ASSISTED 4DTV REGULARIZATION 83 

This secfion presents the process of solving the opfical flow assisted 4DTV regularizafion problem as described in Eq. (3) 84 

in the main paper. For grayscale video reconstrucfion, spafial measurements based on STOne pafterns are calculated by 85 

summing up the two values in each spectral complementary paftern pair (see Methods in main paper) in the joint 86 

spectral-spafial measurements. A 3DTV-regularized algorithm1-3 described by Eq.(S1) is solved to reconstruct the 87 

grayscale video from these calculated measurement values. 88 

                                        𝑋 = 𝑎𝑟𝑔 𝑚𝑖𝑛│𝛻3𝑋│,   𝑠. 𝑡. ‖𝑌 − 𝛹𝑆𝑋‖ < 𝜖                                                   (S1) 89 
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 91 

Here, 𝑋 is the vectorized grayscale video, 𝑌 is a vector containing calculated spafial measurements, 𝛹𝑆 represents the 92 

sensing matrix for the spafial measurements.. Equafion (S1) is solved by the Primal-Dual Hybrid Gradient (PDHG)  solver 93 
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developed in Ref. 22.The operafion of parfial derivafive with respect to x, y, or t in the L1 term │𝛻3𝑋│can be represented 94 

by a linear operator taking the difference of adjacent pixel values 95 

In the proposed opfical flow assisted 4DTV algorithm, both forward and backward opfical flows are extracted 96 

between the nearby frames of the grayscale video using the algorithm developed in Ref. 4. The algorithm constructs an 97 

energy funcfional based on certain constraints of the opfical flow model including the gray value constancy assumpfion, 98 

the gradient constancy assumpfion, and the smoothness assumpfion, etc. The energy funcfional penalizes deviafions 99 

from these model assumpfions and opfical flow is obtained by finding a solufion which minimizes the energy funcfional. 100 

The images are blurred using a rotafionally symmetric Gaussian lowpass filter of size 7 × 7 with standard deviafion 1 101 

before the opfical flow calculafion to improve the stability of the results. Fig.S5 shows an example of the opfical flows 102 

calculated between 2 frames. The first column of the figure shows 2 original images. The wheel is slightly rotafing 103 

clockwise from frame 1 to frame 2. In the second column are 2 masks that indicate the pixels whose opfical flow can be 104 

calculated. Due to the existence of image boundaries, occlusions, and noises, some of the pixels cannot find their 105 

matched counterparts in the other frame and are marked in red in the masks. The third column shows extracted forward 106 

and backward opfical flow images. The opfical flow vector field in Fig. S5 is color encoded in the same way as in Ref. 4, 107 

5. Because of the interpolafions used to achieve the sub-pixel precision of the flow vectors4, using both forward and 108 

backward opfical flows gives more accurate pixel to pixel matching between two frames. The fourth column shows two 109 

images warped according to the calculated opfical flows. The warped frame 1 closely matches the original frame 2, and 110 

vice versa. 111 

 112 

Fig. S5. Example of the opfical flow calculafion between two frames. From left to right are: 1. the original images, 2. the pixel masks, 113 

3. the color encoded opfical flow images, 4. the warped images using the calculated opfical flows, and 5. the color encoding of opfical 114 

flow. 115 
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The full 157 reconstructed 128 × 128 grayscale videos based on 3DTV algorithm and the 128 × 128 × 64 hyperspectral 116 

frames reconstructed based on opfical flow assisted 4DTV algorithm are shown in Fig.S6. 117 

 118 
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Fig. S6. Top:  157 frames of the 128 × 128 grayscale videos reconstructed based on 3DTV algorithm. Boftom: 157 frames of the 128 × 119 

128 × 64 hyperspectral frames reconstructed based on opfical flow assisted 4DTV algorithm converted to arfificial RGB images. 120 

 121 

4. RECONSTRUCTION VIA DEEP NEURAL NETWORKS 122 

A. Tesfing on Simulafion Data 123 

Dataset generafion. We adopt the strategy of taking publicly available hyperspectral image datasets and create a video 124 

out of each hyperspectral image by translafing the image toward a certain direcfion. The hyperspectral datasets we 125 

used are CAVE dataset7 and Harvard dataset8. The CAVE dataset consists of 32 hyperspectral images with spafial 126 

resolufion 512×512. The Harvard dataset consists of 50 outdoor images captured under daylight illuminafion with 127 

spafial resolufion 1024 × 1392. We remove 6 deteriorated images from Harvard dataset due to large-area saturated 128 

pixels. The spectral range of is from 400 nm to 700 nm for CAVE dataset and is from 420 nm to 720 nm for Harvard 129 

dataset. The spectral range of each dataset is divided into 31 spectral bands at 10 nm interval. The intensity of pixels in 130 

these datasets is rescaled to 0-1. We random select 24 images in CAVE dataset and 35 images in Harvard dataset for 131 

training and the rest for tesfing, respecfively. 132 

When creafing the hyperspectral videos, we take a hyperspectral image from the dataset, circularly translate it along 133 

the horizontal or verfical direcfion for 2 pixels each fime for 4 fimes, each fime producing a new hyperspectral frame. 134 

In this manner, a video sequence consisfing of 5 hyperspectral frames are obtained. For each full-size video sequence, 135 

we extract non-overlapping video blocks of size 32 × 32 × 31 × 5, indicafing spafial size of 32 × 32 with 31 spectral 136 

channels and 5 temporal frames. For the CAVE dataset, we obtain 163230 of 32 × 32 × 31 × 5 hyperspectral video blocks 137 

for training the neural networks and 40808 hyperspectral video blocks for tesfing the neural networks. For the Harvard 138 

dataset, we obtain 196405 training blocks and 49101 test blocks. The grayscale video datasets are created by summing 139 

across the spectral dimension for each hyperspectral frame and normalizing the pixel values to 0-1, producing 32 × 32 140 

grayscale videos. The spafial compressive measurements using the STOne pafterns are taken on the videos and the 141 

reshaped vector (Ψ𝑆)𝑇𝑦𝑡  is the input of the CNN module in the grayscale video reconstrucfion network. The CNN 142 

module is pretrained with the network input and output size of 32 × 32. The LSTM network takes input of a video block 143 

containing 5 grayscale video frames each reconstructed from the CNN module and outputs 5 enhanced images of size 144 

32 × 32.  145 

For hyperspectral frame reconstrucfion network, joint spectral-spafial compressive measurements are taken on each 146 

32 × 32 × 31 hyperspectral image. Then, as described in Secfion 2.5 in the main paper, the vector (Φ̃ )
𝑇
𝑏 𝑡 is reshaped 147 
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into size of 32 × 32 × 31, concatenated with the corresponding frame from the grayscale video reconstructed from the 148 

LSTM network along the spectral dimension to have size 32 × 32 × 32, then used as input to the hyperspectral frame 149 

reconstrucfion network which outputs reconstructed hyperspectral frame of size 32 × 32 × 31. For the joint spectral-150 

spafial modulafion paftern sequence, a spectral complementary paftern is inserted for every spectral paftern and a 151 

spafial spectral complementary paftern is inserted for every 32 spectral pafterns. The total number of measurements 152 

used for recovering one frame for CR of 100, 25, and 10 is 316, 1270, and 3174, respecfively. The measurements used 153 

for recovering nearby frames are non-overlapping.  154 

Training Scheme.  All network models are trained using Adam opfimizer9 and are implemented on NVIDIA GeForce RTX 155 

3070 GPU with 8GB memory based on PyTorch code. Starfing with the inifial learning rate of 10−4, we reduce the 156 

learning rate by 10% every 5 epochs. For both the grayscale video reconstrucfion network and the hyperspectral image 157 

reconstrucfion network, the loss funcfion is the mean square error between the ground truth image and the 158 

reconstrucfion. For the hyperspectral image reconstrucfion network, because there is a residual connecfion from the 159 

hyperspectral network input to the output of every RC block, the network output size is designed to be 32 × 32 × 32. 160 

Since the grayscale frame channel is not needed in the final hyperspectral reconstrucfion, we set the loss weight with 161 

respect to the grayscale frame channel to be zero. 162 

Addifional Reconstrucfion Results. Figure S7 and S8 illustrate addifional example reconstructed hyperspectral frames 163 

using the deep learning approach for CAVE and Harvard datasets, visually demonstrafing the spafial and spectral 164 

accuracy. Each image is composed of 6 × 6 non-overlapping files of 32 × 32 × 31 reconstructed hyperspectral blocks 165 

converted to RGB image using CIE color mapping funcfion. No processing is performed to smooth the boundary between 166 

blocks. The reconstructed hyperspectral videos can be found in Supplementary Video 7 and 8. 167 
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 168 

Fig. S7. Example reconstrucfion results of the deep learning approach of CAVE dataset. A gamma correcfion of gamma = 0.4 is applied 169 

on the converted RGB image to brighten darker areas. The first row is ground truth and the rest three rows are for CR of 10, 25 and 170 

100. 171 

 172 

 173 
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 174 

Fig. S8. Example reconstrucfion results of the deep learning approach of Harvard dataset. A gamma correcfion of gamma = 0.4 is 175 

applied on the converted RGB image to brighten darker areas. The first row in (a) and in (b) is the ground truth and the rest three rows 176 

are for CR of 10, 25 and 100. 177 

 178 

Noise Analysis. Noise is inevitable in real scenarios. We take the network models trained without adding measurement 179 

noise and fine-tune them with training data with Gaussian or Poisson measurement noise added, then test the fined-180 

tuned models using data with the same type of measurement noise added. The quanfitafive evaluafion results in PSNR, 181 

SSMI, and SAM are summarized in Table S1. PSNR and SSIM are calculated between reconstructed 2D image of every 182 

spectral channel and the ground truth, then averaged across the spectral and temporal dimensions over all test data. 183 

SAM is calculated on every reconstructed 1D spectrum and its ground truth, then averaged across the spafial and 184 

temporal dimensions over all test data. With measurement noise added, performance is degraded a liftle bit compared 185 

to clean data but sfill maintain reasonable reconstrucfion results. When imaging in ultra high-speed mode or under 186 

extremely low-light condifions, the signal would suffer from severe noise. In these scenarios, we can use noisy data for 187 

training or fine-tune on a well-trained model to increase the robustness of the models. 188 

 189 

 190 

 191 
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 192 

 193 

 194 

 195 

 196 

Table S1. Quanfitafive evaluafion of PSNR(dB), SSIM, and SAM of CAVE dataset and Harvard dataset averaged over all 197 
test data after adding Poisson noise (peak value = 4095) or Gaussian noise (s = 0.04) to measurement. 198 

B. Tesfing on Experimental Data 199 

We create a simulated dataset for training neural network models which are used to reconstruct hyperspectral video 200 

from compressive measurements of a real target acquired by the SDI. Since the SDI has 64 spectral bands at 7.3 nm/band 201 

from 361 nm to 827 nm and no publicly available hyperspectral dataset has the same wavelengths, we adopt the 202 

strategy of interpolafing the Harvard dataset in the spectral dimension. The Harvard dataset consists of hyperspectral 203 

images of spectral range from 420 nm to 720 nm with 31 spectral bands at 10nm interval. We linearly interpolate each 204 

of the hyperspectral images to have the same wavelength bands as the SDI between 423 nm and 715 nm, leading to 41 205 

spectral bands. Then, the simulated hyperspectral video dataset is created by shifting and cropping the interpolated 206 

images and compressive measurements are taken on this dataset. The details are the same as described in "Dataset 207 

generafion" part of Secfion 4A of this Supplementary Informafion with the only difference being 41 spectral channels 208 

instead of 31 channels. Due to GPU memory limit, the models are designed to recover hyperspectral image patches of 209 

spafial size 32 × 32 with 41 spectral bands at 7.3 nm/band from 423 nm to 715 nm. Neural network models are first 210 

trained on clean data and then fine-tuned on data with Gaussian measurement noise (s = 0.06) added. The training 211 

scheme are the same as described in the "training scheme" part of Secfion 4A of this Supplementary Informafion. 212 

Spafial-spectral modulafion pafterns based on the STOne pafterns for spafial modulafion and the pseudo-randomly 213 

permuted Walsh-Hadamard pafterns for spectral modulafion were used to take compressive measurements of each of 214 

the 16 blocks. The permuted Walsh-Hadamard pafterns are used to provide the randomness needed for compressive 215 

sensing-based sensing and recovery and we are not aiming for mulfi-resolufion spectral reconstrucfion here. The 48 × 216 

48 permuted Hadamard matrix is first created and its first 41 columns are used to match the 41 spectral channels. Each 217 

spafial paftern covered 32 × 32 micromirrors on the DMD for a certain block with all other micromirrors put to "off" 218 

state. The spectral pafterns are at 41 bands at 7.3 nm/band from 423 nm to 715 nm. To reduce mofion arfifact caused 219 

by the block-based measurement, the DMD is operated at a paftern rate of 15 kHz. For the joint spectral-spafial 220 

 CAVE Harvard 

 Poisson Gaussian Poisson Gaussian 

CR = 100 22.75/0.673/0.189 22.85/0.680/0.173 24.06/0.712/0.103 24.17/0.729/0.101 

CR = 50 23.66/0.706/0.158 23.78/0.713/0.142 25.23/0.747/0.094 25.33/0.754/0.088 

CR = 10 27.94/0.814/0.106 28.01/0.830/0.093 27.98/0.820/0.079 28.08/0.831/0.070 
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modulafion paftern sequence, a spectral complementary paftern is inserted for every spectral paftern and a spafial 221 

spectral complementary paftern is inserted for every 32 spectral pafterns. The total number of measurements used for 222 

recovering one frame for CR of 100, 25, and 10 is 420, 1682, and 4208, respecfively. The measurements used for 223 

recovering nearby frames are non-overlapping. 224 

    The color wheel was rotated at a lower angular velocity when measuring for lower CRs. The data of CR 25 and CR 10 225 

are only for demonstrafion purpose. With appropriate neural network capacity, the block measurement strategy will 226 

not be used with the SDI and much higher CR and frame rate can be achieved. Figure S9 shows all 80 reconstructed and 227 

sfitched 128 × 128 × 41 hyperspectral frames for CR 100 converted to arfificial RGB images. Full videos for 228 

reconstrucfion of CR 100, CR 25, and CR 10 are presented in Supplementary Video 9-11. 229 

 230 

Fig. S9. 80 frames of the reconstructed 128 × 128 × 41 hyperspectral video for CR 100 converted to arfificial RGB images 231 

where each frame is sfitched from 32 × 32 × 41 hyperspectral patches reconstructed by the deep learning approach. 232 
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