
Open Access This file is licensed under a Creative Commons Attribution 4.0 
International License, which permits use, sharing, adaptation, distribution and 
reproduction in any medium or format, as long as you give appropriate credit to 

the original author(s) and the source, provide a link to the Creative Commons license, and indicate if 
changes were made. In the cases where the authors are anonymous, such as is the case for the reports of 
anonymous peer reviewers, author attribution should be to 'Anonymous Referee' followed by a clear 
attribution to the source work.  The images or other third party material in this file are included in the 
article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is 
not included in the article’s Creative Commons license and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright 
holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. 

Peer Review File

 



REVIEWER COMMENTS 

 

Reviewer #1 (Remarks to the Author): 

 

The manuscript by Behnia and Trachenko discusses the "non-Fermi liquid (NFL)" property of heat 

transport in normal 3He. In the standard Fermi liquid theory, the thermal conductivity is expressed as 

a function of the heat capacity and quasiparticle scattering time, resulting in the characteristic 

temperature dependence of 1/T. At extremely low temperatures, the properties of the normal 3He 

are described with the Fermi liquid theory. When the temperature increases by approximately 

100mK, however, the Fermi liquid picture no longer applies. In the manuscript, the authors start by 

examining the thermal conductivity measurements by Greywall, which show a deviation from the 

typical FL behavior and a crossover to T^{1/2} behavior expected in the gas-like regime. They 

associate the characteristic temperature at which the thermal conductivity exhibits NFL behavior 

with the Planckian time. Above the temperature, thermally excited sound modes come into play as 

the leading carriers of heat, which explains the T^{1/2} behavior of the thermal conductivity in the 

high-temperature regime. 

 

In the manuscript, the authors present a scenario to explain the crossover between the FL and NFL 

regions of the normal 3He and shed light on the impact of collective excitations in heat transport. In 

terms of substance, I recommend its publication in Nature Communications after clarifying the 

following points. 

 

1. To explain the T^{1/2} behavior at high temperatures, the authors identify the sound modes as "a 

quantum mechanical wave" and apply the Landauer formula. Can you clarify the temperature range 

in which this theory applies? For instance, it would be helpful to know if there is a maximum 

temperature limit for this theory. 

 

2. How important is the effect of the coupling of sound modes with quasiparticles? I think Eqs.(1)-(3) 

explain the temperature dependence of the thermal conductivity in the deep NFL regime (namely, 

the much higher temperature regime that the fermion-fermion scattering time becomes comparable 

to the Planckian time). In the crossover region (e.g., around 100mK at zero pressure), does the 

mutual coupling between quasiparticles and collective modes have a significant impact on the 

deviation of the thermal conductivity from both 1/T and T^{1/2} behaviors? 

 

3. It would be useful to explicitly mention the values of the fitting parameters "a_2" and "a_{1/2}" 

(Fig.4a) in the manuscript. 



 

4. It has been discussed that the coupling of quasiparticles to zero sound phonons gives a "T^3log(T)" 

behavior for the specific heat, but the magnitude is too small to account for the experimental 

observation. However, the spin fluctuation significantly contributes to the specific heat, resulting in 

the right order of magnitude to account for the experimental data of the specific heat [e.g., W. F. 

Brinkman and S. Engelsberg, Phys. Rev. 169, 417 (1968) and D. Coffey and C. J. Pethick, Phys. Rev. B 

37, 1647 (1988)]. Spin fluctuations also give rise to the leading-order corrections to the FL behavior 

of the thermal conductivity [e.g., M. J. Rice, Phys. Rev. 159, 153 (1967) and K. S. Dy and C. J. Pethick, 

Phys. Rev. 185, 373 (1969)]. Do spin fluctuations have a significant impact on heat transport even in 

the deep NFL regime? Can you have any discussions and comments about this? 

 

5. Minor typos: In Eq.(3), I think "m" should be "m^{\ast}". There are several repeated twice words in 

the manuscript, e.g., "of of" in the 4th paragraph of page 1 and "decreases decreases" in the 3rd 

paragraph of page 3. 



"How heat propagates in `non-Fermi liquid' $^3$He" Behnia and Trachenko
---------------------------------------------------------------------------
---------

Liquid He-3 is the fundamental quantum liquid of great importance for our 
understanding of other superfluid and
correlated states. It has been at the forefront of low-temperature physics 
for decades and still provides us with many
unanswered puzzles. 

At low temperatures, below than 10-100 mK its behavior generally follows 
the laws set out by the Fermi-Liquid paradigm,
where main players are weakly-interacting quasiparticles.  At higher 
temperatures, the quasiparticle picture breaks down
and more complicated collective particle dynamics becomes dominant.  

Heat transport and its temperature evolution from 1/T (low T) to T^{1/2} 
(high T) is one of the unanswered questions.
The manuscript proposes a qualitative picture of the heat transport in 
liquid He-3 at temperatures  beyond the Fermi
Liquid regime.  The authors suggest that a density fluctuation mode, or 
sound, is the main carrier of energy in the
system, based on the fact that the typical relaxation, or scattering time, 
falls below the Planckian time. They provide
a simple model for the thermal conductivity based on Landauer transport 
formulation. It is a new approach to the
problem, that may open new fruitful investigation directions. 

Overall, the paper is nicely written, with relevant references and 
supplementary materials provided.  The presented idea
is interesting but I'd like the authors to clarify several points, and make 
the arguments more quantitative: 

1) The Landauer transport formula (1) uses transmission coefficient in the 
form $q^2 * \ell$ for each mode. What are the
applicability limits of this expression? Does it work for both ballistic 
quasiparticle propagation and the overdamped
waves? Could authors provide a more detailed derivation/explanation of 
this? 

2) The logical step on page 3, between avoiding "Debye sphere" T^3 
dependence by involving transmission by the whole Fermi
surface is not clear. Why would this be the case? 

3) What are the numerical values of the fitting coefficients a_2 and 
a_{1/2} in Fig 4a? Do they agree with the
predictions given by the Landauer formula? The high-temperature behavior of 
heat conductivity (3) is shown in Fig 1a.
Please add a similar asymptotic expression for the low temperature Fermi-
Liquid regime. 

4) Some of the qualitative arguments are not sufficiently supported. For 
example, why the de Broglie thermal length is
the appropriate mean free path for the collective sound mode? Why the 
particular mode selected is the 2k_F mode? In the

Reviewer #3 (Remarks to the Author):



"quantum" Bridgman formula (3) the speed of sound replaced by the thermal 
velocity, why not the group speed of the 2k_F mode? 

5) The sound mode that is proposed for the heat transport is the "2k_F 
hydrodynamic sound mode". This sound mode would
have wavelength on the order of interatomic distance, with large 
attenuation. Why is this short wavelength excitation
still a hydrodynamic regime "sound"? Does the Landauer formula apply here 
at all? Authors should provide more details on
that.  There are questions in the literature about how low in energy this 
mode really goes, according to references
[47,48,51].  The question is whether this mode can be sufficiently 
thermally excited at 1K (0.1meV)? Possibly, the
particle number n in (3) to be used is a small fraction of the total 
concentration? Moreover, the schematic depiction of
the mode in Fig 4c is not clear. It looks more like a single particle-hole 
excitation at 2k_F momentum? 

6) What about other collective modes? For example, deviations of the heat 
capacity and (to a lesser degree) thermal
conductivity from Fermi-Liquid predictions at low temperatures has been 
explained by spin fluctuation in the paramagnon
model, e.g. by  Mishra, Ramakrishnan in Phys. Rev. B 31, 2825 and 
overviewed in monographs on He-3 by Dobbs, and by
Vollhardt and Wolfle. Do other collective modes contribute to the heat 
transport?

7) additionally: 
a) in figures, the negative sign in powers of T merges with the top bar in 
"T" and hard to read;
b) in Table I it is not clear what is meant by "Driver" in column 4; 
c) the summary paragraph is very brief and does not elaborate or expand on 
the main message of the paper.  

Reviewer #3 (Remarks to the Author):



Reply to reviewers 

We thank both reviewers for the time they devoted to our manuscript, their careful reading 

and their insightful remarks. The two reports have helped us to improve the clarity of our 

message. Here is our point-to-point answer to their comments.  

 

Reviewer #1 : 

The manuscript by Behnia and Trachenko discusses the "non-Fermi liquid (NFL)" property of 

heat transport in normal 3He. In the standard Fermi liquid theory, the thermal conductivity is 

expressed as a function of the heat capacity and quasiparticle scattering time, resulting in the 

characteristic temperature dependence of 1/T. At extremely low temperatures, the properties 

of the normal 3He are described with the Fermi liquid theory. When the temperature increases 

by approximately 100mK, however, the Fermi liquid picture no longer applies. In the 

manuscript, the authors start by examining the thermal conductivity measurements by 

Greywall, which show a deviation from the typical FL behavior and a crossover to T^{1/2} 

behavior expected in the gas-like regime. They associate the characteristic temperature at 

which the thermal conductivity exhibits NFL behavior with the Planckian time. Above the 

temperature, thermally excited sound modes come into play as the leading carriers of heat, 

which explains the T^{1/2} behavior of the thermal conductivity in the high-temperature 

regime. 

In the manuscript, the authors present a scenario to explain the crossover between the FL and 

NFL regions of the normal 3He and shed light on the impact of collective excitations in heat 

transport. 

We thank the reviewer for this accurate summary of the context of our work and its 

significance. 

 In terms of substance, I recommend its publication in Nature Communications after clarifying 

the following points. 

1. To explain the T^{1/2} behavior at high temperatures, the authors identify the sound modes 

as "a quantum mechanical wave" and apply the Landauer formula. Can you clarify the 

temperature range in which this theory applies? For instance, it would be helpful to know if 

there is a maximum temperature limit for this theory. 

Yes, it is true that we should have clarified this. We assume that the temperature is well below 

the Debye temperature of the system, which is ~20 K in solid 3He (and slightly lower in more 

dilute liquid 3He). Moreover, we are restricted upward by the degeneracy temperature of 3He, 

which is ~5K for non-interaction fermions and ~2K for interacting fermions. The difference 

between the two Fermi energies is a result of mass normalization (m*~2.9 m_3). 

2. How important is the effect of the coupling of sound modes with quasiparticles? I think 

Eqs.(1)-(3) explain the temperature dependence of the thermal conductivity in the deep NFL 

regime (namely, the much higher temperature regime that the fermion-fermion scattering 



time becomes comparable to the Planckian time). In the crossover region (e.g., around 100mK 

at zero pressure), does the mutual coupling between quasiparticles and collective modes have 

a significant impact on the deviation of the thermal conductivity from both 1/T and T^{1/2} 

behaviors? 

We are indeed neglecting any coupling between quasi-particles and sound. This does not mean 

that there is no such coupling, only that one does not need to invoke it to explain the thermal 

conductivity data. Let us summarize the situation:  

i) If one assumes that heat is only carried by quasi-particles, one expects 𝜅 ∝ 𝑇−1. 

This only works when T<0. 01 K. 

ii) If one assumes that heat is only carried by a sound mode (with q=2kF), one expects 

𝜅 ∝ 𝑇1/2. This only works when 0.7 K T<2 K. 

iii)  If one assumes that heat is carried by both quasi-particles and sounds, neglecting 

any interaction between them, one can explain the experimental data with an 

accuracy better than 10 percent from 0.008 K to 2 K (See Fig. 4b in the new version).  

In the new version, we have specified that we are neglecting possible coupling between the 

two conducting channels and this may be one of the reasons of the slight disagreement.  

3. It would be useful to explicitly mention the values of the fitting parameters "a_2" and 

"a_{1/2}" (Fig.4a) in the manuscript. 

Yes! We have provided this information explicitly in the new version (See table 2). 

4. It has been discussed that the coupling of quasiparticles to zero sound phonons gives a 

"T^3log(T)" behavior for the specific heat, but the magnitude is too small to account for the 

experimental observation. However, the spin fluctuation significantly contributes to the 

specific heat, resulting in the right order of magnitude to account for the experimental data of 

the specific heat [e.g., W. F. Brinkman and S. Engelsberg, Phys. Rev. 169, 417 (1968) and D. 

Coffey and C. J. Pethick, Phys. Rev. B 37, 1647 (1988)]. Spin fluctuations also give rise to the 

leading-order corrections to the FL behavior of the thermal conductivity [e.g., M. J. Rice, Phys. 

Rev. 159, 153 (1967) and K. S. Dy and C. J. Pethick, Phys. Rev. 185, 373 (1969)]. Do spin 

fluctuations have a significant impact on heat transport even in the deep NFL regime? Can you 

have any discussions and comments about this? 

The answer to the first question is negative. There is no detectable evidence of a contribution 

by spin fluctuations (either as conductors of heat or as scattering centers) in the heat transport 

data when T > 0.1 K.  Let us recall that the nuclear exchange energy is in the range of 1 to 2 

mK, orders of magnitude smaller than the two other relevant energy scales (Fermi and Debye). 

We examined the first two papers mentioned by the reviewer. Indeed, the first two papers 

propose a contribution to specific heat by spin fluctuations. However, this is restricted to low 

temperature.  (below 0.04 K in the case of Brinkman & Engelsberg, and below 0.1 K in the case 

of Coffey and Pethick). As for the papers on thermal conductivity, Dy and Pethick explicitly 

focus on what they call “extreme low temperature limit” and do not attempt to explain the 

experimental data at finite temperature. 



The paper by M. J. Rice stands out. He explicitly invokes scattering by spin fluctuations in order 

to explain the upward deviation of the thermal conductivity from T-1 up to 0.4 K. Therefore, 

his scenario is an alternative to ours. However, he has assumed an energy scale for spin 

fluctuations as large as 1.1 K. No justification is given. This is orders of magnitude larger than 

the nuclear spin exchange energy quantified by experiments.   Indeed, nuclear magnetic 

relaxation measurements have found that J=0.002 K when the molar volume is 24.6 cm3/mol 

(Meyer, J. Appl. Phys. 39, 390–396 (1968)) and specific heat measurements find that J=0.00085 

K, when the molar volume is 24.45 cm3/mol ().  While there is a twofold discrepancy between 

these two measurements, they are respectively 550 times and 1300 times smaller than what 

is assumed by Rice. 

Besides the unrealistic energy scale, there is a second objection to Rice’s scenario. The 

deviation of thermal conductivity from its expected behavior is upward. Why then invoke an 

additional scattering mechanism (as he does) instead of an additional conducting channel (as 

we do)?  

We have added a new discussion detailing all this in the Supplemental material . 

5. Minor typos: In Eq.(3), I think "m" should be "m^{\ast}". There are several repeated twice 

words in the manuscript, e.g., "of of" in the 4th paragraph of page 1 and "decreases decreases" 

in the 3rd paragraph of page 3. 

Thanks for this careful reading. We have corrected them in the new version. 

Reviewer #2 : 

"How heat propagates in `non-Fermi liquid' $^3$He" Behnia and Trachenko 

------------------------------------------------------------------------------------ 

Liquid He-3 is the fundamental quantum liquid of great importance for our understanding of 

other superfluid and correlated states. It has been at the forefront of low-temperature physics 

for decades and still provides us with many unanswered puzzles. 

At low temperatures, below than 10-100 mK its behavior generally follows the laws set out by 

the Fermi-Liquid paradigm, where main players are weakly-interacting quasiparticles. At 

higher temperatures, the quasiparticle picture breaks down and more complicated collective 

particle dynamics becomes dominant. 

Heat transport and its temperature evolution from 1/T (low T) to T^{1/2} (high T) is one of the 

unanswered questions. The manuscript proposes a qualitative picture of the heat transport in 

liquid He-3 at temperatures beyond the Fermi Liquid regime. The authors suggest that a 

density fluctuation mode, or sound, is the main carrier of energy in the system, based on the 

fact that the typical relaxation, or scattering time, falls below the Planckian time. They provide 

a simple model for the thermal conductivity based on Landauer transport formulation. It is a 

new approach to the problem, that may open new fruitful investigation directions. 



Overall, the paper is nicely written, with relevant references and supplementary materials 

provided. The presented idea is interesting but I'd like the authors to clarify several points, and 

make the arguments more quantitative: 

Many thanks for this nice summary and this positive assessment.  

1) The Landauer transport formula (1) uses transmission coefficient in the form $q^2 * \ell$ 

for each mode. What are the applicability limits of this expression? Does it work for both 

ballistic quasiparticle propagation and the overdamped waves? Could authors provide a more 

detailed derivation/explanation of this? 

The Landauer’s approach to conduction is to consider the transmission of a wave, which is 

attenuated over a distance. When the wave is a ballistic quasi-particle, the attenuation 

distance (or the mean-free-path) is set by the finite size. One virtue of this approach is the 

transparency of the presence of fundamental constants and specific context-dependent length 

scales in setting the expected magnitude and temperature dependence of a transport 

coefficient.  Here are two examples: 

a) Thermal and electrical conductivity in a metal 

 The Landauer formalism leads to the following expression for the electrical conductivity of a 

two-dimensional metal whose Fermi surface is a circle of radius 𝑘𝐹 and its mean-free-path ℓ: 

𝜎2𝐷 =
𝑒2

ℎ
𝑘𝐹ℓ 

This is because the number of conducting mode is 2 ×
1

2
× 2𝜋/𝜆𝐹 (2 for spin degeneracy, ½ for 

averaging a vector in two dimensions, and 2 is the total planar angular range).  In three 

dimensions, one finds:  

𝜎3𝐷 =
2

3𝜋

𝑒2

ℎ
𝑘𝐹

2ℓ 

Here, the Fermi surface is a sphere of radius 𝑘𝐹and there are 2 ×
1

3
× 4𝜋/𝜆𝐹

2  conducting 

modes.  

Replacing the Fermi radius by the carrier concentration (in 2D, 𝑘𝐹
2 = 2𝜋𝑛 and in 3D, 𝑘𝐹

3 =

3𝜋2𝑛) and the mean-free-path by the scattering time (ℓ = 𝜏
ℏ𝑘𝐹

𝑚∗ ) transform both these 

expressions to the familiar Drude expression: 

𝜎𝐷𝑟𝑢𝑑𝑒 =
𝑛𝑒2𝜏

𝑚∗
 

The Landauer expression for thermal conductivity in three dimensions, in agreement with the 

Wiedemann-Franz law, is: 

𝜅3𝐷

𝑇
=

𝜋2

3
𝜎3𝐷 =

2𝜋

9

𝑘𝐵
2

ℎ
𝑘𝐹

2ℓ 

This is a specific case of Equation 1 of our paper where the transmission coefficient is 
2

3𝜋
 𝑘𝐹

2ℓ.  



b) Thermal conductivity of phonons in an insulator 

Consider now an insulating cubic crystal with a lattice parameter equal to a. The phonon thermal 

conductivity at low temperature according to the Landauer formalism is: 

𝜅𝑝ℎ

𝑇
=

𝜋2

3

𝑘𝐵
2

ℎ
𝒯𝑝ℎ 

To quantify 𝒯𝑝ℎ  let us assume that we are at low temperature, in the Casimir limit, where the mean-

free-pat of all phonons, is the size of the crystal L.  The number of conducting modes is roughly: 
1

3
×

4𝜋𝑞𝐷
2 . The latter is the external area of the Debye sphere. This leads us to: 

𝜅𝑝ℎ

𝑇
=

4𝜋3

9

𝑘𝐵
2

ℎ
𝑞𝐷

2 𝐿 

Replacing  𝑞𝐷 =
𝑇

𝑎Θ𝐷
, where a is the lattice parameter and Θ𝐷 the temperature. This leads to: 

𝜅𝑝ℎ =
4𝜋3

9

𝑘𝐵
2

ℎ
𝑇 (

𝑇

𝑎Θ𝐷
)

2

𝐿 

 The sound velocity can be introduced using:  𝑣𝑠 = 𝑎𝑘𝐵Θ𝐷/ℏ and the atomic density using 𝑛 = 𝑎−3 

𝜅𝑝ℎ =
8𝜋4

9
𝑛 (

𝑇

Θ𝐷
)

3

𝑣𝑠𝐿 

One can see that this equivalent to the familiar 𝜅 =
1

3
𝐶𝑣ℓ with specific heat given by its low 

temperature Debye expression.  These are specific examples for validity of equation 1 of our paper. It 

implies that the amplitude of thermal transport coefficient in three dimensions is set by the quantum 

of thermal conductance, the wavelength square, the mean-free path and a geometric numerical factor. 

The same approach can be used to quantify thermal conduction by sound in three dimensions. There 

are 
2

3𝜋
𝑘𝐹

2 conducting modes, with a mean free path of  Therefore:  

 
𝜅𝑠

𝑇
=

2𝜋

9

𝑘𝐵
2

ℎ
𝑘𝐹

2Λ 

2) The logical step on page 3, between avoiding "Debye sphere" T^3 dependence by involving 

transmission by the whole Fermi surface is not clear. Why would this be the case? 

Heat transmitted by the acoustic phonons inside the Debye sphere leads indeed to  𝜅𝑝ℎ ∝ (
𝑇

Θ𝐷
)

3
 as 

detailed in our reply above.  However, this contribution is negligibly small, because the Debye 

temperature is relatively large compared to our temperature window of interest. What we quantify is 

the transmission rate by a single mode with a temperature-independent wave-vector q=2𝑘𝐹  and a 

temperature-dependent mean free path: ℓ = Λ ∝ √𝑇. It happens that the amplitude and the 

temperature dependence found by this approach both match the experimental data. 

3) What are the numerical values of the fitting coefficients a_2 and a_{1/2} in Fig 4a? Do they agree 

with the predictions given by the Landauer formula? The high-temperature behavior of heat 

conductivity (3) is shown in Fig 1a.  Please add a similar asymptotic expression for the low temperature 

Fermi Liquid regime. 



We have specified these numbers in the new version. Yes, they do! Please see table 2 and Fig. 4 in the 

new version. 

4) Some of the qualitative arguments are not sufficiently supported. For example, why the de Broglie 

thermal length is the appropriate mean free path for the collective sound mode?  

The inverse of the de Broglie thermal length is a measure of the broadening of the Fermi-Dirac 

distribution around its kF singularity.  (See the figure below). To be more precise, the distance between 

the two extrema of the temperature derivative 
𝜕𝑓

𝜕𝑇
  scale with 

𝜆𝐹
2

Λ2. Therefore, it is a natural choice for 

measure of the distance over which a collective fermionic mode attenuates.  
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Why the particular mode selected is the 2k_F mode?  

Our first answer is that by selecting this mode, one finds a reasonable account of the experimental 

data. A second answer is that in a classical liquid, as the Bridgman formula implies, the dominant heat 

carriers are phonons with large wave-vector s 𝑞 =
2𝜋

𝑎
 (a is the interatomic distance) and in our quantum 

liquid  2𝑘𝐹 =
2

𝑎
(3𝜋2)1/3 , which is close enough. A third answer is that the singularity of Lindhard 

function at 𝑞 = 2𝑘𝐹, which makes this wave-vector special. The fourth answer is that the experimental 

spectroscopic data (Fig. S2 in the supplement) finds a profound minimum near this wave-vector. 

In the "quantum" Bridgman formula (3) the speed of sound replaced by the thermal velocity, why not 

the group speed of the 2k_F mode? 

This is not an arbitrary choice. It comes out of the Landauer transmission approach.  Let us note that 

the third law of thermodynamics requires entropy to vanish at zero temperature. We suspect that the 

thermal velocity is present in this quantum context because collective energy transport is impossible 

without a finite width in the Fermi-Dirac distribution.   



5) The sound mode that is proposed for the heat transport is the "2k_F hydrodynamic sound mode". 

This sound mode would have wavelength on the order of interatomic distance, with large attenuation. 

Why is this short wavelength excitation still a hydrodynamic regime "sound"?  

Yes!  We agree that this sound mode has a wavelength of the order of interatomic distance (See Fig. 

5c). Yes! The available experimental data obtained by inelastic neutron and X-ray scattering does not 

allow to say what is the minimal thermal energy to excite the mode at 2k_F.  However, note that they 

could resolve a mode Our assumption that this sound mode is present in our temperature of interest 

implies that it can be thermally excited even below 1 K. If this happens to be the case, then we are in 

the hydrodynamic limit, because 𝜔 ≅
𝑘𝐵𝑇

ℏ
> 𝜏−1. The latter inequality is a consequence of the 

scattering time becoming shorter than the Planckian time.  

Does the Landauer formula apply here at all?  

Whys not?  

Authors should provide more details on that. There are questions in the literature about how low in 

energy this mode really goes, according to references [47,48,51]. The question is whether this mode 

can be sufficiently thermally excited at 1K (0.1meV)? 

Yes! The reviewer is perfectly right. There has been a controversy about how to interpret the x-ray data 

near the minimum in the dispersion curve, which shows a roton-like minimum. The data was taken at 

1.1 K and they could detect zero sound at Q=1.8 A (2k_F) even at this temperature, but it was widely 

broadened. Our proposal should motivate a study to quantify the temperature dependence of the 

energy of the zero sound near this wave-vector.  

Possibly, the particle number n in (3) to be used is a small fraction of the total concentration? Moreover, 

the schematic depiction of the mode in Fig 4c is not clear. It looks more like a single particle-hole 

excitation at 2k_F momentum? 

The particle number n in Eq. 3 is derived from the radius of the Fermi sphere. Therefore, it represents 

the entire fermionic population. We have amended Fig. 4c to show that it represents a distortion of the 

Fermi surface by the sound mode.  As the reviewer has noticed, it corresponds to an excitation with a 

wavelength as short as the interatomic distance. We have added a sketch to clarify this point. 

6) What about other collective modes? For example, deviations of the heat capacity and (to a lesser 

degree) thermal conductivity from Fermi-Liquid predictions at low temperatures has been explained 

by spin fluctuation in the paramagnon model, e.g. by Mishra, Ramakrishnan in Phys. Rev. B 31, 2825 

and overviewed in monographs on He-3 by Dobbs, and by Vollhardt and Wolfle. Do other collective 

modes contribute to the heat transport? 

This is an excellent question, which was also raised by the other reviewer. Please see our detailed 

answer to comment 4 by the first reviewer. 

7) additionally: 

a) in figures, the negative sign in powers of T merges with the top bar in "T" and hard to read; 

 Thank you! It has been corrected. 

b) in Table I it is not clear what is meant by "Driver" in column 4; 

We replaced “driver” by “mechanism”. 



c) the summary paragraph is very brief and does not elaborate or expand on the main message of the 

paper. 

You are right. We have extended it. 

 

Summary of changes 

i)  The abstract has been modified (remark #7c by reviewer 1). 

ii) A new figure (Fig. 5b) has been added and Fig. 4a in the previous version has become Fig. 

4b). By explicitly showing both (T) and /T (T) one can better appreciate how close, but 

still imperfect, is the agreement between the experimental data and the theory.   

iii) Fig. 4 has been modified to give a better depiction of the sound mode (remark #5 of 

reviewer 2). 

iv) The amplitude of the Debye temperature and the Fermi temperature have been explicitly 

mentioned (remark #1 by reviewer 1 and remark #2 by reviewer 1). 

v) The absence of coupling between the sound mode and the quasi-particle mode in our 

model has been mentioned and its possible consequence discussed (remark #2 by reviewer 

1). 

vi) A table has been added explicitly listing the coefficients of the a2T-2+a1/2T-1/2 expression 

(remark #3 by reviewer 1 and remark #3 by reviewer 2). 

vii) Early works associating the non-Fermi liquid behavior with spin fluctuation is mentioned 

in the main text and a discussion of them is the subject of a new section in the supplement 

(remark #4 by reviewer 1 and remark #6 by reviewer 2). 

viii) Minor mistakes were corrected (remark #5 by reviewer 1 and remark #7 by reviewer 2). 

ix) The derivation of equations based on Landauer approach is clarified (remark #1 by 

reviewer 2). 

x) The title has become “How heat propagates in liquid 3He” to avoid jargon.  

 



REVIEWERS' COMMENTS 

 

Reviewer #1 (Remarks to the Author): 

 

The authors have addressed all comments and questions I raised in my previous report, and they 

have made significant improvements to the manuscript. Therefore, I recommend that this paper be 

published in Nat. Commun. without any further changes. 

 

 

 

Reviewer #2 (Remarks to the Author): 

 

The authors provided detailed answer to the questions raised in the first round. The only remaining 

concern that I have is that equations (1-3) do not seem to appear in standard Solid state books, and 

require special knowledge, so they might be unfamiliar to He3 research community. Perhaps authors 

may consider adding an appendix to help the readers, briefly discussing the main points such as 

presence of mean free path in these equations, along the lines that authors used in their reply to 

referees. 



Following the recommendation by reviewer 2, a new supplementary note (number 4) 

has been added in the Supplementary Information. 
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