Supplementary Information

Photocatalytic Z/E isomerization unlocking the stereodivergent

construction of axially chiral alkene frameworks

Jie Wang,⁺ Jun Gu,⁺ Jia-Yu Zou, Meng-Jie Zhang, Rui Shen, Zhiwen Ye, Ping-Xun Xu, and Ying He*

School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China

⁺ These authors contributed equally.

* E-mail: <u>yhe@njust.edu.cn</u>

Table of contents

General information
General procedure A: Synthesis of MBH carbonates4
General procedure B : Synthesis of 2-quinolinone derivatives
General procedure C: Optimized conditions for accessing (P, Z) -37
General procedure D : One-pot synthesis of axially chiral products (P, Z) - 3
General procedure E: Optimized conditions for accessing (P, E)-3
General procedure F : Synthesis of axially chiral products (<i>P</i> , <i>E</i>)- 3 9
General procedure G : One-pot synthesis of axially chiral products (P, E) - 3
Racemization experiments
Large-scale reactions for the synthesis of 3a
Stereodivergent synthesis of axially chiral N-vinylquinolinones 3a/3s
Stereodivergent transformations of axially chiral N-vinylquinolinones 3
Photocatalyzed Z/E isomerization of non atropisomeric substrates
Density functional theory studies
X-ray crystal structures
NMR spectrum data64
HPLC spectrum data
References

General information

Unless otherwise noted, all starting materials were purchased from commercial sources and used without any further purification. The analytical data for the known compounds were found to match with the literature data and stored at -20 °C under an inert atmosphere. Room temperature = 23-25 °C. Thin layer chromatograph plates were visualized under UV light (254 nm) or by staining with phosphomolybdic acid or KMnO₄ followed by heating. Abbreviations are reported as follows: DCM = dichloromethane, DCE = dichloroethane, THF = tetrahydrofuran, DMF = *N*,*N*dimethylformamide, DME = 1,2-Dimethoxyethane, PE = petroleum ether, EA = ethyl acetate, TLC = thin layer chromatograph, dr = diastereomeric ratio. Nuclear magnetic resonance (NMR) spectra were recorded using an AVANCE 500 Bruker spectrometer and chemical shifts were reported in ppm. Multiplicities are reported using the following abbreviations: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet. High resolution mass spectral data were acquired on Agilent Technologies Accurate-Mass Q-TQF LC/MS 6520. Enantiomeric excesses (ee) were determined on a Thermo Ultimate 3000 Chiral HPLC by using AD, OD, IA, IC, and ID columns.

Photoreactions were performed in a foil-wrapped box, which is placed in lab at a constant 25 °C. The distance between the reaction vessels and the LED bulb (420 nm) was set at approximately 7-8 cm for all reactions which is shown in the picture.

Supplementary Fig. 1. The picture of the photocatalytic reaction.

General procedure A: Synthesis of MBH carbonates

MBH alcohols **S3** were synthesized according to the following procedure. To a round flask equipped with a magnetic stirring bar was added aldehyde **S1** (10 mmol), acrylic ester **S2** (15 mmol) and DABCO (1,4-diazabicyclo[2.2.2]octane) (10 mmol). The reaction mixture was heated to 50 °C and stirred for 1-7 days. The reaction was monitored by TLC. When the reaction was completed, it was diluted with water and extracted with DCM (20 mL×3). The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, filtered and concentrated in vacuum. The crude product was purified by column chromatography on silica gel with PE/EA as eluent to give the desired alcohols **S3**.

To a round flask equipped with a magnetic stirring bar was added **S3** (10.0 mmol, 1.0 eq), DMAP (1.0 mmol, 0.1 eq) and DCM (50 mL). Boc₂O (11.0 mmol, 1.1 eq) was then added into the mixture at room temperature. The resulting mixture was stirred at room temperature for 0.5-2 hours, and then diluted with water and extracted with DCM (20 mL×3). The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, filtered and concentrated in vacuum. The crude product was purified by a silica gel flash chromatography (PE/EA) to give compound **1**.

tert-butyl 2-(benzo[b]thiophen-2-yl((*tert*-butoxycarbonyl)oxy)methyl)acrylate (1m)

Following the general procedure **A**, **1m** was obtained as white solid. ¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.84 (d, *J* = 7.4 Hz, 1H), 7.78 (d, *J* = 7.4 Hz, 1H), 7.40-7.35 (m, 3H), 6.80 (s, 1H), 6.46 (s, 1H), 6.05 (s, 1H), 1.54 (s, 9H), 1.47 (s, 9H). ¹³**C NMR** (126 MHz, Chloroform-*d*) δ 163.81, 152.30, 141.71, 140.29, 140.06, 139.24, 125.34, 124.64, 124.36, 123.94, 123.66, 122.41, 83.00, 81.82, 71.63, 27.99, 27.83. HRMS(ESI) m/z:

calculated for $[C_{21}H_{26}O_5S + H]^+$ 391.1574, found 391.1579.

General procedure B: Synthesis of 2-quinolinone derivatives

To a flame-dried round-bottom flask filled with argon were added 2-quinolinone (10 mmol, 1.0 eq), potassium methyltrifluoroborate or aryl boric acid ester (20 mmol, 2.0 eq), K_2CO_3 (20 mmol, 2.0 eq) and Pd(PPh₃)₄ (0.5 mmol, 0.05 eq). Toluene/MeOH/H₂O (10:3:2, 30 mL) were added before the mixture was heated to 110 °C, and then the mixture was stirred for 12 hours. After cooling down to room temperature, the mixture was filtered through celite and treated with water. Then the solution was separated and extracted with EA (20 mL x 3). The combined organic layers were washed with saturated NaCl aqueous (30 mL), dried over anhydrous Na₂SO₄, filtered and concentrated in vacuum. The crude product was purified by column chromatography over silica gel (PE: EA= 5:1 to 2:1) to afford the desired product.

7-(prop-1-en-2-yl)quinolin-2(1*H*)-one (2x)

Following the general procedure **B**, **2x** was obtained as white solid. ¹**H NMR** (500 MHz, DMSO-*d*₆) δ 11.69 (s, 1H), 7.88 (d, *J* = 9.5 Hz, 1H), 7.62 (d, *J* = 8.2 Hz, 1H), 7.39 – 7.35 (m, 2H), 6.47 (d, *J* = 9.5 Hz, 1H), 5.52 (s, 1H), 5.23 (s, 1H), 2.13 (s, 3H). ¹³**C NMR** (126 MHz, DMSO-*d*₆) δ 161.42, 141.62, 141.33, 139.19, 138.44, 127.14, 121.11, 118.60, 117.89, 113.75, 111.11, 20.74. HRMS(ESI) m/z: calculated for [C₁₂H₁₁NO + H]⁺ 186.0913, found 186.0919.

7-(4-((((1*S*,2*R*,5*S*)-2-isopropyl-5-methylcyclohexyl)oxy)methyl)phenyl)quinolin-2(1*H*)-one (2y)

Following the general procedure **B**, **2y** was obtained as white solid. ¹**H NMR** (500 MHz, Chloroform-*d*) δ 12.36 (s, 1H), 7.88 (d, *J* = 9.4 Hz, 1H), 7.70 – 7.65 (m, 4H), 7.51 (d, *J* = 7.7 Hz, 3H), 6.78 (d, *J* = 9.4 Hz, 1H), 4.78 (d, *J* = 11.5 Hz, 1H), 4.52 (d, *J* = 11.6 Hz, 1H), 3.27 (td, *J* = 10.5, 4.0 Hz, 1H), 2.42 – 2.36 (m, 1H), 2.28 (d, *J* = 12.3 Hz, 1H), 1.82 (s, 1H), 1.74 – 1.68 (m, 2H), 1.38 (t, *J* = 11.3 Hz, 1H), 1.09 – 0.92 (m, 9H), 0.81 (d, *J* = 6.9 Hz, 3H). ¹³**C NMR** (126 MHz, Chloroform-*d*) δ 154.94, 142.61, 139.66, 138.27, 137.92, 127.30, 127.12, 126.37, 121.00, 120.17, 118.03, 113.05, 77.97, 69.02, 47.37, 39.35, 33.58, 30.59, 24.59, 22.30, 21.39, 20.04, 15.15. HRMS(ESI) m/z: calculated for [C₂₆H₃₁NO₂ + H]⁺ 390.2428, found 390.2433.

6-(4-((((*R*)-2,5,7,8-tetramethyl-2-((4*R*,8*R*)-4,8,12-trimethyltridecyl)chroman-6yl)oxy)methyl)phenyl)quinolin-2(1*H*)-one (2z)

Following the general procedure **B**, **2z** was obtained as white solid. ¹**H NMR** (500 MHz, Chloroform-*d*) δ 11.68 (s, 1H), 7.95 (d, *J* = 9.5 Hz, 1H), 7.84 (d, *J* = 8.3 Hz, 2H), 7.71 (d, *J* = 7.9 Hz, 2H), 7.66 (d, *J* = 8.0 Hz, 2H), 7.52 (d, *J* = 8.3 Hz, 1H), 6.82 (d, *J* = 9.5 Hz, 1H), 4.81 (s, 2H), 2.66 (t, *J* = 6.8 Hz, 2H), 2.30 (s, 3H), 2.25 (s, 3H), 2.17 (s, 3H), 1.86 (dq, *J* = 20.1, 6.8 Hz, 2H), 1.63 – 1.56 (m, 3H), 1.50 – 1.43 (m, 4H), 1.31 (s, 10H), 1.23 – 1.09 (m, 8H), 0.92 (d, *J* = 6.4 Hz, 11H). ¹³**C NMR** (126 MHz, Chloroform-*d*) δ 147.11, 146.97, 140.15, 138.50, 136.75, 136.35, 134.71, 131.13, 131.05, 130.93, 128.86, 127.54, 127.26, 126.89, 126.06, 124.87, 121.98, 120.81, 119.23, 116.64, 115.60, 73.85, 73.32, 39.05, 38.37, 36.49, 36.46, 36.42, 36.29, 31.80, 31.71, 30.33, 26.98, 23.80, 23.45, 22.89, 21.71, 21.62, 20.04, 19.70, 18.75, 18.67, 11.91, 11.04, 10.83. HRMS(ESI) m/z:

calculated for $[C_{45}H_{61}NO_3 + H]^+$ 664.4724, found 664.4730.

General procedure C: Optimized conditions for accessing (P, Z)-3

	OBoc COO'Bu	+	Za	Lew Se	vis Base olvent		-3a	Base Solven		(<i>P, Z</i>)-3a	OO ^t Bu	
Entry	Lewis base	solvent	yield (%)	ee (%)	-							-
1	Quinine	Toluene	69	8			Entry	Base	solvent	yield (%)	ee (%)	Z/E
2	Hydroquinine	Toluene	87	13			1	NaO ^t Bu	Toluene	51	85	2/1
3	(DHQ) ₂ AQN	Toluene	89	25			2	DBU	Toluene	57	73	3/1
4	(DHQ) ₂ PHAL	Toluene	23	8			3	PhONa	Toluene	94	86	>20/1
5	(DHQD) ₂ PYR	Toluene	55	85		4	MeONa	Toluene	91	94	>20/1	
6	(DHQD)₂PYR	DCE	60	89	L	/	5	MeONa	DCE	84	87	12/1
7	(DHQD) ₂ PYR	MeCN	75	90			6	MeONa	THF	84	94	13/1
,		MEON	04	00			7	MeONa	Dioxane	82	79	6/1
8		MIBE	61	92			Optimiza	tion of the s	econd step c	onditions: Int-	3a (0.1 mm	nol), Bas
9	(DHQD) ₂ PYR	DME	83	94	-		(0.15 mn calculated	101), solvent I by chiral HI	(1.0 mL), rt, PLC traces T	isolated yield he Z/E ratio of	, the ee val 3a was calo	lues wer culated b
Optimization of the first step conditions: 1a (0.3 mmol), 2a (0.1							¹ H-NMP	. og ennar m	. 20 11000, 1		en mus cure	-annoa 0

mmol), Lewis Base (20 mmol%), solvent (1.0 mL), rt, isolated yield, the ee values were calculated by chiral HPLC traces

H-NMR.

Supplementary Fig. 2. Optimization of the reaction

Compound 1a (0.3 mmol), 2a (0.1 mmol) and the Lewis base catalyst (0.02 mmol) were added to a 2 dram scintillation vial equipped with a magnetic stirring bar. The vial was then charged with solvent (1.0 mL) and stirred at room temperature for several days. The reaction was monitored by TLC analyses. After the reaction completed, the residue was purified directly by column chromatography over silica gel (PE: EA = 10:1 to 6:1) to afford the desired centrally chiral product Int-3a. The absolute configuration of Int-**3a** were confirmed by single-crystal X-ray analysis as shown in Supplementary Table 7 (CCDC 2089101).

Compound Int-3a (0.1 mmol) and base (0.15 mmol) were added to a 2 dram scintillation vial equipped with a magnetic stirring bar. The vial was then charged with toluene (1.0 mL) and stirred at room temperature for indicated time. The reaction was monitored by TLC analyses. After the reaction completed, the residue was purified directly by column chromatography over silica gel (PE: EA = 10:1 to 5:1) to afford the desired product (*P*, *Z*)-3a. The *Z*/*E* ratio was determined by crude ¹H-NMR of the mixture.

General procedure D: One-pot synthesis of axially chiral products (*P*, *Z*)-3

The catalyst (DHQD)₂PYR (0.06 mmol, 52.8 mg), **1** (0.9 mmol), **2** (0.3 mmol,) were added to a 2 dram scintillation vial equipped with a magnetic stirring bar. The vial was then charged with DME (1.5 mL) and stirred at room temperature for several days. The reaction was monitored by TLC analyses. When the reaction completed, the solvent in the vial was removed by distillation under reduced pressure. Then MeONa (0.45 mmol, 1.5 eq) was added into the vial. The vial was then charged with toluene (1.0 mL) and stirred at room temperature for about 1 h until the full consumption of the intermediate by TLC monitoring. Then the residue was purified directly by column chromatography over silica gel (PE: EA = 10:1 to 5:1) to afford the desired product (*P*, *Z*)-**3**.

It should be noted that we also tried the reaction of 1a with 8-bromoquinolin-2(1*H*)one. However, no desired product **3** was obtained.

General procedure E: Optimized conditions for accessing (P, E)-3

The compound (*P*, *Z*)-**3a** (0.1 mmol, 1.0 eq) and photosensitizer (1 mol%) were weighed out into a 2 dram scintillation vial. The vial was charged with solvent (1.0 mL) and the reaction was stirred at room temperature under visible light irradiation (420 nm) for 18 h. Then the mixture was concentrated under reduced pressure directly. The residue was dissolved in 0.5 mL CDCl₃ and then detected by ¹H-NMR to afford the *E*/*Z* ratio of **3a**.

General procedure F: Synthesis of axially chiral products (P, E)-3

Compound (*P*, *Z*)-**3** (0.1 mmol, 1.0 eq) and Ir(ppy)₃ (1 mol%) were weighed out into a 2 dram scintillation vial. The vial was charged with THF (1.0 mL) and the reaction was stirred at room temperature under visible light irradiation (420 nm) for 18 h. Then the mixture was concentrated under reduced pressure and purified directly by column chromatography over silica gel (PE: EA = 50:1 to 10:1) to afford the desired product (*P*, *E*)-**3**. The *Z/E* ratio was determined by crude ¹H-NMR of the mixture.

General procedure G: One-pot synthesis of axially chiral products (P,

E)-3

The catalyst (DHQD)₂PYR (0.04 mmol, 35.2 mg), **1a** (0.6 mmol), **2a/2s** (0.2 mmol) were added to a 2 dram scintillation vial equipped with a magnetic stirring bar. The vial was then charged with DME (1.0 mL) and stirred at room temperature for several days. After completion of the reaction detected by TLC, the solvent in the vial was removed by distillation under reduced pressure. Then MeONa (0.3 mmol, 1.5 eq) was added into the vial. The vial was then charged with THF (1.0 mL) and stirred at room temperature for about 1 h until the full consumption of the intermediate by TLC monitoring. Then Ir(ppy)₃ (1 mol%) was added into the vial and the reaction was stirred at room temperature under visible light irradiation (420 nm) for 18 h. After that, the mixture was concentrated under reduced pressure and purified directly by column chromatography over silica gel (PE: EA = 50:1 to 10:1) to afford the desired product (*P*, *E*)-**3a**/(*P*, *E*)-**3s**.

Following the general procedure of **D**, (*P*, *Z*)-**3a** was obtained as white solid (87% yield). ¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.71 (d, *J* = 9.5 Hz, 1H), 7.54 (dd, *J* = 7.8, 1.5 Hz, 1H), 7.48 – 7.44 (m, 3H), 7.37 (d, *J* = 8.5 Hz, 1H), 7.34 – 7.29 (m, 3H), 7.18 (td, *J* = 7.5, 1.1 Hz, 1H), 6.69 (d, *J* = 9.5 Hz, 1H), 2.27 (s, 3H), 1.03 (s, 9H). ¹³**C NMR** (126 MHz, Chloroform-*d*) δ 165.76, 160.42, 139.21, 138.77, 136.11, 134.93, 131.59, 129.62, 128.25, 127.84, 127.32, 127.23, 121.42, 121.33, 119.30, 114.78, 80.47, 26.35, 16.51. HRMS(ESI) m/z: calculated for [C₂₃H₂₃NO₃+H]⁺ 362.1751, found 362.1750. HPLC data (Chiralpak OD column, hexane: isopropanol = 95:5, 1.0 mL/min), tr = 12.4 min (minor), tr = 14.1 min (major), ee = 94%.

tert-butyl (P, E)-2-methyl-3-(2-oxoquinolin-1(2H)-yl)-3-phenylacrylate [(P, E)-3a]

Following the general procedure of **F**, (*P*, *E*)-**3a** was obtained as white solid (79% yield). E/Z= 8/1. ¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.73 (d, J = 9.5 Hz, 1H), 7.58 (dd, J =7.8, 1.5 Hz, 1H), 7.51 (ddd, J = 8.6, 7.1, 1.5 Hz, 1H), 7.45 (d, J = 8.4 Hz, 1H), 7.42 – 7.40 (m, 2H), 7.27 – 7.22 (m, 4H), 6.69 (d, J = 9.5 Hz, 1H), 1.77 (s, 3H), 1.32 (s, 9H). ¹³**C NMR** (126 MHz, Chloroform-*d*) δ 168.20, 160.80, 140.01, 139.11, 137.73, 136.78, 133.71, 131.03, 128.73, 128.68, 128.59, 128.07, 122.71, 122.46, 120.49, 115.23, 82.00, 27.67, 16.48. HRMS(ESI) m/z: calculated for $[C_{23}H_{23}NO_3+H]^+$ 362.1751, found 362.1749. HPLC data (Chiralpak OD column, hexane: isopropanol = 95:5, 1.0 mL/min), tr = 15.5 min (minor), tr = 23.3 min (minor), ee = 94%.

tert-butyl (*P*, *Z*)-3-(4-bromophenyl)-2-methyl-3-(2-oxoquinolin-1(2*H*)-yl)acrylate [(*P*, *Z*)-3b]

Following the general procedure of **D**, (*P*, *Z*)-**3b** was obtained as white solid (84% yield). ¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.72 (d, *J* = 9.5 Hz, 1H), 7.56 (dd, *J* = 7.8, 1.5 Hz, 1H), 7.49 – 7.43 (m, 3H), 7.33 (d, *J* = 8.6 Hz, 3H), 7.22 – 7.18 (m, 1H), 6.68 (d, *J* = 9.5 Hz, 1H), 2.25 (s, 3H), 1.02 (s, 9H). ¹³**C NMR** (126 MHz, Chloroform-*d*) δ 165.43, 160.35, 139.04, 138.91, 135.07, 133.94, 132.19, 130.51, 129.86, 129.73, 127.47, 122.09, 121.51, 121.34, 119.32, 114.51, 80.68, 26.33, 16.47. HRMS(ESI) m/z: calculated for [C₂₃H₂₂BrNO₃+H]⁺ 440.0856, found 440.0849. HPLC data (Chiralpak AD column, hexane: isopropanol = 88:12, 1.0 mL/min), tr = 10.4 min (minor), tr = 42.8 min (major), ee = 91%.

tert-butyl (P, E)-3-(4-bromophenyl)-2-methyl-3-(2-oxoquinolin-1(2H)-yl)acrylate

[(P, E)-3b]

Following the general procedure of **F**, (*P*, *E*)-**3b** was obtained as white solid (86% yield). *E*/*Z*= 12/1. ¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.74 (d, *J* = 9.5 Hz, 1H), 7.59 (dd, *J* = 7.8, 1.5 Hz, 1H), 7.53 (ddd, *J* = 8.7, 7.3, 1.5 Hz, 1H), 7.40 – 7.38 (m, 3H), 7.29 – 7.23 (m, 3H), 6.68 (d, *J* = 9.5 Hz, 1H), 1.76 (s, 3H), 1.37 (s, 9H). ¹³**C NMR** (126 MHz, Chloroform-d) δ 167.82, 160.78, 140.22, 138.92, 136.69, 135.78, 134.40, 131.28, 131.20, 130.20, 128.92, 122.93, 122.90, 122.34, 120.51, 114.93, 82.36, 27.74, 16.53. HRMS(ESI) m/z: calculated for [C₂₃H₂₂BrNO₃+H]⁺ 440.0856, found 440.0847. HPLC data (Chiralpak AD column, hexane: isopropanol = 95:5, 1.0 mL/min), tr = 20.0 min (major), tr = 33.0 min (minor), ee = 92%.

tert-butyl (*P*, *Z*)-3-(4-chlorophenyl)-2-methyl-3-(2-oxoquinolin-1(2*H*)-yl)acrylate [(*P*, *Z*)-3c]

Following the general procedure of **D**, (*P*, *Z*)-**3c** was obtained as white solid (92% yield). ¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.77 (d, *J* = 9.6 Hz, 1H), 7.61 (d, *J* = 7.7 Hz, 1H), 7.53 (t, *J* = 7.9 Hz, 1H), 7.44 – 7.42 (m, 2H), 7.38 (d, *J* = 8.5 Hz, 1H), 7.34 (d, *J* = 8.6 Hz, 2H), 7.26 (t, *J* = 7.5 Hz, 1H), 6.73 (d, *J* = 9.5 Hz, 1H), 2.30 (s, 3H), 1.07 (s, 9H). ¹³**C NMR** (126 MHz, Chloroform-*d*) δ 164.22, 161.59, 139.62, 138.56, 138.50, 136.03, 133.39, 128.61, 128.12, 127.71, 127.21, 125.46, 125.28, 121.01, 120.34, 116.11, 80.43, 26.71, 20.05. HRMS(ESI) m/z: calculated for [C₂₃H₂₂ClNO₃+H]⁺ 396.1361, found 396.1361. HPLC data (Chiralpak AD column, hexane: isopropanol = 88:12, 1.0 mL/min), tr = 9.5 min (minor), tr = 37.8 min (major), ee =91%. *tert*-butyl (*P*, *E*)-3-(4-chlorophenyl)-2-methyl-3-(2-oxoquinolin-1(2*H*)-yl)acrylate [(*P*, *E*)-3c]

Following the general procedure of **F**, (*P*, *E*)-**3c** was obtained as white solid (83% yield). E/Z= 11/1. ¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.74 (d, J = 9.4 Hz, 1H), 7.60 (dd, J = 7.8, 1.5 Hz, 1H), 7.53 (ddd, J = 8.6, 7.2, 1.5 Hz, 1H), 7.40 (d, J = 8.4 Hz, 1H), 7.35 -7.33 (m, 2H), 7.27 – 7.22 (m, 3H), 6.68 (d, J = 9.5 Hz, 1H), 1.77 (s, 3H), 1.36 (s, 9H). ¹³**C NMR** (126 MHz, Chloroform-*d*) δ 167.84, 160.77, 140.19, 138.94, 136.63, 135.31, 134.63, 134.36, 131.18, 129.94, 128.90, 128.32, 122.90, 122.35, 120.51, 114.94, 82.32, 27.74, 16.50. HRMS(ESI) m/z: calculated for [C₂₃H₂₂ClNO₃+H]⁺ 396.1361, found 396.1361. HPLC data (Chiralpak AD column, hexane: isopropanol = 90:10, 1.0 mL/min), tr = 10.2 min (major), tr = 14.7 min (minor), ee =91%.

tert-butyl (P, Z)-2-methyl-3-(2-oxoquinolin-1(2H)-yl)-3-(p-tolyl)acrylate [(P, Z)-3d]

Following the general procedure of **D**, (*P*, *Z*)-**3d** was obtained as white solid (85% yield). ¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.70 (d, *J* = 9.5 Hz, 1H), 7.54 (dd, *J* = 7.8, 1.5 Hz, 1H), 7.45 (ddd, *J* = 8.6, 7.2, 1.5 Hz, 1H), 7.34 (dd, *J* = 11.9, 8.3 Hz, 3H), 7.18 (td, *J* = 7.5, 1.1 Hz, 1H), 7.12 (d, *J* = 8.0 Hz, 2H), 6.69 (d, *J* = 9.5 Hz, 1H), 2.31 (s, 3H), 2.28 (s, 3H), 1.02 (s, 9H). ¹³**C NMR** (126 MHz, Chloroform-*d*) δ 165.85, 160.39, 139.26, 138.67, 137.88, 136.28, 132.06, 130.95, 129.57, 128.16, 127.94, 127.26, 121.47, 121.25, 119.28, 114.82, 80.34, 26.36, 20.30, 16.54. HRMS(ESI) m/z: calculated for [C₂₄H₂₅NO₃+H]⁺ 376.1907, found 376.1901. HPLC data (Chiralpak AD column, hexane: isopropanol = 80:20, 1.0 mL/min), tr = 6.0 min (minor), tr = 14.5 min

(major), ee = 95%.

tert-butyl (*P*, *E*)-2-methyl-3-(2-oxoquinolin-1(2*H*)-yl)-3-(*p*-tolyl)acrylate [(*P*, *E*)-3d]

Following the general procedure of **F**, (*P*, *E*)-**3d** was obtained as white solid (72% yield). E/Z= 5/1. ¹H NMR (500 MHz, Chloroform-*d*) δ 7.72 (d, J = 9.6 Hz, 1H), 7.57 (dd, J = 7.7, 1.5 Hz, 1H), 7.50 (ddd, J = 8.7, 7.1, 1.5 Hz, 1H), 7.43 (d, J = 8.4 Hz, 1H), 7.29 – 7.26 (m, 2H), 7.24 – 7.21 (m, 1H), 7.06 (d, J = 8.0 Hz, 2H), 6.69 (d, J = 9.5 Hz, 1H), 2.29 (s, 3H), 1.75 (s, 3H), 1.36 (s, 9H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 168.36, 160.79, 139.92, 139.17, 138.63, 137.75, 133.80, 132.97, 130.99, 128.77, 128.65, 128.41, 122.64, 122.49, 120.47, 115.29, 81.92, 27.73, 21.31, 16.47. HRMS(ESI) m/z: calculated for [C₂₄H₂₅NO₃+H]⁺ 376.1907, found 376.1903. HPLC data (Chiralpak AD column, hexane: isopropanol = 90:10, 1.0 mL/min), tr = 10.8 min (major), tr = 12.2 min (minor), ee = 94%.

tert-butyl (*P*, *Z*)-3-(4-(*tert*-butyl)phenyl)-2-methyl-3-(2-oxoquinolin-1(2*H*)yl)acrylate [(*P*, *Z*)-3e]

Following the general procedure of **D**, (*P*, *Z*)-**3e** was obtained as white solid (88% yield). ¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.76 (d, *J* = 9.5 Hz, 1H), 7.59 (dd, *J* = 7.7, 1.5 Hz, 1H), 7.51 (ddd, *J* = 8.6, 7.1, 1.6 Hz, 1H), 7.43 – 7.40 (m, 3H), 7.37 (d, *J* = 8.6 Hz, 2H), 7.23 (td, *J* = 7.4, 1.1 Hz, 1H), 6.75 (d, *J* = 9.5 Hz, 1H), 2.34 (s, 3H), 1.32 (s, 9H), 1.07 (s, 9H). ¹³**C NMR** (126 MHz, Chloroform-*d*) δ 166.92, 161.44, 151.89, 140.38, 139.71, 137.34, 132.98, 132.00, 130.61, 128.96, 128.29, 125.19, 122.51, 122.28, 120.32, 115.91, 81.38, 34.70, 31.21, 27.41, 17.60. HRMS(ESI) m/z: calculated for $[C_{27}H_{31}NO_3+H]^+$ 418.2377, found 418.2376. HPLC data (Chiralpak AD column, hexane: isopropanol = 85:15, 1.0 mL/min), tr = 6.6 min (minor), tr = 13.1 min (major), ee = 88%.

tert-butyl (*P*, *E*)-3-(4-(*tert*-butyl)phenyl)-2-methyl-3-(2-oxoquinolin-1(2*H*)yl)acrylate [(*P*, *E*)-3e]

Following the general procedure of **F**, (*P*, *E*)-**3e** was obtained as white solid (85% yield). E/Z= 15/1. ¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.72 (d, J = 9.6 Hz, 1H), 7.57 (dd, J = 7.9, 1.5 Hz, 1H), 7.51 (ddd, J = 8.6, 7.0, 1.5 Hz, 1H), 7.45 (d, J = 7.9 Hz, 1H), 7.34 -7.32 (m, 2H), 7.28 – 7.25 (m, 2H), 7.24 – 7.21 (m, 1H), 6.69 (d, J = 9.5 Hz, 1H), 1.76 (s, 3H), 1.32 (s, 9H), 1.25 (s, 9H). ¹³**C NMR** (126 MHz, Chloroform-d) δ 168.35, 160.80, 151.70, 139.95, 139.14, 137.86, 133.80, 133.08, 131.00, 128.68, 128.25, 124.96, 122.66, 122.46, 120.48, 115.30, 81.86, 34.62, 31.25, 27.64, 16.40. HRMS(ESI) m/z: calculated for [C₂₇H₃₁NO₃+H]⁺418.2377, found 418.2370. HPLC data (Chiralpak OD column, hexane: isopropanol = 95:5, 1.0 mL/min), tr = 15.6 min (minor), tr = 18.9 min (major), ee = 89%.

tert-butyl (*P*, *Z*)-3-([1,1'-biphenyl]-4-yl)-2-methyl-3-(2-oxoquinolin-1(2*H*)yl)acrylate [(*P*, *Z*)-3f]

Following the general procedure of **D**, (*P*, *Z*)-**3f** was obtained as white solid (81% yield). ¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.79 (d, *J* = 9.5 Hz, 1H), 7.61 (d, *J* = 8.2 Hz, 2H), 7.59 – 7.56 (m, 5H), 7.53 (d, *J* = 7.3 Hz, 1H), 7.46 (t, *J* = 7.2 Hz, 3H), 7.38 (t, *J* = 7.3 Hz, 1H), 7.26 (t, *J* = 7.4 Hz, 1H), 6.77 (d, *J* = 9.6 Hz, 1H), 2.39 (s, 3H), 1.09 (s, 9H). ¹³**C NMR** (126 MHz, Chloroform-*d*) δ 166.78, 161.48, 141.66, 140.38, 140.35, 139.84, 136.99, 134.93, 132.62, 130.70, 129.73, 128.83, 128.40, 127.63, 127.11, 126.98, 122.51, 122.41, 120.38, 115.83, 81.52, 27.43, 17.65. HRMS(ESI) m/z: calculated for $[C_{29}H_{27}NO_3+H]^+$ 438.2064, found 438.2063. HPLC data (Chiralpak AD column, hexane: isopropanol = 80:20, 1.0 mL/min), tr = 7.5min (minor), tr = 25.4 min (major), ee = 90%.

tert-butyl (*P*, *E*)-3-([1,1'-biphenyl]-4-yl)-2-methyl-3-(2-oxoquinolin-1(2*H*)yl)acrylate [(*P*, *E*)-3f]

Following the general procedure of **F**, (*P*, *E*)-**3f** was obtained as white solid (79% yield). E/Z= 10/1. ¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.75 (d, J = 9.6 Hz, 1H), 7.59 (dd, J = 7.8, 1.5 Hz, 1H), 7.53 (dt, J = 7.7, 1.8 Hz, 3H), 7.48 (q, J = 2.8 Hz, 5H), 7.40 (dd, J = 8.4, 6.9 Hz, 2H), 7.34 – 7.30 (m, 1H), 7.26 – 7.23 (m, 1H), 6.71 (d, J = 9.5 Hz, 1H), 1.79 (s, 3H), 1.37 (s, 9H). ¹³**C NMR** (126 MHz, Chloroform-*d*) δ 168.24, 160.87, 141.53, 140.62, 140.10, 139.17, 137.50, 135.71, 133.71, 131.13, 128.98, 128.82, 128.80, 127.53, 127.11, 126.83, 122.80, 122.47, 120.53, 115.22, 82.15, 27.75, 16.57. HRMS(ESI) m/z: calculated for [C₂₉H₂₇NO₃+H]⁺ 438.2064, found 438.2063. HPLC data (Chiralpak AD column, hexane: isopropanol = 85:15, 1.0 mL/min), tr = 10.2min (major), tr = 13.0 min (minor), ee = 89%.

tert-butyl (*P*, *Z*)-2-methyl-3-(2-oxoquinolin-1(2*H*)-yl)-3-(4-(prop-1-en-2yl)phenyl)acrylate [(*P*, *Z*)-3g]

Following the general procedure of **D**, (P, Z)-3g was obtained as white solid (74%

yield). ¹**H** NMR (500 MHz, Chloroform-*d*) δ 7.64 (d, J = 9.4 Hz, 1H), 7.47 (d, J = 7.6 Hz, 1H), 7.39 (t, J = 7.8 Hz, 1H), 7.33 (s, 4H), 7.28 (d, J = 8.9 Hz, 1H), 7.11 (t, J = 7.4 Hz, 1H), 6.62 (d, J = 9.4 Hz, 1H), 5.28 (s, 1H), 5.00 (s, 1H), 2.22 (s, 3H), 2.02 (s, 3H), 0.95 (s, 9H).¹³**C** NMR (126 MHz, Chloroform-*d*) δ 166.79, 161.45, 142.54, 141.63, 140.29, 139.80, 137.00, 134.97, 132.46, 130.65, 129.19, 128.35, 125.36, 122.46, 122.37, 120.35, 115.84, 113.29, 81.48, 27.41, 21.62, 17.58. HRMS(ESI) m/z: calculated for [C₂₆H₂₇NO₃+H]⁺ 402.2064, found 402.2068. HPLC data (Chiralpak IC column, hexane: isopropanol = 80:20, 1.0 mL/min), tr =23.7 min (minor), tr = 43.4 min (major), ee = 90%.

tert-butyl (*P*, *E*)-2-methyl-3-(2-oxoquinolin-1(2*H*)-yl)-3-(4-(prop-1-en-2yl)phenyl)acrylate [(*P*, *E*)-3g]

Following the general procedure of **F**, (*P*, *E*)-**3g** was obtained as white solid (64% yield). E/Z= 5/1. ¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.74 (d, J = 9.5 Hz, 1H), 7.58 (dd, J =7.8, 1.5 Hz, 1H), 7.51 (ddd, J = 8.7, 7.2, 1.5 Hz, 1H), 7.44 – 7.43 (m, 1H), 7.35 (s, 4H), 7.25 – 7.22 (m, 1H), 6.70 (d, J = 9.5 Hz, 1H), 5.33 – 5.32 (m, 1H), 5.05 (t, J = 1.5 Hz, 1H), 2.09 (d, J = 0.8 Hz, 3H), 1.77 (s, 3H), 1.36 (s, 9H). ¹³C **NMR** (126 MHz, Chloroform-*d*) δ 168.24, 160.81, 142.74, 141.53, 140.04, 139.13, 137.49, 135.68, 133.45, 131.07, 128.73, 128.39, 125.20, 122.74, 122.44, 120.48, 115.22, 112.95, 82.07, 27.73, 21.71, 16.54. HRMS(ESI) m/z: calculated for [C₂₆H₂₇NO₃+H]⁺402.2064, found 402.2061. HPLC data (Chiralpak AD column, hexane: isopropanol = 95:5, 1.0 mL/min), tr =18.0 min (major), tr = 23.9 min (minor), ee = 89%.

tert-butyl (*P*, *Z*)-3-(3-chlorophenyl)-2-methyl-3-(2-oxoquinolin-1(2*H*)-yl)acrylate [(*P*, *Z*)-3h]

Following the general procedure of **D**, (*P*, *Z*)-**3h** was obtained as white solid (81% yield). ¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.78 (d, *J* = 9.5 Hz, 1H), 7.61 (d, *J* = 7.6 Hz, 1H), 7.54 (t, *J* = 7.8 Hz, 1H), 7.47 (s, 1H), 7.39 (t, *J* = 7.3 Hz, 3H), 7.32 (d, *J* = 3.2 Hz, 2H), 7.26 (t, *J* = 7.5 Hz, 1H), 6.74 (d, *J* = 9.5 Hz, 1H), 2.31 (s, 3H), 1.06 (s, 9H). ¹³**C NMR** (126 MHz, Chloroform-*d*) δ 165.39, 160.36, 139.04, 138.97, 136.75, 134.71, 133.19, 132.70, 129.78, 128.54, 128.12, 128.02, 127.49, 126.57, 121.53, 121.32, 119.34, 114.50, 80.74, 26.32, 16.49. HRMS(ESI) m/z: calculated for [C₂₃H₂₂ClNO₃+H]⁺ 396.1361, found 396.1362. HPLC data (Chiralpak AD column, hexane: isopropanol = 90: 10, 1.0 mL/min), tr = 9.3 min (minor), tr = 23.0 min (major), ee = 89%.

tert-butyl (*P*, *E*)-3-(3-chlorophenyl)-2-methyl-3-(2-oxoquinolin-1(2*H*)-yl)acrylate [(*P*, *E*)-3h]

Following the general procedure of **F**, (*P*, *E*)-**3h** was obtained as white solid (78% yield). E/Z= 6/1. ¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.75 (d, J = 9.6 Hz, 1H), 7.60 (dd, J = 7.8, 1.5 Hz, 1H), 7.54 (ddd, J = 8.6, 7.1, 1.5 Hz, 1H), 7.45 (t, J = 2.0 Hz, 1H), 7.40 (d, J = 8.4 Hz, 1H), 7.27 – 7.24 (m, 3H), 7.20 – 7.17 (m, 1H), 6.69 (d, J = 9.5 Hz, 1H), 1.77 (s, 3H), 1.37 (s, 9H). ¹³**C NMR** (126 MHz, Chloroform-*d*) δ 167.75, 160.78, 140.25, 138.95, 138.55, 136.23, 134.90, 133.94, 131.23, 129.43, 129.43, 128.92, 128.79, 126.51, 122.93, 122.31, 120.51, 114.92, 82.45, 27.71, 16.54. HRMS(ESI) m/z: calculated for [C₂₃H₂₂ClNO₃+H]⁺ 396.1361, found 396.1362. HPLC data (Chiralpak AD column, hexane: isopropanol = 90:10, 1.0 mL/min), tr = 9.2 min (major), tr = 10.2 min (minor), ee = 89%.

tert-butyl (P, Z)-3-(3-fluorophenyl)-2-methyl-3-(2-oxoquinolin-1(2H)-yl)acrylate [(P, Z)-3i]

Following the general procedure of **D**, (*P*, *Z*)-**3i** was obtained as white solid (74% yield). ¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.73 (d, *J* = 9.6 Hz, 1H), 7.56 (dd, *J* = 7.8, 1.5 Hz, 1H), 7.48 (ddd, *J* = 8.7, 7.2, 1.5 Hz, 1H), 7.34 (d, *J* = 8.5 Hz, 1H), 7.31 – 7.28 (m, 1H), 7.26 – 7.24 (m, 1H), 7.21 (td, *J* = 7.5, 1.0 Hz, 1H), 7.17 – 7.14 (m, 1H), 7.00 (tdd, *J* = 8.3, 2.7, 1.2 Hz, 1H), 6.69 (d, *J* = 9.5 Hz, 1H), 2.27 (s, 3H), 1.02 (s, 9H). ¹³**C NMR** (126 MHz, Chloroform-d) δ 165.47, 161.40 (d, *J* = 254.4 Hz), 160.45, 139.08, 138.95, 137.07 (d, *J* = 7.6 Hz), 134.78, 132.59, 129.75, 128.82 (d, *J* = 8.2 Hz), 127.47, 124.10 (d, *J* = 3.1 Hz), 121.43 (d, *J* = 22.5 Hz), 119.34, 115.32, 115.15, 114.90 (d, *J* = 21.2 Hz), 114.55, 80.73, 26.33, 16.46. ¹⁹**F NMR** (470 MHz, Chloroform-d) δ -112.49 (td, *J* = 9.2, 5.8 Hz). HRMS(ESI) m/z: calculated for $[C_{23}H_{22}FNO_3+H]^+$ 380.1656, found 380.1660. HPLC data (Chiralpak AD column, hexane: isopropanol = 90:10, 1.0 mL/min), tr = 10.0 min (minor), tr = 22.9 min (major), ee = 90%.

tert-butyl (*P*, *E*)-3-(3-fluorophenyl)-2-methyl-3-(2-oxoquinolin-1(2*H*)-yl)acrylate [(*P*, *E*)-3i]

Following the general procedure of **F**, (*P*, *E*)-**3i** was obtained as white solid (74% yield). $E/Z= 6/1. {}^{1}$ **H NMR** (500 MHz, Chloroform-*d*) δ 7.75 (d, J = 9.6 Hz, 1H), 7.60 (dd, J =7.8, 1.6 Hz, 1H), 7.53 (ddd, J = 8.7, 7.2, 1.5 Hz, 1H), 7.40 (d, J = 8.2 Hz, 1H), 7.27 – 7.18 (m, 3H), 7.13 (ddd, J = 9.9, 2.6, 1.6 Hz, 1H), 6.98 (tdd, J = 8.2, 2.6, 1.3 Hz, 1H), 6.69 (d, J = 9.5 Hz, 1H), 1.77 (s, 3H), 1.36 (s, 9H). 13 C NMR (126 MHz, Chloroform*d*) δ 167.86, 162.39 (d, J = 246.0 Hz), 160.81, 140.22, 138.99, 138.82 (d, J = 8.0 Hz), 136.17 (d, J = 2.6 Hz), 134.79, 131.20, 129.63 (d, J = 8.3 Hz), 128.88, 124.32 (d, J = 2.9 Hz), 122.91, 122.33, 115.71 (d, J = 5.6 Hz), 115.54 (d, J = 7.2 Hz), 114.96, 82.39, 27.68, 16.54. ¹⁹F NMR (470 MHz, Chloroform-*d*) δ -113.27. HRMS(ESI) m/z: calculated for [C₂₃H₂₂FNO₃+H]⁺ 380.1656, found 380.1652. HPLC data (Chiralpak AD column, hexane: isopropanol = 90:10, 1.0 mL/min), tr = 9.4 min (major), tr = 10.6 min (minor), ee = 90%.

tert-butyl (P, Z)-2-methyl-3-(2-oxoquinolin-1(2H)-yl)-3-(m-tolyl)acrylate [(P, Z)-3j]

Following the general procedure of **D**, (*P*, *Z*)-**3j** was obtained as white solid (83% yield). ¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.71 (d, *J* = 9.5 Hz, 1H), 7.54 (dd, *J* = 7.7, 1.5 Hz, 1H), 7.46 (ddd, *J* = 8.6, 7.1, 1.5 Hz, 1H), 7.38 (d, *J* = 8.5 Hz, 1H), 7.27 – 7.16 (m, 4H), 7.10 (d, *J* = 7.5 Hz, 1H), 6.69 (d, *J* = 9.5 Hz, 1H), 2.29 (s, 3H), 2.27 (s, 3H), 1.02 (s, 9H).¹³**C NMR** (126 MHz, Chloroform-*d*) δ 165.83, 160.42, 139.27, 138.71, 136.88, 136.30, 134.86, 131.40, 129.59, 128.80, 128.69, 127.28, 127.06, 125.35, 121.46, 121.27, 119.30, 114.85, 80.38, 26.36, 20.46, 16.56. HRMS(ESI) m/z: calculated for [C₂₄H₂₅NO₃+H]⁺ 376.1907, found 376.1911. HPLC data (Chiralpak AD column, hexane: isopropanol = 90:10, 1.0 mL/min), tr =8.7 min (minor), tr = 19.4 min (major), ee = 92 %.

tert-butyl (P, E)-2-methyl-3-(2-oxoquinolin-1(2H)-yl)-3-(m-tolyl)acrylate [(P, E)-3j]

Following the general procedure of **F**, (*P*, *E*)-**3j** was obtained as white solid (81% yield). E/Z= 6/1. ¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.74 (d, J = 9.5 Hz, 1H), 7.59 – 7.57 (m, 1H), 7.51 (ddd, J = 8.6, 7.1, 1.5 Hz, 1H), 7.44 (d, J = 8.5 Hz, 1H), 7.26 – 7.22 (m, 2H), 7.15 – 7.12 (m, 2H), 7.08 – 7.07 (m, 1H), 6.70 (d, J = 9.5 Hz, 1H), 2.28 (s, 3H), 1.76 (s, 3H), 1.34 (s, 9H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 168.38, 160.82, 139.97, 139.19, 137.79, 137.54, 136.63, 133.43, 131.03, 129.55, 129.36, 128.69, 128.02, 125.36, 122.67, 122.49, 120.48, 115.30, 81.89, 27.68, 21.41, 16.50. HRMS(ESI) m/z: calculated for [C₂₄H₂₅NO₃+H]⁺ 376.1907, found 376.1905. HPLC data (Chiralpak OD column, hexane: isopropanol = 90:10, 1.0 mL/min), tr = 8.9 min (minor), tr = 9.7 min (major), ee = 92 %.

tert-butyl (*P*, *Z*)-2-methyl-3-(naphthalen-2-yl)-3-(2-oxoquinolin-1(2*H*)-yl)acrylate [(*P*, *Z*)-3k]

Following the general procedure of **D**, (*P*, *Z*)-**3k** was obtained as white solid (92% yield). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.98 (d, *J* = 1.8 Hz, 1H), 7.83 (t, *J* = 5.9 Hz, 3H), 7.79 (d, *J* = 9.5 Hz, 1H), 7.63 – 7.60 (m, 2H), 7.53 – 7.49 (m, 4H), 7.24 (ddd, *J* = 8.0, 6.3, 2.0 Hz, 1H), 6.77 (d, *J* = 9.5 Hz, 1H), 2.40 (s, 3H), 1.10 (s, 9H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 165.76, 160.51, 139.27, 138.85, 136.21, 132.44, 132.19, 131.92, 131.79, 129.66, 128.03, 127.39, 127.36, 126.93, 126.60, 125.83, 125.51, 125.34, 121.43, 121.38, 119.35, 114.86, 80.51, 26.39, 16.63. HRMS(ESI) m/z: calculated for [C₂₇H₂₅NO₃+H]⁺ 412.1907, found 412.1902. HPLC data (Chiralpak AD column, hexane: isopropanol = 70:30, 1.0 mL/min), tr =5.7 min (minor), tr = 15.8 min (major), ee = 94%.

tert-butyl (*P*, *E*)-2-methyl-3-(naphthalen-2-yl)-3-(2-oxoquinolin-1(2*H*)-yl)acrylate [(*P*, *E*)-3k]

Following the general procedure of **F**, (*P*, *E*)-**3k** was obtained as white solid (67% yield). E/Z= 3/1. ¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.88 (d, J = 1.9 Hz, 1H), 7.74 (ddd, J = 11.3, 8.9, 4.8 Hz, 4H), 7.58 (d, J = 7.8 Hz, 1H), 7.51 – 7.48 (m, 3H), 7.43 – 7.41 (m, 2H), 7.23 (dt, J = 8.0, 4.1 Hz, 1H), 6.72 (d, J = 9.5 Hz, 1H), 1.83 (s, 3H), 1.27 (s, 9H). ¹³**C NMR** (126 MHz, Chloroform-*d*) δ 168.33, 160.91, 140.14, 139.17, 137.68, 134.20, 134.09, 133.28, 132.86, 131.10, 128.78, 128.31, 128.06, 127.78, 127.62, 126.54, 126.26, 126.01, 122.79, 122.44, 120.54, 115.30, 82.10, 27.70, 16.65. HRMS(ESI) m/z: calculated for [C₂₇H₂₅NO₃+H]⁺ 412.1907, found 412.1907. HPLC data (Chiralpak AD column, hexane: isopropanol = 90:10, 1.0 mL/min), tr =18.4 min (minor), tr = 20.2 min (major), ee = 93%.

tert-butyl (*P*, *Z*)-2-methyl-3-(2-oxoquinolin-1(2*H*)-yl)-3-(thiophen-2-yl)acrylate [(*P*, *Z*)-3l]

Following the general procedure of **D**, (*P*, *Z*)-**31** was obtained as yellow solid (47% yield). ¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.80 (d, *J* = 9.5 Hz, 1H), 7.61 (d, *J* = 7.7 Hz, 1H), 7.50 – 7.46 (m, 1H), 7.41 – 7.39 (m, 1H), 7.27 – 7.22 (m, 2H), 7.14 (d, *J* = 3.3 Hz, 1H), 7.04 – 7.02 (m, 1H), 6.78 (d, *J* = 9.5 Hz, 1H), 2.50 (s, 3H), 1.08 (s, 9H). ¹³**C NMR** (126 MHz, Chloroform-*d*) δ 166.60, 161.27, 140.02, 138.23, 131.62, 131.39, 130.67, 129.51, 128.29, 128.00, 127.17, 122.48, 122.30, 120.26, 115.78, 81.67, 27.43, 17.83. HRMS(ESI) m/z: calculated for [C₂₁H₂₁NO₃S + Na]⁺ 390.1134, found 390.1125. HPLC data (Chiralpak AD column, hexane: isopropanol = 90:10, 1.0 mL/min), tr = 12.4 min (minor), tr = 29.8 min (major), ee = 89%.

tert-butyl (*P*, *E*)-2-methyl-3-(2-oxoquinolin-1(2*H*)-yl)-3-(thiophen-2-yl)acrylate [(*P*, *E*)-3l]

Following the general procedure of **F**, (*P*, *E*)-**31** was obtained as white solid (65% yield). E/Z= 5/1. ¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.74 (d, J = 9.6 Hz, 1H), 7.58 (dd, J =7.9, 1.5 Hz, 1H), 7.51 (ddd, J = 8.6, 7.2, 1.5 Hz, 1H), 7.39 (d, J = 8.5 Hz, 1H), 7.25 – 7.22 (m, 2H), 7.15 (dd, J = 3.7, 1.2 Hz, 1H), 6.91 (dd, J = 5.1, 3.7 Hz, 1H), 6.72 (d, J =9.6 Hz, 1H), 1.75 (s, 3H), 1.44 (s, 9H). ¹³**C NMR** (126 MHz, Chloroform-*d*) δ 167.94, 160.61, 140.18, 138.63, 137.81, 134.22, 131.09, 130.42, 128.75, 128.52, 127.00, 126.56, 122.85, 122.23, 120.49, 114.99, 82.44, 27.84, 16.39. HRMS(ESI) m/z: calculated for [C₂₁H₂₁NO₃S + H]⁺ 368.1315, found 368.1317. HPLC data (Chiralpak OD column, hexane: isopropanol = 95:5, 1.0 mL/min), tr =22.2 min (minor), tr = 30.5 min (major), ee = 89%.

tert-butyl (*P*, *Z*)-3-(benzo[*b*]thiophen-2-yl)-2-methyl-3-(2-oxoquinolin-1(2*H*)yl)acrylate [(*P*, *Z*)-3m]

Following the general procedure of **D**, (*P*, *Z*)-**3m** was obtained as yellow solid (56% yield). ¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.77 (d, *J* = 9.6 Hz, 1H), 7.74 – 7.72 (m, 1H), 7.70 – 7.68 (m, 1H), 7.57 (dd, *J* = 7.8, 1.5 Hz, 1H), 7.45 (ddd, *J* = 8.6, 7.2, 1.5 Hz, 1H), 7.36 (s, 1H), 7.32 – 7.28 (m, 3H), 7.20 (td, *J* = 7.5, 1.1 Hz, 1H), 6.75 (d, *J* = 9.6 Hz, 1H), 2.52 (s, 3H), 1.05 (s, 9H). ¹³**C NMR** (126 MHz, Chloroform-*d*) δ 165.32, 160.24, 139.35, 139.05, 138.91, 137.88, 137.06, 132.83, 130.46, 129.67, 127.34, 125.33, 124.28, 123.57, 123.17, 121.53, 121.24, 120.97, 119.26, 114.71, 80.85, 26.39,

16.76. HRMS(ESI) m/z: calculated for $[C_{25}H_{23}NO_3S +H]^+$ 418.1471, found 418.1469. HPLC data (Chiralpak AD column, hexane: isopropanol = 85:15, 1.0 mL/min), tr =17.2 min (minor), tr = 31.8 min (major), ee = 91%.

tert-butyl (*P*, *E*)-3-(benzo[*b*]thiophen-2-yl)-2-methyl-3-(2-oxoquinolin-1(2*H*)yl)acrylate [(*P*, *E*)-3m]

Following the general procedure of **F**, (*P*, *E*)-**3m** was obtained as white solid (61% yield). E/Z= 4/1. ¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.76 (d, J = 9.6 Hz, 1H), 7.67 (ddd, J = 13.0, 6.7, 2.5 Hz, 2H), 7.60 – 7.58 (m, 1H), 7.54 – 7.51 (m, 1H), 7.43 (d, J = 8.4 Hz, 1H), 7.39 (s, 1H), 7.30 – 7.23 (m, 3H), 6.74 (d, J = 9.5 Hz, 1H), 1.81 (s, 3H), 1.41 (s, 9H). ¹³**C NMR** (126 MHz, Chloroform-*d*) δ 167.77, 160.69, 140.30, 138.89, 138.65, 138.06, 135.97, 131.15, 130.50, 128.83, 125.38, 124.99, 124.99, 124.43, 123.87, 122.96, 122.21, 122.06, 120.53, 114.95, 82.71, 27.82, 16.49. HRMS(ESI) m/z: calculated for [C₂₅H₂₃NO₃S +H]⁺ 418.1471, found 418.1472. HPLC data (Chiralpak OD column, hexane: isopropanol = 90:10, 1.0 mL/min), tr =12.6 min (minor), tr = 25.1 min (major), ee = 91%.

tert-butyl (*P*, *Z*)-2-methyl-3-(4-methyl-2-oxoquinolin-1(2*H*)-yl)-3-phenylacrylate [(*P*, *Z*)-3n]

Following the general procedure of **D**, (*P*, *Z*)-**3n** was obtained as white solid (78% yield). ¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.68 (dd, *J* = 8.1, 1.4 Hz, 1H), 7.45 (dt, *J* = 7.9, 1.7 Hz, 3H), 7.38 (dd, *J* = 8.5, 1.1 Hz, 1H), 7.31 (s, 1H), 7.30 – 7.27 (m, 2H), 7.21 (ddd, *J* = 8.2, 7.1, 1.2 Hz, 1H), 6.59 (d, *J* = 1.3 Hz, 1H), 2.48 (s, 3H), 2.27 (s, 3H),

1.02 (s, 9H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 165.74, 160.13, 146.23, 138.91, 136.23, 135.16, 131.58, 129.37, 128.26, 127.73, 127.18, 123.78, 121.11, 120.65, 120.01, 115.10, 80.34, 26.34, 18.05, 16.47. HRMS(ESI) m/z: calculated for [C₂₄H₂₅NO₃+H]⁺ 376.1907, found 376.1913. HPLC data (Chiralpak AD column, hexane: isopropanol = 80:20, 1.0 mL/min), tr =5.6 min (minor), tr = 13.1 min (major), ee = 95%.

tert-butyl (*P*, *E*)-2-methyl-3-(4-methyl-2-oxoquinolin-1(2*H*)-yl)-3-phenylacrylate [(*P*, *E*)-3n]

Following the general procedure of **F**, (*P*, *E*)-**3n** was obtained as white solid (80% yield). E/Z= 9/1. ¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.71 (dd, J = 8.1, 1.4 Hz, 1H), 7.52 – 7.49 (m, 1H), 7.45 (dd, J = 8.4, 1.3 Hz, 1H), 7.41 – 7.39 (m, 2H), 7.27 – 7.24 (m, 4H), 6.59 (d, J = 1.3 Hz, 1H), 2.48 (s, 3H), 1.77 (s, 3H), 1.32 (s, 9H). ¹³**C NMR** (126 MHz, Chloroform-*d*) δ 168.28, 160.55, 147.65, 138.75, 137.78, 136.94, 133.71, 130.85, 128.60, 128.58, 128.04, 125.26, 122.54, 121.70, 121.22, 115.50, 81.94, 27.66, 19.18, 16.50. HRMS(ESI) m/z: calculated for $[C_{24}H_{25}NO_3+H]^+$ 376.1907, found 376.1904. HPLC data (Chiralpak AD column, hexane: isopropanol = 95:5, 1.0 mL/min), tr =19.6 min (major), tr = 25.4 min (minor), ee = 95%.

tert-butyl (*P*, *Z*)-2-methyl-3-(2-oxo-4-((*p*-tolylthio)methyl)quinolin-1(2*H*)-yl)-3phenylacrylate [(*P*, *Z*)-30]

Following the general procedure of **D**, (*P*, *Z*)-**30** was obtained as yellow solid (74% yield). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.86 (d, *J* = 8.0 Hz, 1H), 7.53 (t, *J* = 7.9

Hz, 1H), 7.46 (t, J = 7.2 Hz, 3H), 7.37 (q, J = 6.9 Hz, 3H), 7.29 (t, J = 6.7 Hz, 3H), 7.13 (d, J = 7.6 Hz, 2H), 6.58 (s, 1H), 4.23 (s, 2H), 2.36 (s, 3H), 2.32 (s, 3H), 1.07 (s, 9H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 166.71, 160.76, 145.99, 140.37, 137.78, 136.92, 135.98, 132.86, 131.83, 131.15, 130.59, 129.97, 129.30, 128.85, 128.25, 124.99, 122.24, 122.10, 119.20, 116.53, 81.47, 37.34, 27.46, 21.14, 17.53. HRMS(ESI) m/z: calculated for [C₃₁H₃₁NO₃S +H]⁺ 498.2097, found 498.2105. HPLC data (Chiralpak AD column, hexane: isopropanol = 70:30, 1.0 mL/min), tr =5.8 min (minor), tr = 28.4 min (major), ee = 95%.

tert-butyl (*P*, *E*)-2-methyl-3-(2-oxo-4-((*p*-tolylthio)methyl)quinolin-1(2*H*)-yl)-3phenylacrylate [(*P*, *E*)-30]

Following the general procedure of **F**, (*P*, *E*)-**30** was obtained as white solid (69% yield). E/Z= 6/1. ¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.86 (d, J = 8.0 Hz, 1H), 7.52 (t, J =7.6 Hz, 1H), 7.45 (d, J = 8.4 Hz, 1H), 7.37 (dd, J = 7.3, 2.4 Hz, 2H), 7.26 (q, J = 4.5Hz, 4H), 7.19 (d, J = 7.9 Hz, 2H), 7.05 (d, J = 7.8 Hz, 2H), 6.37 (s, 1H), 4.15 (s, 2H), 2.30 (s, 3H), 1.74 (s, 3H), 1.32 (s, 9H). ¹³**C NMR** (126 MHz, Chloroform-*d*) δ 168.23, 160.05, 146.16, 139.24, 138.25, 137.61, 136.72, 133.73, 132.79, 131.05, 130.42, 129.96, 128.70, 128.55, 128.08, 125.47, 122.62, 122.14, 119.22, 115.79, 82.06, 37.63, 27.67, 21.19, 16.47. HRMS(ESI) m/z: calculated for [C₃₁H₃₁NO₃S +H]⁺ 498.2097, found 498.2093. HPLC data (Chiralpak AD column, hexane: isopropanol = 85:15, 1.0 mL/min), tr =6.9 min (major), tr = 7.6 min (minor), ee = 89%.

tert-butyl (*P*, *Z*)-3-(4-(benzyloxy)-2-oxoquinolin-1(2*H*)-yl)-2-methyl-3phenylacrylate [(*P*, *Z*)-3p]

Following the general procedure of **D**, (*P*, *Z*)-**3p** was obtained as white solid (79% yield). ¹**H NMR** (500 MHz, Chloroform-*d*) δ 8.01 (dd, *J* = 8.1, 1.6 Hz, 1H), 7.49 – 7.41 (m, 7H), 7.39 – 7.37 (m, 1H), 7.35 – 7.28 (m, 4H), 7.17 (ddd, *J* = 8.1, 7.1, 1.1 Hz, 1H), 6.10 (s, 1H), 5.18 (s, 2H), 2.27 (s, 3H), 1.03 (s, 9H). ¹³**C NMR** (126 MHz, Chloroform-*d*) δ 166.90, 162.83, 162.25, 139.89, 137.12, 136.30, 135.34, 132.83, 131.22, 129.29, 128.80, 128.77, 128.54, 128.23, 127.62, 123.22, 121.95, 116.23, 115.78, 98.05, 81.39, 70.54, 27.45, 17.56. HRMS(ESI) m/z: calculated for [C₃₀H₂₉NO₄+ Na]⁺ 490.1989, found 490.1980. HPLC data (Chiralpak IA column, hexane: isopropanol = 85:15, 1.0 mL/min), tr = 9.5 min (minor), tr = 25.0 min (major), ee = 94%.

tert-butyl (*P*, *E*)-3-(4-(benzyloxy)-2-oxoquinolin-1(2*H*)-yl)-2-methyl-3phenylacrylate [(*P*, *E*)-3p]

Following the general procedure of **F**, (*P*, *E*)-**3p** was obtained as white solid (82% yield). E/Z= 8/1. ¹**H NMR** (500 MHz, Chloroform-*d*) δ 8.03 (dd, J = 8.0, 1.5 Hz, 1H), 7.52 (ddd, J = 8.7, 7.1, 1.5 Hz, 1H), 7.49 – 7.47 (m, 2H), 7.45 – 7.37 (m, 6H), 7.27 – 7.24 (m, 3H), 7.23 – 7.20 (m, 1H), 6.12 (s, 1H), 5.20 – 5.14 (m, 2H), 1.79 (s, 3H), 1.33 (s, 9H). ¹³**C NMR** (126 MHz, Chloroform-*d*) δ 168.33, 162.45, 162.25, 138.73, 137.68, 137.06, 135.25, 133.92, 131.66, 128.84, 128.63, 128.58, 128.55, 128.04, 127.81, 123.65, 122.31, 115.14, 97.91, 81.95, 70.72, 27.68, 16.52. HRMS(ESI) m/z: calculated for [C₃₀H₂₉NO₄+ H]⁺ 468.2169, found 468.2165. HPLC data (Chiralpak AD column,

hexane: isopropanol = 90:10, 1.0 mL/min), tr = 15.4 min (major), tr = 29.7 min (minor), ee = 94%.

tert-butyl (P, Z)-2-methyl-3-(2-oxo-4-(piperidin-1-yl)quinolin-1(2H)-yl)-3-

phenylacrylate [(P, Z)-3q]

Following the general procedure of **D**, (*P*, *Z*)-**3q** was obtained as white solid (65% yield). ¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.99 (d, *J* = 8.1 Hz, 1H), 7.50 (d, *J* = 7.0 Hz, 3H), 7.44 (d, *J* = 8.6 Hz, 1H), 7.35 (d, *J* = 8.2 Hz, 3H), 7.25 (d, *J* = 7.8 Hz, 1H), 6.84 (s, 1H), 3.90 (q, *J* = 14.7 Hz, 2H), 2.71 (s, 4H), 2.32 (s, 3H), 1.87 (s, 4H), 1.07 (s, 9H). ¹³**C NMR** (126 MHz, Chloroform-*d*) δ 166.85, 161.41, 148.12, 140.10, 137.12, 136.11, 132.74, 130.27, 129.33, 128.79, 128.23, 125.05, 122.12, 121.21, 120.09, 116.15, 81.38, 57.55, 54.53, 27.41, 23.74, 17.54. HRMS(ESI) m/z: calculated for [C₂₈H₃₂N₂O₃+H]⁺ 445.2486, found 445.2482. HPLC data (Chiralpak AD column, hexane: isopropanol = 70:30, 1.0 mL/min), tr = 5.5 min (minor), tr = 21.4 min (major), ee = 96%.

tert-butyl (*P*, *E*)-2-methyl-3-(2-oxo-4-(piperidin-1-yl)quinolin-1(2*H*)-yl)-3phenylacrylate [(*P*, *E*)-3q]

Following the general procedure of F, (P, E)-3q was obtained as white solid (69%

yield). E/Z= 10/1. ¹**H** NMR (500 MHz, Chloroform-d) δ 7.97 (dd, J = 8.1, 1.5 Hz, 1H), 7.47 (dtd, J = 16.7, 8.4, 1.4 Hz, 2H), 7.42 – 7.40 (m, 2H), 7.26 – 7.23 (m, 4H), 6.77 (s, 1H), 3.85 – 3.78 (m, 2H), 2.61 (qd, J = 6.1, 5.6, 3.3 Hz, 4H), 1.80 (p, J = 3.4 Hz, 4H), 1.77 (s, 3H), 1.32 (s, 9H). ¹³C NMR (126 MHz, Chloroform-d) δ 168.24, 160.74, 148.35, 138.99, 137.84, 136.92, 133.72, 130.70, 128.63, 128.59, 128.02, 125.48, 122.48, 121.25, 120.24, 115.45, 81.95, 57.56, 54.60, 27.66, 23.74, 16.49. HRMS(ESI) m/z: calculated for $[C_{28}H_{32}N_2O_3+H]^+$ 445.2486, found 445.2466. HPLC data (Chiralpak AD column, hexane: isopropanol = 90:10, 1.0 mL/min), tr = 11.0 min (major), tr = 12.3 min (minor), ee = 95%.

methyl (*P*, *Z*)-1-(3-(*tert*-butoxy)-2-methyl-3-oxo-1-phenylprop-1-en-1-yl)-2-oxo-1,2-dihydroquinoline-4-carboxylate [(*P*, *Z*)-3r]

Following the general procedure of **D**, (*P*, *Z*)-**3r** was obtained as white solid (74% yield). ¹**H NMR** (500 MHz, Chloroform-*d*) δ 8.30 (dd, *J* = 8.2, 1.5 Hz, 1H), 7.51 (ddd, *J* = 8.6, 7.1, 1.5 Hz, 1H), 7.45 – 7.42 (m, 3H), 7.35 – 7.30 (m, 3H), 7.26 – 7.24 (m, 1H), 7.18 (s, 1H), 3.99 (s, 3H), 2.28 (s, 3H), 1.03 (s, 9H). ¹³**C NMR** (126 MHz, Chloroform-*d*) δ 165.40, 164.78, 159.36, 139.57, 138.39, 135.87, 134.51, 131.86, 130.15, 128.22, 128.03, 127.32, 125.79, 123.90, 121.89, 116.10, 115.18, 80.69, 51.93, 26.38, 16.52. HRMS(ESI) m/z: calculated for [C₂₅H₂₅NO₅+H]⁺ 420.1805, found 420.1812. HPLC data (Chiralpak AD column, hexane: isopropanol = 70:30, 1.0 mL/min), tr =4.9 min (minor), tr = 27.9 min (major), ee = 92%.

methyl (*P*, *E*)-1-(3-(*tert*-butoxy)-2-methyl-3-oxo-1-phenylprop-1-en-1-yl)-2-oxo-1,2-dihydroquinoline-4-carboxylate [(*P*, *E*)-3r]

Following the general procedure of **F**, (*P*, *E*)-**3r** was obtained as white solid (74% yield). E/Z= 8/1. ¹**H NMR** (500 MHz, Chloroform-*d*) δ 8.33 (dd, J = 8.2, 1.4 Hz, 1H), 7.56 (ddd, J = 8.5, 7.0, 1.5 Hz, 1H), 7.51 (dd, J = 8.6, 1.3 Hz, 1H), 7.39 (dd, J = 7.5, 2.0 Hz, 2H), 7.31 – 7.25 (m, 4H), 7.19 (s, 1H), 4.00 (s, 3H), 1.77 (s, 3H), 1.33 (s, 9H). ¹³**C NMR** (126 MHz, Chloroform-*d*) δ 167.99, 165.77, 159.73, 139.60, 139.48, 137.28, 136.32, 134.02, 131.61, 128.87, 128.55, 128.15, 127.21, 125.03, 123.30, 117.30, 115.62, 82.18, 52.99, 27.66, 16.51. HRMS(ESI) m/z: calculated for [C₂₅H₂₅NO₅+H]⁺ 420.1805, found 420.1801. HPLC data (Chiralpak AD column, hexane: isopropanol = 95:5, 1.0 mL/min), tr =18.2 min (major), tr = 28.4 min (minor), ee = 26%.

tert-butyl (*P*, *Z*)-3-(5-bromo-2-oxoquinolin-1(2*H*)-yl)-2-methyl-3-phenylacrylate [(*P*, *Z*)-3s]

Following the general procedure of **D**, (*P*, *Z*)-**3s** was obtained as white solid (84% yield). ¹**H NMR** (500 MHz, Chloroform-*d*) δ 8.21 (d, *J* = 9.9 Hz, 1H), 7.48 – 7.47 (m, 3H), 7.41 – 7.37 (m, 2H), 7.35 (d, *J* = 7.3 Hz, 2H), 7.32 (d, *J* = 7.4 Hz, 1H), 6.82 (d, *J* = 9.9 Hz, 1H), 2.32 (s, 3H), 1.12 (s, 9H). ¹³**C NMR** (126 MHz, Chloroform-*d*) δ 166.54, 160.95, 141.42, 138.40, 136.82, 135.61, 133.09, 130.92, 129.25, 129.04, 128.37, 126.54, 123.60, 123.22, 119.42, 115.67, 81.69, 27.49, 17.57. HRMS(ESI) m/z: calculated for [C₂₃H₂₂BrNO₃+H]⁺ 440.0856, found 440.0846. HPLC data (Chiralpak AD column, hexane: isopropanol = 85:15, 1.0 mL/min), tr =7.2 min (minor), tr = 14.4 min (major), ee = 96%.

tert-butyl (*P*, *E*)-3-(5-bromo-2-oxoquinolin-1(2*H*)-yl)-2-methyl-3-phenylacrylate [(*P*, *E*)-3s]

Following the general procedure of **F**, (*P*, *E*)-**3s** was obtained as white solid (81% yield). E/Z=7/1. ¹**H NMR** (500 MHz, Chloroform-*d*) δ 8.18 (d, J = 9.9 Hz, 1H), 7.48 (dd, J =7.8, 1.1 Hz, 1H), 7.42 (d, J = 8.5 Hz, 1H), 7.39 – 7.37 (m, 2H), 7.35 – 7.32 (m, 1H), 7.28 – 7.25 (m, 3H), 6.78 (d, J = 9.9 Hz, 1H), 1.77 (s, 3H), 1.33 (s, 9H). ¹³**C NMR** (126 MHz, Chloroform-*d*) δ 168.02, 160.26, 140.33, 138.62, 137.40, 136.40, 134.03, 131.41, 128.85, 128.52, 128.16, 126.97, 123.67, 123.60, 119.61, 114.92, 82.18, 27.66, 16.49. HRMS(ESI) m/z: calculated for [C₂₃H₂₂BrNO₃+H]⁺ 440.0856, found 440.0851. HPLC data (Chiralpak AD column, hexane: isopropanol = 95:5, 1.0 mL/min), tr =17.6 min (major), tr = 19.6 min (minor), ee = 97%.

tert-butyl (*P*, *Z*)-3-(6-bromo-2-oxoquinolin-1(2*H*)-yl)-2-methyl-3-phenylacrylate [(*P*, *Z*)-3t]

Following the general procedure of **D**, (*P*, *Z*)-**3t** was obtained as white solid (78% yield). ¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.60 (d, *J* = 2.2 Hz, 1H), 7.55 (d, *J* = 9.5 Hz, 1H), 7.45 (dd, *J* = 9.0, 2.2 Hz, 1H), 7.34 (d, *J* = 6.7 Hz, 2H), 7.24 (q, *J* = 6.5, 6.0 Hz, 3H), 7.19 – 7.16 (m, 1H), 6.65 (d, *J* = 9.5 Hz, 1H), 2.20 (s, 3H), 1.01 (s, 9H). ¹³**C NMR** (126 MHz, Chloroform-*d*) δ 166.58, 160.99, 139.15, 138.51, 136.50, 135.56, 133.29, 133.15, 130.45, 129.22, 129.06, 128.39, 123.70, 121.76, 117.70, 115.05, 81.67, 27.51, 17.54. HRMS(ESI) m/z: calculated for $[C_{23}H_{22}BrNO_3+Na]^+$ 462.0675, found 462.0672. HPLC data (Chiralpak AD column, hexane: isopropanol = 90:10, 1.0 mL/min), tr =9.6 min (minor), tr = 15.8 min (major), ee = 96%.

tert-butyl (*P*, *E*)-3-(6-bromo-2-oxoquinolin-1(2*H*)-yl)-2-methyl-3-phenylacrylate [(*P*, *E*)-3t]

Following the general procedure of **F**, (*P*, *E*)-**3t** was obtained as white solid (72% yield). E/Z= 5/1. ¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.71 (d, J = 2.3 Hz, 1H), 7.64 (d, J =9.6 Hz, 1H), 7.58 (dd, J = 9.0, 2.3 Hz, 1H), 7.38 – 7.36 (m, 2H), 7.31 (d, J = 9.0 Hz, 1H), 7.28 – 7.25 (m, 3H), 6.72 (d, J = 9.6 Hz, 1H), 1.77 (s, 3H), 1.32 (s, 9H). ¹³**C NMR** (126 MHz, Chloroform-*d*) δ 168.00, 160.31, 138.75, 138.06, 137.22, 136.39, 134.03, 133.77, 130.89, 128.87, 128.49, 128.18, 123.73, 121.95, 116.99, 115.51, 82.20, 27.66, 16.50. HRMS(ESI) m/z: calculated for [C₂₃H₂₂BrNO₃+H]⁺ 440.0856, found 440.0849. HPLC data (Chiralpak OD column, hexane: isopropanol =95:5, 1.0 mL/min), tr =24.2 min (minor), tr = 30.4 min (major), ee = 97%.

tert-butyl (P, Z)-3-(6-methoxy-2-oxoquinolin-1(2H)-yl)-2-methyl-3-

phenylacrylate [(P, Z)-3u]

Following the general procedure of **D**, (*P*, *Z*)-**3u** was obtained as white solid (56 % yield). ¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.71 (d, *J* = 9.5 Hz, 1H), 7.48 (d, *J* = 6.7 Hz, 2H), 7.36 (q, *J* = 6.1 Hz, 4H), 7.15 (dd, *J* = 9.2, 2.7 Hz, 1H), 7.04 (d, *J* = 2.7 Hz, 1H), 7.04 (d, *J* = 2.7 Hz, 2H), 7.36 (d, *J* = 6.1 Hz, 4H), 7.15 (dd, *J* = 9.2, 2.7 Hz, 1H), 7.04 (d, *J* = 2.7 Hz, 2H), 7.36 (d, *J* = 6.1 Hz, 4H), 7.15 (dd, *J* = 9.2, 2.7 Hz, 1H), 7.04 (d, *J* = 2.7 Hz, 2H), 7.36 (d, *J* = 6.1 Hz, 4H), 7.15 (dd, *J* = 9.2, 2.7 Hz, 1H), 7.04 (d, *J* = 2.7 Hz, 2H), 7.36 (d, *J* = 6.1 Hz, 4H), 7.15 (dd, *J* = 9.2, 2.7 Hz, 1H), 7.04 (d, *J* = 2.7 Hz, 2H), 7.36 (d, *J* = 9.2, 2.7 Hz, 1H), 7.04 (d, *J* = 2.7 Hz, 2H), 7.36 (d, *J* = 9.2, 2.7 Hz, 1H), 7.04 (d, *J* = 2.7 Hz, 2H), 7.36 (d, *J* = 9.2, 2.7 Hz, 2H), 7.36 (d, *J* = 9.2, 2.7 Hz, 2H), 7.04 (d, *J* = 2.7 Hz, 2H), 7.36 (d, *J* = 9.2, 2.7 Hz, 2H), 7.04 (d, *J* = 2.7 Hz, 2H), 7.36 (d, *J* = 9.2, 2.7 Hz, 2H), 7.04 (d, *J* = 2.7 Hz, 2H), 7.36 (d, *J* = 9.2, 2.7 Hz, 2H), 7.36 (d, *J* = 2.7 Hz, 2H), 7.36 (d, *J* = 2.7 Hz, 2H), 7.36 (d, *J* = 9.2, 2H), 7.36 (d, J = 9.2, 2H), 7.36

1H), 6.79 (d, J = 9.5 Hz, 1H), 3.89 (s, 3H), 2.32 (s, 3H), 1.11 (s, 9H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 161.05, 154.91, 139.30, 137.10, 135.98, 134.76, 132.71, 129.28, 128.86, 128.55, 128.27, 122.97, 121.02, 119.22, 117.25, 110.10, 81.50, 55.73, 27.47, 17.50. HRMS(ESI) m/z: calculated for [C₂₄H₂₅NO₄+H]⁺ 392.1856, found 392.1856. HPLC data (Chiralpak IA column, hexane: isopropanol = 90:10, 1.0 mL/min), tr =14.6 min (minor), tr = 22.6 min (major), ee = 93%.

tert-butyl (P, E)-3-(6-methoxy-2-oxoquinolin-1(2H)-yl)-2-methyl-3-

phenylacrylate [(*P*, *E*)-3u]

Following the general procedure of **F**, (*P*, *E*)-**3u** was obtained as white solid (67% yield). E/Z= 5/1. ¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.67 (d, J = 9.6 Hz, 1H), 7.40 – 7.36 (m, 3H), 7.26 (dt, J = 5.0, 2.5 Hz, 3H), 7.13 (dd, J = 9.2, 2.9 Hz, 1H), 7.02 (d, J = 2.9 Hz, 1H), 6.70 (d, J = 9.5 Hz, 1H), 3.85 (s, 3H), 1.77 (s, 3H), 1.32 (s, 9H). ¹³**C NMR** (126 MHz, Chloroform-*d*) δ 168.23, 160.39, 155.15, 139.51, 136.80, 133.64, 133.52, 128.67, 128.55, 128.07, 123.02, 121.21, 119.58, 116.59, 110.50, 82.01, 55.74, 27.66, 16.49. HRMS(ESI) m/z: calculated for [C₂₄H₂₅NO₄+H]⁺ 392.1856, found 392.1855. HPLC data (Chiralpak AD column, hexane: isopropanol = 95:5, 1.0 mL/min), tr = 26.5min (major), tr = 30.3min (minor), ee = 94%.

tert-butyl (*P*, *Z*)-3-(7-bromo-2-oxoquinolin-1(2*H*)-yl)-2-methyl-3-phenylacrylate [(*P*, *Z*)-3v]

Following the general procedure of **D**, (*P*, *Z*)-**3v** was obtained as white solid (82 % yield). ¹**H** NMR (500 MHz, Chloroform-*d*) δ 7.65 (d, *J* = 9.5 Hz, 1H), 7.51 (d, *J* = 1.7

Hz, 1H), 7.45 - 7.43 (m, 2H), 7.38 (d, J = 8.2 Hz, 1H), 7.36 - 7.27 (m, 4H), 6.69 (d, J = 9.5 Hz, 1H), 2.28 (s, 3H), 1.08 (s, 9H). ¹³**C** NMR (126 MHz, Chloroform-*d*) δ 166.39, 161.13, 141.06, 139.15, 136.23, 135.52, 133.41, 129.46, 129.23, 129.04, 128.42, 125.58, 124.90, 122.73, 119.13, 118.90, 81.59, 27.47, 17.51. HRMS(ESI) m/z: calculated for [C₂₃H₂₂BrNO₃+H]⁺ 440.0856, found 440.0860. HPLC data (Chiralpak AD column, hexane: isopropanol = 85:15, 1.0 mL/min), tr =6.6 min (minor), tr = 17.7 min (major), ee = 95%.

tert-butyl (*P*, *E*)-3-(7-bromo-2-oxoquinolin-1(2*H*)-yl)-2-methyl-3-phenylacrylate [(*P*, *E*)-3v]

Following the general procedure of **F**, (*P*, *E*)-**3v** was obtained as white solid (84% yield). E/Z= 9/1. ¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.68 (dd, J = 9.6, 0.6 Hz, 1H), 7.57 (d, J = 1.8 Hz, 1H), 7.42 (d, J = 8.3 Hz, 1H), 7.40 – 7.38 (m, 2H), 7.34 (dd, J = 8.3, 1.8 Hz, 1H), 7.30 – 7.26 (m, 3H), 6.70 (d, J = 9.5 Hz, 1H), 1.79 (s, 3H), 1.32 (s, 9H). ¹³**C NMR** (126 MHz, Chloroform-*d*) δ 167.92, 160.43, 140.03, 139.39, 137.09, 136.38, 134.24, 129.87, 128.87, 128.52, 128.23, 126.06, 125.46, 122.74, 119.26, 118.11, 82.17, 27.64, 16.51. HRMS(ESI) m/z: calculated for [C₂₃H₂₂BrNO₃+H]⁺ 440.0856, found 440.0847. HPLC data (Chiralpak AD column, hexane: isopropanol = 95:5, 1.0 mL/min), tr =14.5 min (major), tr = 17.6 min (minor), ee = 95%.

tert-butyl (P, Z)-3-(7-methoxy-2-oxoquinolin-1(2H)-yl)-2-methyl-3-

phenylacrylate [(P, Z)-3w]

Following the general procedure of **D**, (P, Z)-3w was obtained as white solid (65%

yield). ¹**H** NMR (500 MHz, Chloroform-*d*) δ 7.63 (d, J = 9.6 Hz, 1H), 7.47 – 7.43 (m, 3H), 7.34 – 7.29 (m, 3H), 6.82 (d, J = 2.4 Hz, 1H), 6.77 (dd, J = 8.6, 2.4 Hz, 1H), 6.53 (d, J = 9.4 Hz, 1H), 3.81 (s, 3H), 2.28 (s, 3H), 1.06 (s, 9H). ¹³**C** NMR (126 MHz, Chloroform-*d*) δ 166.82, 161.77, 141.88, 139.56, 137.19, 135.99, 132.63, 129.64, 129.29, 128.86, 128.52, 128.28, 119.22, 114.57, 110.53, 99.82, 81.48, 55.53, 27.43, 17.46. HRMS(ESI) m/z: calculated for [C₂₄H₂₅NO₄+H]⁺ 392.1856, found 392.1856. HPLC data (Chiralpak AD column, hexane: isopropanol = 85:15, 1.0 mL/min), tr = 7.5 min (minor), tr = 23.9 min (major), ee = 95%.

tert-butyl (P, E)-3-(7-methoxy-2-oxoquinolin-1(2H)-yl)-2-methyl-3-

phenylacrylate [(*P*, *E*)-3w]

Following the general procedure of **F**, (*P*, *E*)-**3w** was obtained as white solid (71% yield). E/Z=7/1. ¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.66 (d, J = 9.5 Hz, 1H), 7.47 (d, J = 8.6 Hz, 1H), 7.43 – 7.41 (m, 2H), 7.27 (dd, J = 5.1, 2.0 Hz, 3H), 6.92 (d, J = 2.4 Hz, 1H), 6.81 (dd, J = 8.6, 2.4 Hz, 1H), 6.53 (d, J = 9.5 Hz, 1H), 3.82 (s, 3H), 1.80 (s, 3H), 1.31 (s, 9H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 168.30, 162.12, 161.23, 140.90, 139.81, 137.58, 136.69, 133.72, 129.99, 128.71, 128.53, 128.12, 119.14, 114.61, 110.92, 99.02, 81.96, 55.52, 27.66, 16.55. HRMS(ESI) m/z: calculated for [C₂₄H₂₅NO₄+H]⁺ 392.1856, found 392.1854. HPLC data (Chiralpak AD column, hexane: isopropanol = 85:15, 1.0 mL/min), tr = 7.0 min (major), tr = 8.5 min (minor), ee = 93%.

tert-butyl (*P*, *Z*)-2-methyl-3-(2-oxo-7-(prop-1-en-2-yl)quinolin-1(2*H*)-yl)-3phenylacrylate [(*P*, *Z*)-3x]

Following the general procedure of **D**, (*P*, *Z*)-**3x** was obtained as white solid (68% yield). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.66 (d, *J* = 9.5 Hz, 1H), 7.47 (d, *J* = 7.7 Hz, 1H), 7.40 (t, *J* = 7.9 Hz, 1H), 7.34 (d, *J* = 6.6 Hz, 2H), 7.25 (q, *J* = 8.9, 7.3 Hz, 4H), 7.19 (s, 1H), 7.14 (t, *J* = 7.6 Hz, 1H), 6.62 (d, *J* = 9.5 Hz, 1H), 2.18 (s, 3H), 2.02 (s, 3H), 1.18 (s, 9H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 166.73, 161.62, 143.67, 142.65, 140.19, 139.34, 137.01, 136.10, 132.76, 129.30, 128.86, 128.29, 128.06, 122.06, 119.90, 119.59, 114.64, 113.00, 81.43, 27.39, 21.71, 17.41. HRMS(ESI) m/z: calculated for [C₂₆H₂₇NO₃+H]⁺ 402.2064, found 402.2063. HPLC data (Chiralpak AD column, hexane: isopropanol = 90:10, 1.0 mL/min), tr = 7.2 min (minor), tr = 21.9 min (major), ee = 97%.

tert-butyl (*P*, *E*)-2-methyl-3-(2-oxo-7-(prop-1-en-2-yl)quinolin-1(2*H*)-yl)-3phenylacrylate [(*P*, *E*)-3x]

Following the general procedure of **F**, (*P*, *E*)-**3x** was obtained as white solid (41% yield). E/Z= 1.4/1. ¹**H NMR** (500 MHz, Chloroform-d) δ 7.71 (d, J = 9.5 Hz, 1H), 7.53 – 7.51 (m, 2H), 7.39 (ddd, J = 16.5, 7.1, 2.0 Hz, 4H), 7.27 (d, J = 2.6 Hz, 2H), 6.67 (d, J = 9.5Hz, 1H), 5.46 (s, 1H), 5.20 (s, 1H), 2.15 (s, 3H), 1.78 (s, 3H), 1.30 (s, 9H). ¹³**C NMR** (126 MHz, Chloroform-d) δ 168.29, 160.95, 143.79, 142.36, 139.54, 139.23, 137.36, 133.80, 128.69, 128.54, 128.41, 128.13, 125.37, 122.08, 120.21, 119.69, 114.70, 112.23, 81.92, 27.64, 21.65, 16.58. HRMS(ESI) m/z: calculated for $[C_{26}H_{27}NO_3+H]^+$ 402.2064, found 402.2061. HPLC data (Chiralpak AD column, hexane: isopropanol = 95:5, 1.0 mL/min), tr = 12.5 min (major), tr = 15.8 min (minor), ee = 93%.
tert-butyl (P, Z)-3-(7-(4-((((1S,2R,5S)-2-isopropyl-5-

methylcyclohexyl)oxy)methyl)phenyl)-2-oxoquinolin-1(2*H*)-yl)-2-methyl-3phenylacrylate [(*P*, *Z*)-3y]

Following the general procedure of **D**, (*P*, *Z*)-**3**y was obtained as white solid with beyond 20/1 dr (72% yield). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.79 (d, *J* = 9.5 Hz, 1H), 7.64 (d, *J* = 8.1 Hz, 1H), 7.60 – 7.57 (m, 3H), 7.54 – 7.50 (m, 4H), 7.45 (d, *J* = 7.9 Hz, 1H), 7.37 (dt, *J* = 11.8, 6.9 Hz, 3H), 6.74 (d, *J* = 9.5 Hz, 1H), 4.77 (d, *J* = 11.5 Hz, 1H), 4.50 (d, *J* = 11.5 Hz, 1H), 3.27 (td, *J* = 10.5, 4.1 Hz, 1H), 2.41 – 2.37 (m, 1H), 2.35 (s, 3H), 2.28 (d, *J* = 12.3 Hz, 1H), 1.88 (d, *J* = 14.9 Hz, 1H), 1.74 – 1.68 (m, 2H), 1.08 (s, 9H), 0.99 (dd, *J* = 16.0, 6.7 Hz, 10H), 0.82 (d, *J* = 7.0 Hz, 3H).¹³C NMR (126 MHz, Chloroform-*d*) δ 166.82, 161.59, 143.52, 140.59, 139.58, 139.42, 139.32, 137.01, 136.06, 132.84, 129.32, 128.88, 128.70, 128.42, 128.31, 127.39, 122.18, 121.57, 119.43, 114.45, 79.12, 70.08, 48.40, 40.40, 34.63, 31.64, 27.41, 25.65, 23.36, 22.42, 21.09, 17.45, 16.21. HRMS(ESI) m/z: calculated for [C₄₀H₄₇NO₄+H]⁺ 606.3578, found 606.3578.

tert-butyl (P, E)-3-(7-(4-((((1S,2R,5S)-2-isopropyl-5-

methylcyclohexyl)oxy)methyl)phenyl)-2-oxoquinolin-1(2H)-yl)-2-methyl-3-

phenylacrylate [(P, E)-3y]

Following the general procedure of **F**, (*P*, *E*)-**3y** was obtained as white solid (52% yield) with beyond 20/1 dr. E/Z= 2/1. ¹**H NMR** (500 MHz, Chloroform-d) δ 7.75 (d, J = 9.6 Hz, 1H), 7.66 (d, J = 1.6 Hz, 1H), 7.63 (d, J = 8.0 Hz, 1H), 7.56 (d, J = 8.2 Hz, 2H),

7.48 (dd, J = 8.1, 1.6 Hz, 1H), 7.44 (dt, J = 7.3, 2.6 Hz, 4H), 7.28 (q, J = 2.6, 2.0 Hz, 3H), 6.69 (d, J = 9.5 Hz, 1H), 4.71 (d, J = 11.6 Hz, 1H), 4.45 (d, J = 11.6 Hz, 1H), 3.21 (td, J = 10.5, 4.1 Hz, 1H), 2.33 (qd, J = 7.0, 2.6 Hz, 1H), 2.22 (dq, J = 11.7, 3.3, 2.7 Hz, 1H), 1.81 (s, 3H), 1.70 – 1.62 (m, 3H), 1.31 (s, 9H), 1.03 – 0.83 (m, 10H), 0.75 (d, J = 6.9 Hz, 3H). ¹³C **NMR** (126 MHz, Chloroform-d) δ 168.19, 160.91, 143.62, 139.65, 139.59, 139.50, 139.08, 137.47, 136.86, 133.90, 129.08, 128.71, 128.59, 128.46, 128.17, 127.22, 122.20, 121.67, 119.57, 113.43, 81.91, 79.14, 70.03, 48.39, 40.39, 34.62, 31.63, 27.66, 25.66, 23.35, 22.41, 21.06, 16.58, 16.20. HRMS(ESI) m/z: calculated for [C₄₀H₄₇NO₄+H]⁺ 606.3578, found 606.3573.

tert-butyl (*P*, *Z*)-2-methyl-3-(2-oxo-6-(4-((((*R*)-2,5,7,8-tetramethyl-2-((4*R*,8*R*)-4,8,12-trimethyltridecyl)chroman-6-yl)oxy)methyl)phenyl)quinolin-1(2*H*)-yl)-3-phenylacrylate [(*P*, *Z*)-3*z*]

Following the general procedure of **D**, (*P*, *Z*)-**3z** was obtained as white solid with beyond 20/1 dr (64% yield). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.84 (d, *J* = 10.6 Hz, 2H), 7.79 (d, *J* = 9.5 Hz, 1H), 7.69 (d, *J* = 8.0 Hz, 2H), 7.65 (d, *J* = 8.0 Hz, 2H), 7.55 (d, *J* = 7.4 Hz, 2H), 7.51 (d, *J* = 8.7 Hz, 1H), 7.38 (dd, *J* = 11.3, 7.2 Hz, 3H), 6.80 (d, *J* = 9.5 Hz, 1H), 4.80 (s, 2H), 2.66 (t, *J* = 7.0 Hz, 2H), 2.36 (s, 3H), 2.30 (s, 3H), 2.25 (s, 3H), 2.17 (s, 3H), 1.93 – 1.82 (m, 2H), 1.75 (s, 2H), 1.61 (tt, *J* = 13.7, 6.2 Hz, 3H), 1.45 (d, *J* = 5.7 Hz, 2H), 1.31 (s, 10H), 1.13 (s, 17H), 0.93 (d, *J* = 6.4 Hz, 11H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 166.82, 161.59, 143.52, 140.59, 139.63, 139.58, 139.42, 139.32, 137.01, 136.06, 132.84, 129.32, 128.88, 128.70, 128.58, 128.46, 128.42, 128.31, 128.17, 127.39, 127.21, 122.18, 121.56, 119.43, 114.45, 81.49, 79.12, 70.07, 60.40, 53.45, 48.40, 40.40, 34.63, 31.96, 31.64, 31.48, 30.25, 29.73, 29.69, 29.39, 27.66,

27.41, 25.65, 23.36, 22.72, 22.42, 21.09, 17.45, 16.58, 16.21, 14.24, 14.15. HRMS(ESI) m/z: calculated for [C₅₉H₇₇NO₅+H]⁺ 880.5875, found 880.5871.

tert-butyl (P, E)-2-methyl-3-(2-oxo-6-(4-((((R)-2,5,7,8-tetramethyl-2-((4R,8R)-

4,8,12-trimethyltridecyl)chroman-6-yl)oxy)methyl)phenyl)quinolin-1(2*H*)-yl)-3phenylacrylate [(*P*, *E*)-3z]

Following the general procedure of **F**, (*P*, *E*)-**3***z* was obtained as white solid with beyond 20/1 dr (42% yield). *E/Z*= 2/1. ¹**H NMR** (500 MHz, Chloroform-d) δ 7.77 (d, *J* = 9.4 Hz, 1H), 7.69 (s, 1H), 7.66 – 7.58 (m, 5H), 7.50 (d, *J* = 8.1 Hz, 1H), 7.45 (dd, *J* = 6.7, 2.9 Hz, 2H), 7.30 – 7.28 (m, 3H), 6.71 (d, *J* = 9.5 Hz, 1H), 4.75 (s, 2H), 2.60 (t, *J* = 6.9 Hz, 2H), 2.24 (s, 3H), 2.19 (s, 3H), 2.11 (s, 3H), 1.87 – 1.75 (m, 5H), 1.66 (s, 1H), 1.58 – 1.33 (m, 9H), 1.31 – 1.28 (m, 13H), 1.21 – 0.99 (m, 9H), 0.87 – 0.84 (m, 13H). ¹³C NMR (126 MHz, Chloroform-d) δ 168.18, 160.93, 148.14, 148.07, 143.54, 139.67, 139.60, 139.47, 138.36, 137.43, 136.85, 133.95, 129.13, 128.74, 128.62, 128.24, 128.20, 127.90, 127.40, 125.92, 123.07, 122.30, 121.74, 119.66, 117.71, 113.54, 81.95, 74.91, 74.19, 40.10, 39.42, 37.54, 37.51, 37.47, 37.34, 32.85, 32.76, 31.37, 28.03, 27.68, 24.85, 24.49, 23.94, 22.76, 22.67, 21.08, 20.74, 19.80, 19.72, 16.60, 12.92, 12.05, 11.87. HRMS(ESI) m/z: calculated for [C₅₉H₇₇NO₅+H]⁺ 880.5875, found 880.5879.

Racemization experiments

Compound (*P*, *Z*)-3a, (*P*, *E*)-3a (0.1 mmol) was dissolved in toluene (1.0 mL) in a sealed tube, respectively. The tube was placed at room temperature. At given interval of time, small samples (5 μ L) was removed via syringe and subjected into the HPLC to measure the enantiomeric excess. R = 8.31451 J • K⁻¹• mol⁻¹, h = 6.62608*10⁻³⁴ J • s and k_B = 1.38066*10⁻²³ J • K⁻¹• (-ln ee = ln/{(1+*M*/*P*)/(1-*M*/*P*)})

Supplementary Fig. 3. Racemization experiment of (P, Z)-3a

K (*P*, *Z*)-3a racemization = 0.002954 h⁻¹ = 8.206*10⁻⁷ s⁻¹

Half-life time t
$$_{(P, Z)-3a} \frac{1}{2^{298K}} = 234.65 \text{ h}$$

 $\Delta G_{(P, Z)-3a} \frac{298K}{2} = 107.70 \text{ KJ/mol} = 25.73 \text{ kcal/mol}$

	Time (h)	ee	-In ee
$\wedge \wedge$	0	91.2	-4.5130549
	6	90.92	-4.50998
	12	90.58	-4.5062334
A Me	72	88.74	-4.4857107
	144	86.8	-4.4636066
ĊOO ^t Bu	312	81.96	-4.4062313
(<i>P, E</i>)- 3a	408	80.18	-4.3842741

K (*P*, *E*)-3a racemization = 0.0003198 h⁻¹ = 8.883*10⁻⁸ s⁻¹ Half-life time t (*P*, *E*)-3a $1/2^{298K}$ =2167.44 h ΔG (*P*, *E*)-3a 298K = 113.21 KJ/mol = 27.05 kcal/mol

Large-scale reactions for the synthesis of 3a

To a flame-dried round-bottom flask equipped with a magnetic stirring bar was added **1a** (9.0 mmol), **2a** (3.0 mmol) and (DHQD)₂PYR (0.6 mmol, 528.6 mg). The flask was then charged with DME (20.0 mL) and stirred at room temperature for several days. After the completion of the reaction monitored by TLC, DME was removed by distillation under reduced pressure. Then MeONa (4.5 mmol, 1.5 eq) was added into the flask. The flask was charged with toluene (10 mL) and stirred at room temperature for about 1 h until the full consumption of the intermediate by TLC monitoring. Then the residue was purified directly by column chromatography over silica gel (PE: EA = 20:1 to 5:1) to afford the desired product (*P*, *Z*)-**3a** as white solid (78% yield, 94% ee).

The compound (P, Z)-**3a** (1.0 mmol, 1.0 eq) and Ir(ppy)₃ (1 mol%) were weighed out into a 20 mL scintillation vial. The vial was charged with THF (10 mL) and the reaction was stirred at room temperature under visible light irradiation (420 nm) for 18 h. Then the mixture was concentrated under reduced pressure and purified directly by column chromatography over silica gel (PE: EA = 50:1 to 10:1) to afford the desired product (*P*, *E*)-**3a**. (72% yield, 94% ee)

Stereodivergent synthesis of axially chiral N-vinylquinolinones 3a/3s

tert-butyl (P, Z)-2-methyl-3-(2-oxoquinolin-1(2H)-yl)-3-phenylacrylate [(P, Z)-3a]

Following the general procedure of **D**, (*P*, *Z*)-**3a** was obtained as white solid (87% yield). HPLC data (Chiralpak OD column, hexane: isopropanol = 95:5, 1.0 mL/min), tr = 12.4 min (minor), tr = 14.1 min (major), ee = 94%.

tert-butyl (M, Z)-2-methyl-3-(2-oxoquinolin-1(2H)-yl)-3-phenylacrylate [(M, Z)-3a]

Following the general procedure of **D**, using (DHQ)₂PYR instead of (DHQD)₂PYR, (*M*, *Z*)-**3a** was obtained as white solid (78% yield). HPLC data (Chiralpak OD column, hexane: isopropanol = 95:5, 1.0 mL/min), tr = 11.9 min (major), tr = 14.2 min (minor), ee = 86%.

tert-butyl (P, E)-2-methyl-3-(2-oxoquinolin-1(2H)-yl)-3-phenylacrylate [(P, E)-3a]

Following the general procedure of **G**, (*P*, *E*)-**3a** was obtained as white solid (73% yield). HPLC data (Chiralpak OD column, hexane: isopropanol = 95:5, 1.0 mL/min), tr = 15.5 min (minor), tr = 23.3 min (minor), ee = 94%.

tert-butyl (M, E)-2-methyl-3-(2-oxoquinolin-1(2H)-yl)-3-phenylacrylate [(M, E)-3a]

Following the general procedure of **G**, using $(DHQ)_2PYR$ instead of $(DHQD)_2PYR$, (M, E)-**3a** was obtained as white solid (65% yield). HPLC data (Chiralpak OD column, hexane: isopropanol = 95:5, 1.0 mL/min), tr = 15.4 min (major), tr = 25.9 min (minor), ee = 84%.

tert-butyl (*P*, *Z*)-3-(5-bromo-2-oxoquinolin-1(2*H*)-yl)-2-methyl-3-phenylacrylate [(*P*, *Z*)-3s]

Following the general procedure of **D**, (*P*, *Z*)-**3s** was obtained as white solid (84% yield). HPLC data (Chiralpak AD column, hexane: isopropanol = 85:15, 1.0 mL/min), tr =7.2 min (minor), tr = 14.4 min (major), ee = 96%.

tert-butyl (*M*, *Z*)-3-(5-bromo-2-oxoquinolin-1(2*H*)-yl)-2-methyl-3-phenylacrylate [(*M*, *Z*)-3s]

Following the general procedure of **D**, using (DHQ)₂PYR instead of (DHQD)₂PYR, (*M*, *Z*)-**3s** was obtained as white solid (78% yield). HPLC data (Chiralpak AD column, hexane: isopropanol = 85:15, 1.0 mL/min), tr =7.5 min (major), tr = 15.3 min (minor), ee = 88%.

tert-butyl (*P*, *E*)-3-(5-bromo-2-oxoquinolin-1(2*H*)-yl)-2-methyl-3-phenylacrylate [(*P*, *E*)-3s]

Following the general procedure of **G**, (*P*, *E*)-**3s** was obtained as white solid (65% yield). HPLC data (Chiralpak AD column, hexane: isopropanol = 95:5, 1.0 mL/min), tr =17.6 min (major), tr = 19.6 min (minor), ee = 97%.

tert-butyl (*M*, *E*)-3-(5-bromo-2-oxoquinolin-1(2*H*)-yl)-2-methyl-3-phenylacrylate [(*M*, *E*)-3s]

Following the general procedure of **G**, using $(DHQ)_2PYR$ instead of $(DHQD)_2PYR$, (M, E)-**3s** was obtained as white solid (61% yield). HPLC data (Chiralpak AD column, hexane: isopropanol = 95:5, 1.0 mL/min), tr =18.4 min (minor), tr = 20.0 min (major), ee = 88%.

Stereodivergent transformations of axially chiral N-vinylquinolinones

3

The reaction was proceeded under argon atmosphere. The compound (*P*, *Z*)-**3a**/(*M*, *Z*)-**3a** (0.2 mmol) and AlLiH₄ (0.6 mmol) were weighed out into a 10 mL tube. Then the tube was cooled down to -15 °C. Then Et₂O (1.0 mL) was added into the tube. The

reaction was stirred at -15 °C overnight. Then a drop of water was added and the mixture was purified directly by column chromatography over silica gel (PE: EA = 5:1 to 1:1) to afford the desired product (P, Z)-4/(M, Z)-4.

(P, Z)-1-(3-hydroxy-2-methyl-1-phenylprop-1-en-1-yl)quinolin-2(1H)-one [(P, Z)-4]

Colorless oil. (56% yield) ¹**H NMR** (500 MHz, Chloroform-d) δ 7.78 (d, *J* = 9.3 Hz, 1H), 7.55 (d, *J* = 8.0 Hz, 1H), 7.39 (dd, *J* = 16.2, 7.9 Hz, 3H), 7.29 (dd, *J* = 8.1, 5.5 Hz, 3H), 7.24 (t, *J* = 7.7 Hz, 1H), 7.18 (t, *J* = 7.5 Hz, 1H), 6.82 (d, *J* = 9.5 Hz, 1H), 4.01 (d, *J* = 11.5 Hz, 1H), 3.79 (d, *J* = 11.6 Hz, 1H), 3.07 (s, 1H), 2.25 (s, 3H). ¹³**C NMR** (126 MHz, Chloroform-d) δ 163.27, 140.50, 139.49, 138.72, 136.05, 130.74, 130.60, 129.13, 128.60, 128.31, 128.20, 122.91, 121.92, 120.86, 116.46, 63.42, 17.81. HRMS(ESI) m/z: calculated for [C₁₉H₁₇NO₂+H]⁺ 292.1332, found 292.1334. HPLC data (Chiralpak IA column, hexane: isopropanol = 90:10, 1.0 mL/min), tr =15.3 min (minor), tr = 17.8 min (major), ee = 95%.

(*M*, *Z*)-1-(3-hydroxy-2-methyl-1-phenylprop-1-en-1-yl)quinolin-2(1*H*)-one [(*M*, *Z*)-4]

Colorless oil. (56% yield). HPLC data (Chiralpak IA column, hexane: isopropanol = 90:10, 1.0 mL/min), tr =15.5 min (major), tr = 18.4 min (major), ee = 88%.

The reaction was proceeded under argon atmosphere. The compound (*P*, *E*)-**3a**/(*M*, *E*)-**3a** (0.2 mmol) was weighed out into a 10 mL tube. The tube was cooled down to - 78 °C before DCM (1.0 mL) was added. Then Dibal-H (2.0 M in toluene, 0.3 mL) was added dropwise and the reaction was stirred at -78 °C for 5 h. Then a drop of water was added to quench the reaction. The reaction mixture was purified directly by column chromatography over silica gel (PE: EA = 5:1 to 1:1) to afford product (*P*, *E*)-**4**/(*M*, *E*)-**4**.

(P, E)-1-(3-hydroxy-2-methyl-1-phenylprop-1-en-1-yl)quinolin-2(1H)-one [(P, E)-4]

Colorless oil. (65% yield) ¹**H NMR** (500 MHz, Chloroform-d) δ 7.77 (d, J = 9.5 Hz, 1H), 7.57 (dd, J = 7.8, 1.5 Hz, 1H), 7.45 (ddd, J = 8.6, 7.0, 1.5 Hz, 1H), 7.41 – 7.39 (m, 3H), 7.26 (qd, J = 7.7, 6.6, 3.7 Hz, 3H), 7.21 – 7.19 (m, 1H), 6.77 (d, J = 9.5 Hz, 1H), 4.53 (d, J = 12.1 Hz, 1H), 4.36 (d, J = 12.1 Hz, 1H), 3.40 (s, 1H), 1.69 (s, 3H). ¹³**C NMR** (126 MHz, Chloroform-d) δ 161.66, 140.27, 139.01, 138.98, 135.77, 131.82, 130.92, 129.20, 128.59, 128.32, 128.26, 122.74, 122.06, 120.69, 115.77, 63.20, 15.96. HRMS(ESI) m/z: calculated for [C₁₉H₁₇NO₂+H]⁺ 292.1332, found 292.1336. HPLC data (Chiralpak IA column, hexane: isopropanol = 90:10, 1.0 mL/min), tr =11.9 min (minor), tr = 13.7 min (major), ee = 94%.

(*M*, *E*)-1-(3-hydroxy-2-methyl-1-phenylprop-1-en-1-yl)quinolin-2(1*H*)-one [(*M*, *E*)-4]

Colorless oil. (59% yield) HPLC data (Chiralpak IA column, hexane: isopropanol = 90:10, 1.0 mL/min), tr =11.8 min (major), tr = 13.8 min (minor), ee = 85%.

The reaction was proceeded under argon atmosphere. The Compound (*P*, *Z*)-**3a**/(*M*, *Z*)-**3a** (0.2 mmol) was weighed out into a 10ml tube. The tube was cooled down to -78 °C before THF (1.0 mL) was added. Then MeMgCl (3.0 M in THF, 0.15 mL) was added dropwise and the reaction was warmed to room temperature slowly and stirred for 1h. Then drops of water was added and the solvent was removed by distillation under reduced pressure. The crude product was purified by column chromatography over silica gel (PE: EA= 5:1 to 2:1) to afford the desired product (*P*, *Z*)-**5**/(*M*, *Z*)-**5**.

(P, Z)-1-(3-hydroxy-2,3-dimethyl-1-phenylbut-1-en-1-yl)quinolin-2(1H)-one [(P, Z)-5]

Colorless oil. (71% yield) ¹**H NMR** (500 MHz, Chloroform-d) δ 7.71 (d, *J* = 9.5 Hz, 1H), 7.52 (d, *J* = 8.2 Hz, 2H), 7.50 – 7.48 (m, 1H), 7.46 – 7.44 (m, 2H), 7.27 (t, *J* = 7.5 Hz, 2H), 7.20 (dt, *J* = 15.2, 7.3 Hz, 2H), 6.75 (d, *J* = 9.5 Hz, 1H), 2.41 (s, 1H), 2.06 (s, 3H), 1.41 (s, 3H), 1.23 (s, 3H). ¹³C NMR (126 MHz, Chloroform-d) δ 163.06, 143.95, 140.08, 140.01, 138.91, 130.32, 129.70, 128.58, 128.31, 128.12, 127.85, 122.44,

122.19, 120.81, 116.96, 73.72, 29.31, 28.37, 19.23. HRMS(ESI) m/z: calculated for $[C_{21}H_{21}NO_2+H]^+$ 320.1645, found 320.1643. HPLC data (Chiralpak IA column, hexane: isopropanol = 90:10, 1.0 mL/min), tr =10.2 min (minor), tr = 11.9 min (major), ee = 94%.

(*M*, *Z*)-1-(3-hydroxy-2,3-dimethyl-1-phenylbut-1-en-1-yl)quinolin-2(1*H*)-one [(*M*, *Z*)-5]

Colorless oil. (66% yield) HPLC data (Chiralpak IA column, hexane: isopropanol = 90:10, 1.0 mL/min), tr = 9.8 min (major), tr = 11.5 min (minor), ee = 86%.

The reaction was proceeded under argon atmosphere. The compound (*P*, *E*)-**3a**/(*M*, *E*)-**3a** (0.2 mmol) was weighed out into a 10 mL tube. The tube was cooled down to - 78 °C before THF (1.0 mL) was added. Then MeLi (3.0 M in THF, 0.15 mL) was added dropwise and the reaction was warmed to room temperature slowly and further stirred for 0.5 h. Then drops of water was added and the solvent was removed by distillation under reduced pressure. The crude product was purified by column chromatography over silica gel (PE: EA= 5:1 to 2:1) to afford the desired product (*P*, *E*)-**5**/(*M*, *E*)-**5**. (*P*, *E*)-**1**-(**3-hydroxy-2,3-dimethyl-1-phenylbut-1-en-1-yl)quinolin-2(1H)-one [(***P***,** *E***)-5**]

Colorless oil. (49% yield) ¹**H NMR** (500 MHz, Chloroform-d) δ 7.68 – 7.65 (m, 2H), 7.61 – 7.59 (m, 2H), 7.57 – 7.53 (m, 2H), 7.26 – 7.20 (m, 4H), 6.67 (d, *J* = 9.5 Hz, 1H), 1.96 (s, 1H), 1.60 (s, 3H), 1.51 (s, 3H), 1.47 (s, 3H). ¹³**C NMR** (126 MHz, Chloroform-d) δ 161.02, 146.13, 139.56, 138.72, 138.44, 130.68, 129.73, 128.79, 128.30, 128.22, 128.03, 122.62, 122.41, 120.87, 115.37, 74.05, 30.66, 29.79, 16.80. HRMS(ESI) m/z: calculated for [C₂₁H₂₁NO₂+Na]⁺ 342.1465, found 342.1464. HPLC data (Chiralpak ID column, hexane: isopropanol = 95:5, 1.0 mL/min), tr =35.6 min (minor), tr = 46.4 min (major), ee = 92%.

(*M*, *E*)-1-(3-hydroxy-2,3-dimethyl-1-phenylbut-1-en-1-yl)quinolin-2(1*H*)-one [(*M*, *E*)-5]

Colorless oil. (42% yield) HPLC data (Chiralpak ID column, hexane: isopropanol = 95:5, 1.0 mL/min), tr = 35.6 min (major), tr = 46.8 min (minor), ee = 85%.

The reaction was proceeded under argon atmosphere. The compound (P, Z)-**3v**/(P, E)-**3v** (0.1 mmol), phenylacetylene (0.2 mmol), Pd(PPh₃)₂Cl₂ (10 mol%) and CuI (20

mol%) were weighed out into a 2 dram scintillation vial equipped with a magnetic stirring bar. The vial was then charged with Et₃N (0.75 mL) and stirred at room temperature for overnight. The solvent in the vial was removed by distillation under reduced pressure at room temperature. The crude product was purified by column chromatography over silica gel (PE: EA= 10:1 to 4:1) to afford the desired product (*P*, *Z*)-**6**/(*P*, *E*)-**6**.

(*P*,*Z*)-*tert*-butyl (*Z*)-2-methyl-3-(2-oxo-7-(phenylethynyl)quinolin-1(2*H*)-yl)-3phenylacrylate [(*P*, *Z*)-6]

Brown oil. (76% yield). ¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.68 (d, J = 9.5 Hz, 1H), 7.56 (dd, J = 6.7, 3.0 Hz, 2H), 7.51 – 7.46 (m, 4H), 7.37 – 7.31 (m, 7H), 6.69 (d, J =9.5 Hz, 1H), 2.31 (s, 3H), 1.08 (s, 9H). ¹³**C NMR** (126 MHz, Chloroform-*d*) δ 166.53, 161.34, 140.23, 139.23, 136.73, 135.82, 133.07, 131.80, 129.32, 128.97, 128.79, 128.46, 128.38, 128.32, 125.65, 125.58, 122.88, 122.75, 120.12, 118.59, 91.71, 89.07, 81.54, 27.50, 17.62. HRMS(ESI) m/z: calculated for [C₃₁H₂₇NO₃+H]⁺ 462.2064, found 462.2067. HPLC data (Chiralpak IA column, hexane: isopropanol = 80:20, 1.0 mL/min), tr =6.2 min (minor), tr = 17.0 min (major), ee = 87%.

(*P,E*)-*tert*-butyl (*E*)-2-methyl-3-(2-oxo-7-(phenylethynyl)quinolin-1(2*H*)-yl)-3phenylacrylate [(*P, E*)-6]

Brown oil. (85% yield). ¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.70 (d, *J* = 9.6 Hz, 1H), 7.57 – 7.53 (m, 4H), 7.44 – 7.42 (m, 2H), 7.37 (dd, *J* = 6.3, 2.4 Hz, 4H), 7.29 – 7.28 (m, 3H), 6.70 (d, *J* = 9.5 Hz, 1H), 1.82 (s, 3H), 1.34 (s, 9H). ¹³**C NMR** (126 MHz, Chloroform-*d*) δ 168.10, 160.66, 139.46, 139.09, 137.39, 136.56, 134.01, 131.80, 128.84, 128.76, 128.69, 128.56, 128.46, 128.16, 126.02, 126.02, 122.80, 122.62, 120.21, 117.84, 91.98, 88.96, 82.04, 27.66, 16.52. HRMS(ESI) m/z: calculated for $[C_{31}H_{27}NO_3+H]^+$ 462.2064, found 462.2062. HPLC data (Chiralpak AD column, hexane: isopropanol = 85:15, 1.0 mL/min), tr =6.4 min (major), tr = 9.3 min (minor), ee = 92%

The first step of the reaction was proceeded under argon atmosphere. The Compound (*P*, *Z*)-**3**v/(*P*, *E*)-**3**v (0.1 mmol), trimethylsilyl acetylene (0.2 mmol), Pd(PPh₃)₂Cl₂ (10 mol%) and CuI (20 mol%) were weighed out into a 2 dram scintillation vial equipped with a magnetic stirring bar. The vial was then charged with Et₃N (0.75 mL) and stirred at room temperature for overnight. The solvent in the vial was removed by distillation under reduced pressure at room temperature. Then the crude was dissolved in MeOH (1.0 mL) before K₂CO₃ (0.2 mmol) was added. After 30 minutes, the mixture was concentrated by reduced pressure at room temperature. The crude product was purified by column chromatography over silica gel (PE: EA= 10:1 to 4:1) to afford the desired product (*P*, *Z*)-7/(*P*, *E*)-7.

(*P*, *Z*)-*tert*-butyl (*Z*)-3-(7-ethynyl-2-oxoquinolin-1(2*H*)-yl)-2-methyl-3phenylacrylate [(*P*, *Z*)-7]

White solid. (81% yield). ¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.68 (d, *J* = 9.5 Hz, 1H), 7.49 – 7.44 (m, 4H), 7.33 (qd, *J* = 7.7, 6.7, 3.6 Hz, 3H), 7.29 – 7.26 (m, 1H), 6.71

(d, J = 9.5 Hz, 1H), 3.19 (s, 1H), 2.28 (s, 3H), 1.06 (s, 9H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 166.46, 161.26, 140.03, 139.15, 136.54, 135.71, 133.17, 129.28, 129.00, 128.38, 128.32, 125.87, 124.23, 123.24, 120.52, 119.45, 83.17, 81.52, 79.50, 27.46, 17.56. HRMS(ESI) m/z: calculated for $[C_{25}H_{23}NO_3+H]^+$ 386.1751, found 386.1734. HPLC data (Chiralpak AD column, hexane: isopropanol = 70:30, 1.0 mL/min), tr =4.9 min (minor), tr = 12.7 min (major), ee = 86%.

(*P*, *E*)- *tert*-butyl (*E*)-3-(7-ethynyl-2-oxoquinolin-1(2*H*)-yl)-2-methyl-3phenylacrylate [(*P*, *E*)-7]

White solid. (94% yield).¹**H** NMR (500 MHz, Chloroform-*d*) δ 7.70 (d, J = 9.6 Hz, 1H), 7.53 – 7.51 (m, 2H), 7.40 (dd, J = 6.7, 3.0 Hz, 2H), 7.32 (dd, J = 8.0, 1.4 Hz, 1H), 7.27 (dd, J = 6.5, 2.5 Hz, 3H), 6.71 (d, J = 9.5 Hz, 1H), 3.22 (s, 1H), 1.79 (s, 3H), 1.32 (s, 9H). ¹³**C** NMR (126 MHz, Chloroform-*d*) δ 167.99, 160.58, 139.38, 138.92, 137.29, 136.53, 134.10, 128.79, 128.71, 128.56, 128.18, 126.30, 124.71, 123.21, 120.65, 118.67, 83.05, 82.08, 79.78, 27.65, 16.48. HRMS(ESI) m/z: calculated for $[C_{25}H_{23}NO_3+H]^+$ 386.1751, found 386.1739. HPLC data (Chiralpak AD column, hexane: isopropanol = 95:5, 1.0 mL/min), tr =21.0 min (major), tr = 25.9 min (minor), ee = 93%.

Photocatalyzed Z/E isomerization of non atropisomeric substrates

In order to show whether the non atropisomeric substrates could be tolerated to the photocatalyzed Z/E isomerization, we performed the DABCO-catalyzed reaction of MBH carbonates **1a** with 3,4-dihydroquinolin-2(1*H*)-one followed by MeONa-promoted isomerization. Since the non-planarity of Z-S4, in this case, Z-S4 is non atropisomeric compounds. When Z-S4 was subjected into our photocatalysis system, the reaction proceeded smoothly to afford E/Z ratio of 7/1. This result indicated that our photocatalysis reaction can be used for the non-atropisomeric substrates. More efforts

on the exploration of different kinds of substrates is currently in progress in our laboratory.

Following the general procedure of **D**, *Z*-**S4** was obtained as white solid (86% yield). ¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.41 – 7.39 (m, 2H), 7.29 (t, *J* = 7.2 Hz, 2H), 7.27 – 7.24 (m, 1H), 7.14 – 7.09 (m, 2H), 7.00 (d, *J* = 8.1 Hz, 1H), 6.92 (t, *J* = 7.4 Hz, 1H), 2.99 – 2.88 (m, 2H), 2.76 (dt, *J* = 15.6, 5.6 Hz, 1H), 2.65 (ddd, *J* = 15.6, 11.8, 6.3 Hz, 1H), 2.17 (s, 3H), 1.29 (s, 9H). ¹³**C NMR** (126 MHz, Chloroform-*d*) δ 169.48, 167.09, 139.79, 137.13, 136.37, 132.31, 129.25, 128.59, 128.19, 127.57, 127.21, 126.00, 123.00, 117.44, 81.12, 32.44, 27.87, 25.51, 17.38. HRMS(ESI) m/z: calculated for [C₂₃H₂₅NO₃+H]⁺ 364.1907, found 364.1905.

Following the general procedure of **F**, *E*-**S4** was obtained as white solid (78% yield). ¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.36 – 7.34 (m, 2H), 7.26 – 7.24 (m, 3H), 7.20 – 7.16 (m, 2H), 7.02 (d, *J* = 7.9 Hz, 1H), 6.99 (td, *J* = 7.4, 1.2 Hz, 1H), 3.01 – 2.91 (m, 2H), 2.78 – 2.67 (m, 2H), 1.85 (s, 3H), 1.27 (s, 9H). ¹³**C NMR** (126 MHz, Chloroform *d*) δ 168.75, 168.40, 139.00, 138.16, 137.42, 133.09, 128.40, 128.38, 128.00, 127.96, 127.71, 125.93, 123.39, 116.43, 81.61, 32.21, 27.57, 25.63, 16.59. HRMS(ESI) m/z: calculated for [C₂₃H₂₅NO₃+H]⁺ 364.1907, found 364.1907.

Density functional theory studies

The Gaussian 09 program was used for all the density functional theory (DFT) calculations.^[1] Geometry optimizations were optimized in toluene (for the isomerization) and tetrahydrofuran (THF, for the photochemical *Z/E* isomerization) with the SMD solvation model, and these calculations were carried out at the M06-2X^[2] level of theory with the def2-SVP^[3] basis set used for all atoms. Vibrational frequency calculations were performed at the same level to obtain thermal energy correction, and to confirm the stationary point is an energy minimum or a transition state. The single-point energies in THF and toluene were calculated using the SMD solvation model^[4] at the M06-2X and def2-TZVPP basis set level of theory. The minimum energy crossing point were calculated with sobMECP program^[5] with M06-2X/def2-TZVPP level. The vertical excitation energy was performed with TDDFT method with def2-TZVPP basis set. The spin density plot was generated by the Multiwfn program.^[6] Distances are shown in angstroms [Å].

The DFT calculations of MeONa-promoted isomerization of **Int-3** to accessing (*P*, *Z*)-**3a** were shown in Supplementary Fig. 5A. Based on our previous reports on stereospecific isomerization of allylic alkenes (refs 34-38 in manuscript), we proposed that the isomerization was occurred from the conformer **3a1** and **3a2**. With the NaOMe was added in the reaction system, the coordination between amide carbonyl with sodium cation would occur to generate **3a1-1** and **3a2-1**. Our calculation results indicated that the **3a2-1** (-5.9 kcal/mol) was more stable than **3a1-1** (-4.5 kcal/mol). The comparison between **3a1-TS1** and **3a2-TS1** as well as **3aTS-NaOMe** implies that the deprotonation prefers to take place via **3a2-TS1** rather than **3a1-TS1**. Afterward, the reprotonation occurs to afford (*P*, *Z*)-**3a**·NaOMe via **3a2-TS2** (-11.6 kcal/mol).

In addition, we also calculated the energy profiles taken place from the other two conformers **3a3** and **3a4**, respectively (Supplementary Fig. 5B). It can be seen that the energies of **3a3-TS1** and **3a4-TS1** are far higher than that of **3a1-TS1** and **3a2-TS1**. These results indicate that the isomerization of **Int-3** taken place from conformer **3a3** and **3a4** are not likely. Thus, the isomerization affords the axially chiral molecules *P*-

3a as the major product rather than *M*-**3a**. This result is consistent with our experimental outcome illustrated in **Fig.** 2 of manuscript.

Supplementary Fig. 5. Free energy profiles of MeONa-promoted stereospecific isomerization of Int-3 to accessing (*P*, *Z*)-3a. A Isomerization from conformer 3a1 or 3a2. B Isomerization from conformer 3a3 or 3a4. C The key optimized structures.

We then performed the DFT studies of photocatalyzed Z/E isomerization of (P, Z)-**3a**. The results of vertical excitation energy show that the photoexcitation of (P, Z)-**3a** is easier than (P, E)-**3a**, and T₁ state can be reached after intersystem crossing (ISC). For subsequent relaxation from T₁ to S₀, we calculated the minimum energy intersection (MECP) between singlet and triplet surfaces using the sob-MECP program. For (P, Z)-**3a** and (P, E)-**3a**, the MECP structure is 5.2 and 4.9 kcal/mol higher than the twisted intermediate (T₁), respectively. From this result in Supplementary Fig. 6, it can be seen that (P, Z)-**3a** is more easily excited to the T₁ state and tends to generate a more stable configuration (P, E)-**3a** through the crossing point. On the other hand, the spin density plot of **III** shows that the radical electrons are distributed on the aromatic ring.

Supplementary Fig. 6. The energy profiles of the photocatalytic reaction.

The explicit solvent effect was calculated by TDDFT method which is shown in Supplementary Table 1. The ratios were consistent with our experimental results illustrated in manuscript.

Supplementary Table 1. Vertical excitation energy of different isomers and solvent molecules (in kcal mol⁻¹).

Entry	$E_{vert}(E)$	$E_{vert}(Z)$
With MeOH	58.4	57.8

With THF	56.9	55.8
With Toluene	55.6	55.2

Supplementary Table 2. Thermal correction of Enthalpy and Gibbs free energy (TCE and TCG, hartree) and total electronic energies (E, hartree) in toluene for all species involved in this study. The intermediate and transition states were calculated at the M06-2X/def2-TZVPP/SMD-(Toluene)//M06-2X/def2-SVP /SMD-(Toluene) level of theory.

Compounds	TCE	TCG	E
NaOMe	0.045149	0.012497	-277.4064432
3 a1	0.438288	0.358787	-1170.731468
3aTS	0.437239	0.360602	-1170.722314
3a2	0.438364	0.361189	-1170.730117
3a1-1	0.485514	0.392652	-1448.166390
3aTS-NaOMe	0.484892	0.395100	-1448.157991
3a2-1	0.485205	0.392980	-1448.168932
3a1-TS1	0.480178	0.392450	-1448.154077
3a1-2	0.483529	0.393073	-1448.187525
3a1-TS2	0.479115	0.387895	-1448.171556
(<i>P</i> , <i>E</i>)-3a·NaOMe	0.484851	0.395727	-1448.186718
3a2-TS1	0.480026	0.391227	-1448.157532
3a2-2	0.484928	0.393487	-1448.185078
3a2-TS2	0.479195	0.388419	-1448.173537
(<i>P</i> , <i>Z</i>)-3a·NaOMe	0.484847	0.393615	-1448.189089
3a3	0.438122	0.358344	-1170.728184
3aTS2	0.437635	0.361372	-1170.724575
3a4	0.438023	0.359198	-1170.727415
3a3-1	0.485654	0.394729	-1448.165981
3a3TS-NaOMe	0.484555	0.397043	-1448.163278
3a4-1	0.485634	0.392467	-1448.171902
3a3-TS1	0.480375	0.392067	-1448.134042
3a3-2	0.485527	0.393580	-1448.163125
3a3-TS2	0.479335	0.388389	-1448.144719
(<i>M, E</i>)-3a∙NaOMe	0.484709	0.392777	-1448.184928
3a4-TS1	0.480084	0.391947	-1448.140819
3a4-2	0.485241	0.395111	-1448.165887
3a4-TS2	0.478226	0.389346	-1448.154768
(<i>M</i> , <i>Z</i>)-3a·NaOMe	0.484811	0.393241	-1448.188844

X-ray crystal structures

Supplementary Table 3. Crystal data and structure refinement for 2082917.		
Identification code	2082917	
Empirical formula	C ₂₃ H ₂₃ NO ₃	
Formula weight	361.42	
Temperature/K	273.15	
Crystal system	orthorhombic	
Space group	P2 ₁ 2 ₁ 2 ₁	
a/Å	9.2486(8)	
b/Å	13.0118(12)	
c/Å	33.021(3)	
α/°	90	
β/°	90	
$\gamma/^{\circ}$	90	
Volume/Å ³	3973.8(6)	
Z	8	
$\rho_{calc}g/cm^3$	1.208	
μ/mm^{-1}	0.638	
F(000)	1536.0	
Crystal size/mm ³	0.12 imes 0.1 imes 0.1	
Radiation	$CuK\alpha$ ($\lambda = 1.54178$)	
2Θ range for data collection/°	7.302 to 138.084	
Index ranges	$-10 \le h \le 11, -15 \le k \le 12, -35 \le l \le 39$	
Reflections collected	17077	
Independent reflections	$6919 \ [R_{int} = 0.0291, R_{sigma} = 0.0295]$	
Data/restraints/parameters	6919/6/495	
Goodness-of-fit on F ²	1.027	
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0331, wR_2 = 0.0825$	
Final R indexes [all data]	$R_1 = 0.0393, wR_2 = 0.0857$	
Largest diff. peak/hole / e Å $^{-3}$	0.14/-0.19	
Flack parameter -0.04(7)		

Supplementary Table 4. Crystal data and structure refinement for 2096051.

Idaut'fication and	2007051
Identification code	2096051
Empirical formula	C ₂₅ H ₂₃ NO ₃ S
Formula weight	417.50
Temperature/K	100.15
Crystal system	hexagonal
Space group	P65
a/Å	20.77790(10)
b/Å	20.77790(10)
c/Å	9.16930(10)
α/°	90
β/°	90
$\gamma/^{\circ}$	120
Volume/Å ³	3428.23(5)
Z	6
$\rho_{calc}g/cm^3$	1.213
μ/mm^{-1}	1.456
F(000)	1320.0
Crystal size/mm ³	$0.05 \times 0.05 \times 0.05$
Radiation	$CuK\alpha (\lambda = 1.54184)$
2Θ range for data collection/°	4.91 to 133.124
Index ranges	$-24 \le h \le 24, -24 \le k \le 24, -10 \le l \le 8$
Reflections collected	35983
Independent reflections	$3724 \ [R_{int} = 0.0351, R_{sigma} = 0.0166]$
Data/restraints/parameters	3724/1/275
Goodness-of-fit on F ²	1.042
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0225, \ wR_2 = 0.0602$
Final R indexes [all data]	$R_1 = 0.0228, \ wR_2 = 0.0605$
Largest diff. peak/hole / e Å-3	0.15/-0.15
Flack parameter	0.004(4)

CCDC 2252177

Supplementary Table 5. Crystal data and structure refinement for 2252177.

Identification code	2252177
Empirical formula	C ₂₃ H ₂₃ NO ₃
Formula weight	361.42
Temperature/K	193.15
Crystal system	orthorhombic
Space group	P212121
a/Å	8.743
b/Å	9.380
c/Å	23.078
α/°	90
β/°	90
γ/°	90
Volume/Å ³	1892.6
Z	4
$\rho_{calc}g/cm^3$	1.268
μ/mm^{-1}	0.670
F(000)	768.0
Crystal size/mm ³	$0.13 \times 0.12 \times 0.11$
Radiation	$CuK\alpha$ ($\lambda = 1.54184$)
2Θ range for data collection/°	7.662 to 136.456
Index ranges	$-10 \le h \le 10, -11 \le k \le 11, -27 \le l \le 27$
Reflections collected	41759
Independent reflections	3461 [$R_{int} = 0.0288$, $R_{sigma} = 0.0180$]
Data/restraints/parameters	3461/0/248
Goodness-of-fit on F ²	1.144
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0307, wR_2 = 0.0771$
Final R indexes [all data]	$R_1=0.0308, \ wR_2=0.0772$
Largest diff. peak/hole / e Å $^{-3}$	0.17/-0.25
Flack parameter	0.02(2)

CCDC 2286999

Supplementary Table 6. Crystal data and structure refinement for 2286999.

Identification code	2286999
Empirical formula	$C_{84}H_{84}N_4O_8$
Formula weight	1277.55
Temperature/K	100.01(10)
Crystal system	orthorhombic
Space group	P212121
a/Å	27.8477(3)
b/Å	18.7127(2)
c/Å	13.05830(10)
α/°	90
β/°	90
γ/°	90
Volume/Å ³	6804.76(12)
Z	4
$\rho_{calc}g/cm^3$	1.247
μ/mm^{-1}	0.631
F(000)	2720.0
Crystal size/mm ³	$0.02\times0.02\times0.02$
Radiation	$CuK\alpha$ ($\lambda = 1.54184$)
2Θ range for data collection/°	5.69 to 148.156
Index ranges	$-34 \le h \le 34, \text{-}19 \le k \le 23, \text{-}16 \le l \le 16$
Reflections collected	48017
Independent reflections	13620 [$R_{int} = 0.0651$, $R_{sigma} = 0.0462$]
Data/restraints/parameters	13620/0/881
Goodness-of-fit on F ²	1.077
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0551, wR_2 = 0.1392$
Final R indexes [all data]	$R_1 = 0.0623, \ wR_2 = 0.1424$
Largest diff. peak/hole / e Å ⁻³	0.29/-0.28
Flack parameter	-0.09(12)

Supplementary Table 7. Crystal data and	nd structure refinement for 2089101.
---	--------------------------------------

Identification code	2089101
Empirical formula	C ₂₃ H ₂₃ NO ₃
Formula weight	361.42
Temperature/K	273(2)
Crystal system	orthorhombic
Space group	P212121
a/Å	10.2957(12)
b/Å	12.117(2)
c/Å	16.365(3)
$\alpha/^{\circ}$	90
β/°	90
γ/°	90
Volume/Å ³	2041.6(6)
Z	4
$\rho_{calc}g/cm^3$	1.176
μ/mm^{-1}	0.621
F(000)	768.0
Crystal size/mm ³	$0.12 \times 0.11 \times 0.08$
Radiation	$CuK\alpha (\lambda = 1.54178)$
2Θ range for data collection/°	9.08 to 136.812
Index ranges	$-12 \le h \le 12, -14 \le k \le 14, -19 \le l \le 19$
Reflections collected	15331
Independent reflections	3690 [$R_{int} = 0.0312$, $R_{sigma} = 0.0215$]
Data/restraints/parameters	3690/0/248
Goodness-of-fit on F ²	1.050
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0262, wR_2 = 0.0703$
Final R indexes [all data]	$R_1 = 0.0264, \ wR_2 = 0.0705$
Largest diff. peak/hole / e Å ⁻³	0.12/-0.12
Flack parameter	0.03(4)

NMR spectrum data

Supplementary Fig. 7. ¹H NMR spectrum of 1m.

Supplementary Fig. 8. ¹³C NMR spectrum of 1m.

Supplementary Fig. 10. ¹³C NMR spectrum of 2x.

Supplementary Fig. 11. ¹H NMR spectrum of 2y.

Supplementary Fig. 12. ¹³C NMR spectrum of 2y.

Supplementary Fig. 13. ¹H NMR spectrum of 2z.

Supplementary Fig. 14. ¹³C NMR spectrum of 2z.

Supplementary Fig. 15. ¹H NMR spectrum of (*P*, *Z*)-3a.

Supplementary Fig. 16. ¹³C NMR spectrum of (P, Z)-3a.

Supplementary Fig. 17. ¹H NMR spectrum of (*P*, *E*)-3a.

Supplementary Fig. 18. ¹³C NMR spectrum of (*P*, *E*)-3a.

Supplementary Fig. 19. ¹H NMR spectrum of (P, Z)-3b

Supplementary Fig. 20. ¹³C NMR spectrum of (P, Z)-3b.

Supplementary Fig. 22. ¹³C NMR spectrum of (*P*, *E*)-3b.

Supplementary Fig. 23. ¹H NMR spectrum of (*P*, *Z*)-3c

Supplementary Fig. 24. ¹³C NMR spectrum of (*P*, *Z*)-3c.

Supplementary Fig. 25. ¹H NMR spectrum of (*P*, *E*)-3c

Supplementary Fig. 26. ¹³C NMR spectrum of (P, E)-3c.

Supplementary Fig. 27. ¹H NMR spectrum of (P, Z)-3d

Supplementary Fig. 28. ¹³C NMR spectrum of (P, Z)-3d.

Supplementary Fig. 29. ¹H NMR spectrum of (P, E)-3d

Supplementary Fig. 30. ¹³C NMR spectrum of (P, E)-3d.

Supplementary Fig. 31. ¹H NMR spectrum of (*P*, *Z*)-3e

Supplementary Fig. 32. ¹³C NMR spectrum of (P, Z)-3e.

Supplementary Fig. 33. ¹H NMR spectrum of (*P*, *E*)-3e

Supplementary Fig. 34. ¹³C NMR spectrum of (*P*, *E*)-3e.

Supplementary Fig. 35. ¹H NMR spectrum of (*P*, *Z*)-3f

Supplementary Fig. 36. ¹³C NMR spectrum of (*P*, *Z*)-3f.

Supplementary Fig. 37. ¹H NMR spectrum of (*P*, *E*)-3f

Supplementary Fig. 38. ¹³C NMR spectrum of (*P*, *E*)-3f.

Supplementary Fig. 40. ¹³C NMR spectrum of (P, Z)-3g.

Supplementary Fig. 41. ¹H NMR spectrum of (*P*, *E*)-3g

Supplementary Fig. 42. ¹³C NMR spectrum of (*P*, *E*)-3g.

Supplementary Fig. 43. ¹H NMR spectrum of (*P*, *Z*)-3h

Supplementary Fig. 44. ¹³C NMR spectrum of (*P*, *Z*)-3h.

Supplementary Fig. 46. ¹³C NMR spectrum of (*P*, *E*)-3h.

Supplementary Fig. 47. ¹H NMR spectrum of (P, Z)-3i

Supplementary Fig. 48. ¹³C NMR spectrum of (*P*, *Z*)-3i.

Supplementary Fig. 49. ¹⁹F NMR spectrum of (P, Z)-3i.

Supplementary Fig. 50. ¹H NMR spectrum of (*P*, *E*)-3i

Supplementary Fig. 51. ¹³C NMR spectrum of (*P*, *E*)-3i.

Supplementary Fig. 52. ¹⁹F NMR spectrum of (P, E)-3i.

Supplementary Fig. 53. ¹H NMR spectrum of (P, Z)-3j

Supplementary Fig. 54. ¹³C NMR spectrum of (*P*, *Z*)-3j.

Supplementary Fig. 55. ¹H NMR spectrum of (P, E)-3j

Supplementary Fig. 56. ¹³C NMR spectrum of (*P*, *E*)-3j.

Supplementary Fig. 57. ¹H NMR spectrum of (*P*, *Z*)-3k

Supplementary Fig. 58. ¹³C NMR spectrum of (*P*, *Z*)-3k.

Supplementary Fig. 60. ¹³C NMR spectrum of (*P*, E)-3k.

Supplementary Fig. 61. ¹H NMR spectrum of (*P*, *Z*)-31

Supplementary Fig. 62. ¹³C NMR spectrum of (*P*, *Z*)-3l.

Supplementary Fig. 63. ¹H NMR spectrum of (*P*, *E*)-31

Supplementary Fig. 64. ¹³C NMR spectrum of (*P*, *E*)-3l.

Supplementary Fig. 65. ¹H NMR spectrum of (*P*, *Z*)-3m

Supplementary Fig. 66. ¹³C NMR spectrum of (P, Z)-3m.

Supplementary Fig. 67. ¹H NMR spectrum of (*P*, *E*)-3m

Supplementary Fig. 68. ¹³C NMR spectrum of (P, E)-3m.

Supplementary Fig. 70. ¹³C NMR spectrum of (P, Z)-3n

Supplementary Fig. 71. ¹H NMR spectrum of (P, E)-3n

Supplementary Fig. 72. ¹³C NMR spectrum of (*P*, *E*)-3n

Supplementary Fig. 73. ¹H NMR spectrum of (P, Z)-30

Supplementary Fig. 74. ¹³C NMR spectrum of (*P*, *Z*)-30

Supplementary Fig. 75. ¹H NMR spectrum of (P, E)-30

Supplementary Fig. 76. ¹³C NMR spectrum of (*P*, *E*)-3n

Supplementary Fig. 77. ¹H NMR spectrum of (P, Z)-3p

Supplementary Fig. 78. ¹³C NMR spectrum of (*P*, *Z*)-3p

Supplementary Fig. 79. ¹H NMR spectrum of (*P*, *E*)-3p

Supplementary Fig. 80. ¹³C NMR spectrum of (*P*, *E*)-3p

Supplementary Fig. 82. ¹³C NMR spectrum of (P, Z)-3q

Supplementary Fig. 83. ¹H NMR spectrum of (P, E)-3q

Supplementary Fig. 84. ¹³C NMR spectrum of (P, E)-3q

Supplementary Fig. 85. ¹H NMR spectrum of (*P*, *Z*)-3r

Supplementary Fig. 86. ¹³C NMR spectrum of (P, Z)-3r

Supplementary Fig. 87. ¹H NMR spectrum of (*P*, *E*)-3r

Supplementary Fig. 88. ¹³C NMR spectrum of (*P*, *E*)-3r

Supplementary Fig. 89. ¹H NMR spectrum of (P, Z)-3s

Supplementary Fig. 90. ¹³C NMR spectrum of (*P*, *Z*)-3s

Supplementary Fig. 91. ¹H NMR spectrum of (*P*, *E*)-3s

Supplementary Fig. 92. ¹³C NMR spectrum of (*P*, *E*)-3s

Supplementary Fig. 93. ¹H NMR spectrum of (*P*, *Z*)-3t

Supplementary Fig. 94. ¹³C NMR spectrum of (*P*, *Z*)-3t

Supplementary Fig. 95. ¹H NMR spectrum of (*P*, *E*)-3t

Supplementary Fig. 96. ¹³C NMR spectrum of (P, E)-3t

Supplementary Fig. 97. ¹H NMR spectrum of (P, Z)-3u

Supplementary Fig. 98. ¹³C NMR spectrum of (*P*, *Z*)-3u

Supplementary Fig. 99. ¹H NMR spectrum of (P, E)-3u

Supplementary Fig. 100. ¹³C NMR spectrum of (P, E)-3u

Supplementary Fig. 102. ¹³C NMR spectrum of (P, Z)-3v

Supplementary Fig. 103. ¹H NMR spectrum of (*P*, *E*)-3v

Supplementary Fig. 104. ¹³C NMR spectrum of (*P*, *E*)-3v

Supplementary Fig. 105. ¹H NMR spectrum of (*P*, *Z*)-3w

Supplementary Fig. 106. ¹³C NMR spectrum of (P, Z)-3w

Supplementary Fig. 108. ¹³C NMR spectrum of (*P*, *E*)-3w

Supplementary Fig. 109. ¹H NMR spectrum of (P, Z)-3x

Supplementary Fig. 110. ¹³C NMR spectrum of (*P*, *Z*)-3x

Supplementary Fig. 111. ¹H NMR spectrum of (*P*, *E*)-3x

Supplementary Fig. 112. ¹³C NMR spectrum of (P, E)-3x

Supplementary Fig. 113. ¹H NMR spectrum of (*P*, *Z*)-3y

Supplementary Fig. 114. ¹³C NMR spectrum of (P, Z)-3y

Supplementary Fig. 115. ¹H NMR spectrum of (*P*, *E*)-3y

Supplementary Fig. 116. ¹³C NMR spectrum of (*P*, *E*)-3y

4475

525255

52555

52555

52555

52555

52555

52555

52555

52555

52555

52555

52555

52555

52555

52555

52555

52555

52555

52555

52555

52555

52555

52555

52555

52555

52555

52555

52555

52555

52555

52555

52555

52555

52555

52555

52555

52555

52555

52555

52555

52555

52555

52555

52555

52555

52555

52555

52555</ Me Me Me Me 13 3 Me Иe ſ ار از از Ме COO^tBu (*P, Z*)-**3z** Me ٣ 8 02 5.0 4.5 f1 (ppm) 7.5 4.0 3.5 2.0 1.5 0.5 0.0 9.0 8.5 8.0 7.0 6.5 6.0 5.5 3.0 2.5 1.0 Supplementary Fig. 117. ¹H NMR spectrum of (P, Z)-3z -166.82 -161.59143.52140.59128.70 128.58 128.58 128.46 128.42 128.42 128.17 128.17 128.17 127.39 127.39 -81.49 -79.12 -70.07 -60.40 -48.40 -53.45 40.40 334.63 331.96 331.64 229.59 229.59 227.66 227.41 227.41 227.55 22.22 22. 22. T_3 Me Мe O COO^tBu (*P, Z*)-**3z** l Me

Supplementary Fig. 118. ¹³C NMR spectrum of (*P*, *Z*)-3z

100 90 80 f1 (ppm) 70

60

50

40

30

20

ò

10

.80

. 170 160

150

140

130

120 110

Supplementary Fig. 120.¹³C NMR spectrum of (P, E)-3z

Supplementary Fig. 121. ¹H NMR spectrum of (P, Z)-4

Supplementary Fig. 122. ¹³C NMR spectrum of (P, Z)-4

Supplementary Fig. 124. ¹³C NMR spectrum of (P, E)-4

Supplementary Fig. 125. ¹H NMR spectrum of (P, Z)-5

Supplementary Fig. 126. ¹³C NMR spectrum of (P, Z)-5

Supplementary Fig. 127. ¹H NMR spectrum of (P, E)-5

Supplementary Fig. 128. ¹³C NMR spectrum of (*P*, *E*)-5

Supplementary Fig. 129. ¹H NMR spectrum of (P, Z)-6

Supplementary Fig. 130. ¹³C NMR spectrum of (*P*, *Z*)-6

Supplementary Fig. 132. ¹³C NMR spectrum of (*P*, *E*)-6

Supplementary Fig. 134. ¹³C NMR spectrum of (*P*, *Z*)-7

Supplementary Fig. 135. ¹H NMR spectrum of (*P*, *E*)-7

Supplementary Fig. 136. ¹³C NMR spectrum of (*P*, *E*)-7

Supplementary Fig. 137. ¹H NMR spectrum of Z-S4

Supplementary Fig. 138. ¹³C NMR spectrum of Z-S4

Supplementary Fig. 139. ¹H NMR spectrum of *E*-S4

Supplementary Fig. 140. ¹³C NMR spectrum of *E*-S4

HPLC spectrum data

Supplementary Fig. 141. HPLC spectrum of racemic (P, Z)-3a

Supplementary Fig. 142. HPLC spectrum of chiral (P, Z)-3a

Supplementary Fig. 143. HPLC spectrum of racemic (P, E)-3a

Supplementary Fig. 144. HPLC spectrum of chiral (P, E)-3a

Supplementary Fig. 145. HPLC spectrum of racemic (P, Z)-3b

Supplementary Fig. 146. HPLC spectrum of chiral (P, Z)-3b

Supplementary Fig. 147. HPLC spectrum of racemic (P, E)-3b

Supplementary Fig. 148. HPLC spectrum of chiral (P, E)-3b

Supplementary Fig. 149. HPLC spectrum of racemic (P, Z)-3c

Supplementary Fig. 150. HPLC spectrum of chiral (P, Z)-3c

Supplementary Fig. 151. HPLC spectrum of racemic (P, E)-3c

Supplementary Fig. 152. HPLC spectrum of chiral (P, E)-3c

Supplementary Fig. 153. HPLC spectrum of racemic (P, Z)-3d

Supplementary Fig. 154. HPLC spectrum of chiral (P, Z)-3d

Supplementary Fig. 155. HPLC spectrum of racemic (P, E)-3d

Supplementary Fig. 156. HPLC spectrum of chiral (P, E)-3d

Supplementary Fig. 157. HPLC spectrum of racemic (P, Z)-3e

Supplementary Fig. 158. HPLC spectrum of chiral (P, Z)-3e

Supplementary Fig. 159. HPLC spectrum of racemic (P, E)-3e

Supplementary Fig. 160. HPLC spectrum of chiral (P, E)-3e

Supplementary Fig. 161. HPLC spectrum of racemic (P, Z)-3f

Supplementary Fig. 162. HPLC spectrum of chiral (P, Z)-3f

Supplementary Fig. 163. HPLC spectrum of racemic (P, E)-3f

Supplementary Fig. 164. HPLC spectrum of chiral (P, E)-3f

Supplementary Fig. 165. HPLC spectrum of racemic (P, Z)-3g

Supplementary Fig. 166. HPLC spectrum of chiral (P, Z)-3g

Supplementary Fig. 167. HPLC spectrum of racemic (P, E)-3g

Supplementary Fig. 168. HPLC spectrum of chiral (P, E)-3g

Supplementary Fig. 169. HPLC spectrum of racemic (P, Z)-3h

Supplementary Fig. 170. HPLC spectrum of chiral (P, Z)-3h

Supplementary Fig. 171. HPLC spectrum of racemic (P, E)-3h

Supplementary Fig. 172. HPLC spectrum of chiral (P, E)-3h

Supplementary Fig. 173. HPLC spectrum of racemic (P, Z)-3i

Supplementary Fig. 174. HPLC spectrum of chiral (P, Z)-3i

Supplementary Fig. 175. HPLC spectrum of racemic (P, E)-3i

Supplementary Fig. 176. HPLC spectrum of chiral (P, E)-3i

Supplementary Fig. 177. HPLC spectrum of racemic (P, Z)-3j

Supplementary Fig. 178. HPLC spectrum of chiral (P, Z)-3j

Supplementary Fig. 179. HPLC spectrum of racemic (P, E)-3j

Supplementary Fig. 180. HPLC spectrum of chiral (P, E)-3j

Supplementary Fig. 181. HPLC spectrum of racemic (P, Z)-3k

Supplementary Fig. 182. HPLC spectrum of chiral (P, Z)-3k

Supplementary Fig. 183. HPLC spectrum of racemic (P, E)-3k

Supplementary Fig. 184. HPLC spectrum of chiral (P, E)-3k

Supplementary Fig. 185. HPLC spectrum of racemic (P, Z)-31

Supplementary Fig. 186. HPLC spectrum of chiral (P, Z)-31

Supplementary Fig. 187. HPLC spectrum of racemic (P, E)-31

Supplementary Fig. 188. HPLC spectrum of chiral (P, E)-31

Supplementary Fig. 189. HPLC spectrum of racemic (P, Z)-3m

Supplementary Fig. 190. HPLC spectrum of chiral (P, Z)-3m

Supplementary Fig. 191. HPLC spectrum of racemic (P, E)-3m

Supplementary Fig. 192. HPLC spectrum of chiral (P, E)-3m

Supplementary Fig. 193. HPLC spectrum of racemic (P, Z)-3n

Supplementary Fig. 194. HPLC spectrum of chiral (P, Z)-3n

Supplementary Fig. 195. HPLC spectrum of racemic (P, E)-3n

Supplementary Fig. 196. HPLC spectrum of chiral (P, E)-3n

Supplementary Fig. 197. HPLC spectrum of racemic (P, Z)-30

Supplementary Fig. 198. HPLC spectrum of chiral (P, Z)-30

Supplementary Fig. 199. HPLC spectrum of racemic (P, E)-30

Supplementary Fig. 200. HPLC spectrum of chiral (P, E)-30

Supplementary Fig. 201. HPLC spectrum of racemic (P, Z)-3p

Supplementary Fig. 202. HPLC spectrum of chiral (P, Z)-3p

Supplementary Fig. 203. HPLC spectrum of racemic (P, E)-3p

Supplementary Fig. 204. HPLC spectrum of chiral (P, E)-3p

Supplementary Fig. 205. HPLC spectrum of racemic (P, Z)-3q

Supplementary Fig. 206. HPLC spectrum of chiral (P, Z)-3q

Supplementary Fig. 207. HPLC spectrum of racemic (P, E)-3q

Supplementary Fig. 208. HPLC spectrum of chiral (P, E)-3q

Peak	Ret. Time (min)	Area (mAu*min)	Height (mAu)	Area %	Height %
1	4.863	4.144	28.256	50.62	90.37
2	26.137	4.044	3.011	49.38	9.63

Supplementary Fig. 209. HPLC spectrum of racemic (P, Z)-3r

Supplementary Fig. 210. HPLC spectrum of chiral (P, Z)-3r

Supplementary Fig. 211. HPLC spectrum of racemic (P, E)-3r

Supplementary Fig. 212. HPLC spectrum of chiral (P, E)-3r

Supplementary Fig. 213. HPLC spectrum of racemic (P, Z)-3s

Supplementary Fig. 214. HPLC spectrum of chiral (P, Z)-3s

Supplementary Fig. 215. HPLC spectrum of racemic (P, E)-3s

Supplementary Fig. 216. HPLC spectrum of chiral (P, E)-3s

Supplementary Fig. 217. HPLC spectrum of racemic (P, Z)-3t

Supplementary Fig. 218. HPLC spectrum of chiral (P, Z)-3t

Supplementary Fig. 219. HPLC spectrum of racemic (P, E)-3t

Supplementary Fig. 220. HPLC spectrum of chiral (P, E)-3t

Supplementary Fig. 221. HPLC spectrum of racemic (P, Z)-3u

Supplementary Fig. 222. HPLC spectrum of chiral (P, Z)-3u

Supplementary Fig. 223. HPLC spectrum of racemic (P, E)-3u

Supplementary Fig. 224. HPLC spectrum of chiral (P, E)-3u

Supplementary Fig. 225. HPLC spectrum of racemic (P, Z)-3v

Supplementary Fig. 226. HPLC spectrum of chiral (P, Z)-3v

Supplementary Fig. 227. HPLC spectrum of racemic (P, E)-3v

Supplementary Fig. 228. HPLC spectrum of chiral (P, E)-3v

Supplementary Fig. 229. HPLC spectrum of racemic (P, Z)-3w

Supplementary Fig. 230. HPLC spectrum of chiral (P, Z)-3w

Supplementary Fig. 231. HPLC spectrum of racemic (P, E)-3w

Supplementary Fig. 232. HPLC spectrum of chiral (P, E)-3w

Supplementary Fig. 233. HPLC spectrum of racemic (P, Z)-3x

Supplementary Fig. 234. HPLC spectrum of chiral (P, Z)-3x

Supplementary Fig. 235. HPLC spectrum of racemic (P, E)-3x

Supplementary Fig. 236. HPLC spectrum of chiral (P, E)-3x

Supplementary Fig. 237. HPLC spectrum of racemic (P, Z)-3a

Supplementary Fig. 238. HPLC spectrum of chiral (P, Z)-3a

Supplementary Fig. 239. HPLC spectrum of racemic (M, Z)-3a

Supplementary Fig. 240. HPLC spectrum of chiral (M, Z)-3a

Supplementary Fig. 241. HPLC spectrum of racemic (P, E)-3a

Supplementary Fig. 242. HPLC spectrum of chiral (P, E)-3a

Supplementary Fig. 243. HPLC spectrum of racemic (M, E)-3a

Supplementary Fig. 244. HPLC spectrum of chiral (M, E)-3a

Supplementary Fig. 245. HPLC spectrum of racemic (P, Z)-3s

Supplementary Fig. 246. HPLC spectrum of chiral (P, Z)-3s

Supplementary Fig. 247. HPLC spectrum of racemic (M, Z)-3s

Supplementary Fig. 248. HPLC spectrum of chiral (M, Z)-3s

Supplementary Fig. 249. HPLC spectrum of racemic (P, E)-3s

Supplementary Fig. 250. HPLC spectrum of chiral (P, E)-3s

Supplementary Fig. 251. HPLC spectrum of racemic (M, E)-3s

Supplementary Fig. 252. HPLC spectrum of chiral (M, E)-3s

Supplementary Fig. 253. HPLC spectrum of racemic (P, Z)-4

Supplementary Fig. 254. HPLC spectrum of chiral (P, Z)-4

Supplementary Fig. 255. HPLC spectrum of racemic (M, Z)-4

Supplementary Fig. 256. HPLC spectrum of chiral (M, Z)-4

Supplementary Fig. 257. HPLC spectrum of racemic (P, E)-4

Supplementary Fig. 258. HPLC spectrum of chiral (P, E)-4

Supplementary Fig. 259. HPLC spectrum of racemic (M, E)-4

Supplementary Fig. 260. HPLC spectrum of chiral (M, E)-4

Supplementary Fig. 261. HPLC spectrum of racemic (P, Z)-5

Supplementary Fig. 262. HPLC spectrum of chiral (P, Z)-5

Peak	Ret. Time (min)	Area (mAu*min)	Height (mAu)	Area %	Height %
1	9.837	10.806	41.937	49.92	52.66
2	11.503	10.839	37.707	50.08	47.34

Supplementary Fig. 263. HPLC spectrum of racemic (M, Z)-5

Supplementary Fig. 264. HPLC spectrum of chiral (M, Z)-5

Supplementary Fig. 265. HPLC spectrum of racemic (P, E)-5

Supplementary Fig. 266. HPLC spectrum of chiral (P, E)-5

Supplementary Fig. 267. HPLC spectrum of racemic (M, E)-5

Supplementary Fig. 268. HPLC spectrum of chiral (M, E)-5

Supplementary Fig. 269. HPLC spectrum of racemic (P, Z)-6

Supplementary Fig. 270. HPLC spectrum of chiral (P, Z)-6

Supplementary Fig. 271. HPLC spectrum of racemic (P, E)-6

Supplementary Fig. 272. HPLC spectrum of chiral (P, E)-6

Supplementary Fig. 273. HPLC spectrum of racemic (P, Z)-7

Supplementary Fig. 274. HPLC spectrum of chiral (P, Z)-7

Supplementary Fig. 275. HPLC spectrum of racemic (P, E)-7

Supplementary Fig. 276. HPLC spectrum of chiral (P, E)-7

References

[1] Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A.; Bloino,; Janesko, J. B.; Gomperts, G. R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, J. A.; Jr.; Peralta,J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E. K.; Kudin, N.; Staroverov, V. N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B. & Fox, D. J. Gaussian, Inc., Wallingford CT, 2016.

[2] Zhao, Y. & Truhlar, D. G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. *Theor. Chem. Acc.* **120**, 215-241 (2007).

[3] Weigend, F. & Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. *Phys. Chem. Chem. Phys.* **7**, 3297-3305 (2005).

[4] Marenich, A. V.; Cramer, C. J. & Truhlar, D. G. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. *J. Phys. Chem. B.* **2009**, *113*, 6378-6396.

[5] Lu, T. "sobMECP program"; http://sobereva.com/286.(10-27,2023)

[6] Lu, T. & Chen, F. Multiwfn: A multifunctional wavefunction analyzer, J. Comput. Chem. 33, 580-592 (2012).