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1 Multi-Modal Reconstruction of Au-Fe3O4 Nanoparticles Inside a Carbon Support

Fig.1 The complete reconstruction of the Au-Fe3O4 nanoparticle superlattice inside the carbon matrix (highlighted in purple). Scale cube, 10 nm3.
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2 Consequence of Reconstructing CuO/CoO Simulation with Individual Components in Cost Function

Fig.2 a Synthetic CuO/CoO nanocubes ground truth EELS maps and simultaneous HAADF reconstruction. b Slice of the reconstructed nanocubes dataset with only
Ψ2 (data consistency), λ1,λ3=0. The recovered EELS maps and HAADF reconstruction are noisy. c Slice of the reconstructed multi-modal nanocubes dataset with
Ψ1 and Ψ2 (model + data-consistency), λ3=0. The EELS maps are still noisy but show improvement with the extra Ψ1 term. d Slice of the reconstructed multi-modal
nanocubes dataset with Ψ2 + TV, λ1=0 . The expression Ψ2 + TV is equivalent to a denoising problem; thus the resulting reconstructions produce common staircase
artifacts associated with TV [1]. e Slice of the reconstructed nanocubes dataset with fused multi-modal electron tomography. Scale bar, 75 nm.
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3 Consequence of Reconstructing CoNiO Simulation with Individual Components in Cost Function

Fig.3 a Synthetic CoNiO nanotube ground truth EELS maps and simultaneous HAADF reconstruction. b Slice of the reconstructed nanotube dataset with only Ψ2

(data consistency), λ1,λ3=0. The recovered EELS maps and HAADF reconstruction are noisy. c Slice of the reconstructed multi-modal nanotube dataset with Ψ1 and
Ψ2 (model + data-consistency), λ3=0. The EELS maps are still noisy but show improvement with the extra Ψ1 term. d Slice of the reconstructed multi-modal nanotube
dataset with Ψ2 + TV, λ1=0 . The expression Ψ2 + TV is equivalent to a denoising problem; thus the resulting reconstructions produce common staircase artifacts
associated with TV [1]. e Slice of the reconstructed nanotube dataset with fused multi-modal electron tomography. Scale bar, 50 nm.
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4 Multi-Modal EELS Tomography of ZnS - Cu0.64S0.36 Heterostructured Nanoparticles

Fig.4 a HAADF tomography on heterostructured nanocrystals with applications in photovoltaic devices and battery electrodes [2]. The copper sulfide properties are
sensitive to stoichiometry and crystal structure at the interface. The HAADF reconstruction and 2D slice are shown on the left. b The fused multi-modal reconstruction
illustrating CuS or ZnS-rich nanoparticles and oxidized shells. c 2D slices of the chemical reconstructions with the noisy traditional reconstructions highlighted on the
left of each image. Scale bar, 50 nm. d The HAADF and fused multi-modal chemical tomogram for a smaller field of view. e Representative EELS spectra for the S, C,
Cu, and Zn core loss edges.

The simultaneously acquired HAADF and EELS tilt series for the specimen were collected on a Talos F200X G2 (Thermo Fisher) operated at 200 keV with a
probe semi-angle of roughly 10.5 mrad and inner collection semi-angle of 50 mrad. For the larger cluster (a-c), the HAADF projections were collected from -74◦ to
+70◦ with a 3◦ angular increment using a Model 2021 Fischione Analytical Tomography Holder. At each tilt angle, a STEM image with a µs dwell time at each pixel of
a lateral dimension of 1.26 nm. Simultaneously acquired HAADF and EELS spectrums were acquired at acquired with a 15◦ angular increment with a dwell time of 2
ms receiving a total electron dose of 8.25× 104 e/Å2 (3.87× 103, 7.86× 104 for the HAADF and EELS modality, respectively).

For the smaller cluster (d), the HAADF projections were collected from -74◦ to +67◦ with a 3◦ angular increment using a Model 2021 Fischione Analytical
Tomography Holder. At each tilt angle, a STEM image with a 30 µs dwell time at each pixel of a lateral dimension of 1.12 nm. Simultaneously acquired HAADF and
EELS spectrums were acquired at acquired with a 15◦ angular increment with a dwell time of 3.5 ms receiving a total electron dose of 2.07× 105 e/Å2 (6.87× 103,
2.01× 105 for the HAADF and EELS modality, respectively).
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5 Multi-Modal EDX Tomography of Cu-SiC Nanoparticles

Fig.5 a Cu-supported silicon carbon (SiC) catalysts designed for the production of fuels and chemicals from biomass. These silica supported catalysts efficiently
convert ethanol into acetaldehyde because of their high selectivity and stability [3]. The HAADF reconstruction with a few tilt micrographs is shown on right. b The fused
multi-modal reconstruction highlighting Cu nanoparticles embedded inside the SiC support and raw EDX maps are shown on the right. Scale bar, 50 nm. c The PSF of
an individual 3 nm nanoparticle inside the SiC. A few 2D slices of the reconstruction are shown on the right where we see the structure is sharp along the orthogonal
axis perpendicular to the missing wedge and approximately a 20% reduction in resolution along the missing wedge direction. Scale bar, 2 nm. d EDX spectra for a
single tilt.
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6 Historical Demonstrations of Multi-Element Chemical Tomography

Fig.6 The reported dose and Nyquist limited resolutions for the fused multi-modal (MM) reconstructions reported in this manuscript are compared to previous multi-
element chemical tomography (CT) experiments [4–10]. Note, the actual achieved 3D resolution of previously reported chemical tomography may be lower than the
Nyquist resolution.
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7 Resolution and Electron Dose for Multi-Modal Electron Tomography

Fig.7 a Resolution and dose relationship for electron tomography approximates the best achievable resolution for each material [11–15] – assuming an image contrast of
80%[16]. Fused multi-modal electron tomography results in a much higher dose-efficiency which enables higher resolution at any dose limit. b Multi-modal (green) and
conventional chemical tomography (blue). This relationship between dose and resolution assumes sufficient tomographic sampling is achieved (i.e. many projections)—
in practice the actual resolution will be much lower. Dose limited resolution assumes the material is adequately sampled (i.e. Crowther and Nyquist relations)
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8 Measuring the Resolution of Au-Fe3O4 Nanoparticles in the HAADF

Fig.8 a Fused EELS tomograms of Au-Fe3O4 nanoparticles. Power spectral density of the HAADF reconstruction along the principal axial directions shown on the
right. Scale cube, 2 nm3. Scale bar, 0.5 nm−1. b Power spectral density profiles for YZ and XY planes. c Line scan profiles of a 2.5 nm Au nanoparticle give a
resolution of 1.00, 1.03, and 1.01 nm along the x, y, and z directions.
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9 Sampling Requirements of Multi-Modal Tomography on CoO/CuO Nanocubes

Fig.9 a An NRMSE map representing reconstruction error as a function of the number of HAADF and chemical tilts. The bottom two rows provide results from non-multi-
modal algorithms where the HAADF is not included in the reconstruction process. The last row uses the Poisson Maximum Likelihood term to reconstruct the individual
chemical distributions. The second to last row adapts the compressed sensing framework into the reconstruction process by including total variation minimization –
thus providing a 2-3 fold reduction in average error. b Visualization of four points in the phase diagram corresponding to conventional chemical tomography, regularized
tomography (compressed sensing), and low or high-dose fused multi-modal electron tomography. The 3D models were then rendered and colored in Tomviz [17]. Scale
bar, 75 nm.
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10 Estimating the Sampling Requirements for a CoNiO Composite

Fig.10 a A normalized root-mean-square-error (NRMSE) heatmap of a fused multi-modal CoNiO nanotube reconstructions as a function of the number of HAADF and
chemical tomographic projections. Brighter pixels denote higher levels of error in the reconstruction when compared to the ground truth. The SNR for the Co, Ni, O,
and HAADF modalities were 2.66, 6.46, 3.17, and 2156.16 respectively. b Visualization of four points in the phase diagram corresponding to conventional chemical
tomography, regularized tomography (compressed sensing), and low or high-dose fused multi-modal electron tomography.c The synthetic CoNiO nanotube ground truth
3D models generating synthetic chemical and ADF projections. The 3D models were then rendered and colored in Tomviz [17]. Scale bar, 50 nm.
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11 Measuring 3D Stoichiometric Concentration for simulated CuO-CoO Nanocubes

Fig.11 Histograms of the chemical concentrations for each voxel in the traditional and fused multi-modal tomography reconstructions are shown for the simulated
CuO-CoO nanocube system. The mean values of each chemistry are within ±0.03 of the expected value of 0.5. For traditional chemical tomography, the accuracy
improves as SNR increases or more projections are collected. Multi-modal tomography maintains low error, especially for experimentally realistic conditions (e.g. 14
chemical tilts and SNR < 10).
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12 Measuring 3D Stoichiometric Concentration of Au-Fe3O4 Superlattice Nanoparticles

Fig.12 3D chemical reconstructions for each element are shown with their corresponding voxel intensity histograms. The mean values and standard deviations are
46.4±15.1%, 54.6±15.3%, 100±0% for Fe, O, and Au, respectively. The expected stochiometry of this system is 42.9%, 57.1%, 100%.
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13 Assessing Convergence and Selecting Hyperparameters with Paraeto Front Curves

Fig.13 a Pareto fronts illustrates the relationship between reconstruction quality and regularization parameters for multi-modal electron tomography. Depicted are
the tradeoffs from three reconstruction evaluation metrics: the multi-modal, self-consistency and average NRMSE across all elements. We see the highest quality
reconstruction (lowest NRMSE) occurs around the inflection point of the pareto front. b The three individual components in the cost function plotted throughout the
multi-modal electron tomography reconstruction process illustrates smooth asymptotic convergence. Convergence should be confirmed for accurate reconstruction.
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14 Consequence of Reconstructing Thick 280 nm Nanoparticles with EELS Tomography

Fig.14 a The HAADF reconstruction with a few HAADF projections from the tilt series shown on right. These projections were square rooted to visually see the TiO and
C nanoparticles. b The fused multi-modal reconstruction illustrating TiO nanoparticle decorated by C support with raw EELS maps shown on the right. Scale bar, 100 nm.

The simultaneously acquired HAADF and EELS tilt series for the specimen were collected on a Talos F200X G2 (Thermo Fisher) operated at 200 keV with a
probe semi-angle of roughly 10.5 mrad and inner collection semi-angle of 50 mrad. The HAADF projections were collected from -70◦ to +70◦ with a +2◦ angular
increment using a Model 2021 Fischione Analytical Tomography Holder. At each tilt angle, a STEM image with a 32 µs dwell time at each pixel of a lateral dimension
of 2.015 nm. Simultaneously acquired HAADF and EELS spectrums were acquired at acquired with a 10◦ angular increment with a dwell time of 2 ms receiving a total
electron dose of 4.96× 104 e/Å2 (3.48× 103, 4.61× 104 for the HAADF and EELS modality, respectively)

.
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15 Raw HAADF Tilt Series for the Au-Fe3O4 Nanoparticles

Fig.15 The 45 projection images with a tilt range from -60◦ to +60◦ (shown at the top left of each panel) were measured using ADF-STEM. The total electron dose of
the tilt series is 1.72× 104 e/Å2. Scale bar shown at the bottom right, 25 nm.
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16 Raw EELS Tilt Series for the Au-Fe3O4 Nanoparticles

Fig.16 The 9 EELS maps with a tilt range from -60◦ to +60◦ (shown at the top left of each map) were measured using EELS spectroscopy. The total electron dose of
the tilt series is 4.73× 105 e/Å2. Scale bar is shown at the bottom right, 50 nm.
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17 Raw HAADF Tilt Series for the Co3O4 - Mn3O4 Core-Shell Nanoparticles

Fig.17 The 45 projection images with a tilt range from -60◦ to +60◦ (shown at the top left of each panel) were measured using ADF-STEM. The total electron dose of
the tilt series is 1.16× 104 e/Å2. Scale bar is shown at the bottom right, 50 nm.
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18 Raw EELS Tilt Series for the Co3O4 - Mn3O4 Core-Shell Nanoparticles

Fig.18 The 9 EELS maps with a tilt range from -60◦ to +60◦ (shown at the top left of each map) were measured using EELS spectroscopy. The total electron dose of
the tilt series is 7.21× 104 e/Å2. Scale bar is shown at the bottom right, 50 nm.
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19 Orthogonal Views of Au - Fe3O4 and Co3O4 - Mn3O4 Nanoparticles

Fig.19 3D renderings of the recovered fused chemistries for the Au-Fe3O4 nanoparticles (top row) and Co3O4 - Mn3O4 nanoparticles (bottom row) with the yz and xz
plane cut-view images displayed alongside the tomograms. Scale bars, 25 nm and 50 nm respectively.
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20 Drift Correction of Spectrum Maps

Fig.20 Drift correction of the spectrum images: a survey image I(x,y), recorded before the spectrum image acquisition, is used as a reference to calculate the affine
transformation on the acquired spectrum map. These parameters are subsequently used to correct for drift in the acquired image and all associated spectroscopic
signals.
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21 SNR Dependency for Successful Fused Multi-Modal Recovery

Fig.21 a The initial corrupted chemical distributions for oxygen in the CuO-CoO synthetic dataset with increasing SNR. We see as we exceed the Rose criterion (SNR
≃ 5) internal pores and fine features are visible. b A heat map expressing the relationship between average reconstruction error and SNR for either modality (HAADF or
Chemistry) when 11 chemical maps (∆θ = +12°) and 141 HAADF projections (∆θ = +1°) are available. c SNR plot highlighting the average NRMSE as a function of
chemical SNR for reconstructions without any regularization or fusion (traditional tomography), without data-fusion (regularized tomography) and within the multi-modal
framework. We see substantial improvements in reconstruction quality as we incorporate more terms in the cost function. Most notably, data fusion converges quite
rapidly when the SNR is above 6. Visualization of the oxygen elemental reconstruction of the 2D slices from the reconstructions from each of the three curves. d
SNR plot highlighting the average NRMSE as a function of chemical SNR for traditional tomography with the SIRT reconstruction algorithm, without data-fusion with
the FISTA reconstruction algorithm and within the multi-modal framework [18, 19]. When the sampling between the chemistry and HAADF is equivalent and chemical
SNR is larger, regularized tomography outperforms mutli-modal tomography. Visualization of the cobalt and copper elemental reconstruction of the 2D slices from the
reconstructions from each of the three curves.
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22 Hyperparameter Estimation with Bayesian Optimization for the CuO-CoO Nanocubes

Fig.22 a Bayesian optimization optimizes the data fusion cost function (shown above) when provided a given number of chemical and HAADF tilts. We see the
weights between HAADF and chemical modality (λ1 and λ2 respectively) can vary depending on our certainty in either modality. When the number of tilts is low,
the corresponding λ value would decrease and vice-versa. Overall, these maps can guide future scientists to produce multi-modal reconstructions with reasonable
hyperparameter selections. b 3D visualization of the ground truth Au decorated CuO/CoO nanocubes. Scale bar, 75 nm. c Bayesian optimization parameter selection
landscape where each black dot represents one of the many attempts to find the minimum NRMSE.
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23 Hyperparameter Estimation with Bayesian Optimization for CoNiO Composite

Fig.23 a Bayesian optimization optimizes the data fusion cost function (shown above) when provided a given number of chemical and HAADF tilts. We see the
weights between HAADF and chemical modality (λ1 and λ2 respectively) can vary depending on our certainty in either modality. When the number of tilts is low,
the corresponding λ value would decrease and vice-versa. Overall, these maps can guide future scientists to produce multi-modal reconstructions with reasonable
hyperparameter selections. b 3D visualization of the ground truth CoNiO composite structure. Scale bar, 75 nm. c Bayesian optimization parameter selection landscape
where each black dot represents one of the many attempts to find the minimum NRMSE.
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24 Fusion Multi-Modal Electron Tomography Pseudo Code

Algorithm 1 Fused Multi-Modal 3D Chemical Tomography

1: Objective Function: Ψ(x) = λ1

2

∥∥Ah

∑
i(Zixi)

γ − bh
∥∥2
2
+ λ2

∑
i

(
1TAcxi − bTi log(Acxi + ε)

)
+ λTV

∑
i ∥xi∥TV

2:

3: Input: bh ∈ Rny·Nproj
HAADF×nx ▷ HAADF Tilt Series

4: Input: bc ∈ Rni·ny·Nproj
chem×nx ▷ Chemical Tilt Series

5: Output: x ∈ Rni·ny·ny×nx ▷ Reconstructed Chemical Tomogram
6:

7: Niter = 100, ε = 0.1

8: x0
i = argminx Ψ2(0) ▷ Initialize first iterate with reconstruction from raw chemical maps

9:

10: for k = 1, Niter do ▷ Main Loop
11: for s = 1, nx do ▷ Apply the Gradient for Each Slice Along the Axis Parallel to Tilt Axis
12: xk

s = xk−1
s − (λ1∇xΨ1(x

k−1
s ) + λ2∇xΨ2(x

k−1
s ))

13: end for
14: for i = 1, ni do
15: xk

i = tv_fgp_3D(xk
i , λTV ) ▷ Channel-Wise TV Minimization

16: end for
17: end for
18: return x

19:

20: Comments:
21: ∇xΨ1(x) = −γdiag

(
xγ−1

)
ΣTAT

h

(
Ah(Σxγ)− bh

)
22: Σ ∈ Rny·ny×ny·ny·ni expresses the summation operation as matrix vector multiplication.
23: ∇xi

Ψ2(xi) = AT
c

(
(Acxi − bi)⊘ (Acxi + ε)

)
24: ⊘ is element-wise division.
25: xi ∈ Rny·ny×nx is the reconstruction for element i.
26: bi ∈ Rny·Nproj

chem×nx is the chemical tilt series for element i.
27: xs ∈ Rny·ny·ni .
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Algorithm 2 3D Gradient Projection (GP) Method (DOI: 10.1109/TIP.2009.2028250)
1: Input: b ∈ Rnx×ny → 3D Volume, λ → Regularization Parameter, ng → Number of Iterations
2: Output: x∗ → Optimal Solution
3:

4: function tv_gp_3D(x, λ, ng)
5: p0

x = 0 ∈ R(m−1)×n×k, p0
y = 0 ∈ Rm×(n−1)×k, p0

z = 0 ∈ Rm×n×(k−1)

6: for k = 1, ng do ▷ Main Loop
7: (pk

x,p
k
y ,p

k
z) = PP

[
(pk−1

x ,pk−1
y ,pk−1

z ) + 1
26λL

T
(
PC [b− λL(pk−1

x ,pk−1
y ,pk−1

z )]
)]

8: end for
9: return x∗ = PC [b− λL(png

x ,png
y ,pk−1

z ))]

10: end function
11:

12: function L(p,q,r) ▷ Linear Operation
13: for i = 1, . . . , nx do
14: for j = 1, . . . , ny do
15: for k = 1, . . . , nk do
16: if i == 0 or i == nx do pi,j,k = 0

17: if j == 0 or j == ny do qi,j,k = 0

18: if k == 0 or k == nk do ri,j,k = 0

19: L(p, q, r)i,j,k = pi,j,k + qi,j,k + ri,j,k − pi−1,j,k − qi,j−1,k − ri,j,k−1

20: end for
21: end for
22: end for
23: return L(p, q, r)
24: end function
25:

26: function LT (x)
27: for i = 1, . . . , nx − 1 do
28: for j = 1, . . . , ny − 1 do
29: for k = 1, . . . , nz − 1 do
30: pi,j = xi,j − xi+1,j,k

31: qi,j = xi,j − xi,j+1,k

32: ri,j = xi,j − xi,j,k+1

33: end for
34: end for
35: end for
36: return (p, q, r)

37: end function
38:
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Algorithm 3 Projection and Proximal Functions for the 3D Gradient Projection Method (DOI: 10.1109/TIP.2009.2028250)
1: function PC(x) ▷ Orthogonal Projection Operator Onto Convex Set (Non-negativity)
2: returnmax{0,x}
3: end function
4:

5: function PP (p, q, r) ▷ Projection Operator for Isotropic TV Norm
6: for i = 1, . . . , nx − 1 do
7: for j = 1, . . . , ny − 1 do
8: for k = 1, . . . , nz − 1 do
9: denom =

√
p2i,j,k + q2i,j,k + r2i,j,k

10: pi,j,k =
pi,j,k

{max{1,denom}
11: qi,j,k =

qi,j,k
max{1,denom}

12: ri,j,k =
ri,j,k

max{1,denom}
13: end for
14: end for
15: end for
16: return (p, q, r)

17: end function
18:

19: function PP (p, q, r) ▷ Projection Operator for Anisotropic TV Norm
20: for i = 1, . . . , nx − 1 do
21: for j = 1, . . . , ny − 1 do
22: for k = 1, . . . , nz − 1 do
23: pi,j,k =

pi,j,k

max{1,|pi,j,k|}
24: qi,j,k =

qi,j,k
max{1,|qi,j,k|}

25: ri,j,k =
ri,j,k

max{1,|ri,j,k|}
26: end for
27: end for
28: end for
29: return (p, q, r)

30: end function
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