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Figure S1. Fabrication of Speck. Top: Single SNN core layout with dimision of 1765µm × 1000µm, contains 3 memory
block for kernel, neuron and bias, and multiple functional circuit designs. Bottom Left: Speck chip layout with die size of
6100µm × 4900µm, comprises with DVS pixel array, multiple interfaces and 9 SNN cores. Bottom right: (top) Speck chip
packaging with CQFP80; (bottom): Speck Chip On Board (COB) packaging as optical module.
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Figure S2. Spatio-temporal invariance of SNNs. a, SNNs exploit the same set of parameters for every location at each
timestep. This fundamental assumption of SNN can be referred to by spatio-temporal invariance [1,2,3]. b, Visualization of
spiking response features (averaging the output spiking tensor SSSt,n over all samples, four dimensions: [T=36, C=64, H=32,
W=32]) in vanilla SNN, where t = 3,13,23,33 and n = 1 (i.e., first layer). We depict all 64 channels at each timestep. Each
pixel in a channel represents a neuron’s spiking firing rate over the entire dataset. For a single channel, the redder the pixel, the
higher the spiking firing rate; the bluer the pixel, the closer the spiking firing rate is to 0. We can see that the parameter sharing
in the temporal dimension leads to the closeness of the extracted spiking patterns at different timesteps. For example, the
positions of the noise features (red channel) are basically the same at different timesteps. The main difference is that as the
timestep increases, the human gait gradually moves to the right. In this way, it’s easy to understand why the spiking firing rate
of SNN at different timesteps is very close. c, Spiking features of the same channel at different timesteps. We can observe the
impact of parameter sharing on feature extraction. For example, the extracted feature maps on the 11th and 26th channels at all
timesteps are basically noise features.
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Figure S3. Impact of dynamic imbalance on power consumption. When deploying the vanilla SNN on Speck, the dynamic
imbalance makes the power curve almost a straight line since the Network Spiking Firing Rate (NSFR) varies little at different
moments. In contrast, deploying dynamic SNN on Speck, the power varies greatly at different moments, and the total energy
consumption is significantly reduced. Specifically, Speck provides a real-time power (RAM and Logic power) monitoring
module that generates data every ms. Each input sample has a duration of 540ms. To make observation easier, we average the
blurred lines on the background every 20ms to obtain a clear solid line.
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Asynchronous event-driven convolution in Speck: 
event-by-event distributed processing
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Figure S4. Asynchronous event-driven convolution in Speck. Speck processes the input event stream event-by-event,
where the state of the entire system changes upon the input of a single event, thus output latency is low. Whenever an event
(spike with address information) arrives at an SNN core with its positional address information, the corresponding kernel value
and destination neuron position are obtained by address searching, the destination neuron states are then asynchronously
updated according to the synaptic operation. Furthermore, asynchronous convolution is independent to the arrival of other input
events and cores, the operation can be efficiently parallel distributed for multiple events at different positions.
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Table S1. Comparison of the Speck chip with existing neuromorphic chips. Speck is a sensing-computing neuromorphic
SoC, which is defined as an efficient medium-scale edge computing hardware that can meet the needs of a variety of edge
visual scenarios in terms of high accuracy, low power, and low latency. Unlike other neuromorphic chips, Speck integrates a
DVS with µs level temporal resolution to perceive visual information sparsely. Benefiting from fully asynchronous logic design,
Speck has low rest power consumption, thus realizing the always-on profile in edge computing scenes. In contrast, classic
neuromorphic chips, such as TrueNorth and Loihi, generally use a partially asynchronous design, i.e. globally asynchronous
locally synchronous, or globally synchronous locally asynchronous. Compared to the earlier asynchronous neuromorphic chip
Neurogrid, which used mixed-analog-digital circuits, Speck exploits a fully asynchronous digital design method that is suitable
for the design of large-scale SNNs. In addition, the unique design of asynchronous convolution in Speck makes its running
power consumption very low. It consumes only 0.42-15mW in typical vision application scenarios, normally only few mWs for
most classical scenario applications (Normalized to a 65-nm CMOS node, and optionally to a 1.2-V supply voltage.)

Platform BrainScales SpiNNaker Neurogrid TrueNorth Darwin Loihi Loihi-2 Tianjic Speck

Model SNN SNN SNN SNN SNN SNN SNN
ANN/

SNN
SNN

Power 1300mW
1000mW

@180MHz
150mW 63-300mW

58.8mW

@1.8V+70MHz
74mW N. A.

950mW@1.2V

400mW@0.9V

0.42-15mW

@1.2V

Clock
Partially

Async

Partially

Async
Async

Partially

Async
Sync

Partially

Async

Partially

Async
Sync Async

Implementation

Technique

Mixed-

Analog-Digital
Digital

Mixed-

Analog-Digital
Digital Digital Digital Digital Digital Digital

Vision

Sensor
No No No No No No No No Yes

Technology 180nm 130nm 180nm 28nm 180nm 14nm 7nm 28nm 65nm

Area (mm2) 50 102 170 430 25 60 31 14.44 30

Number of

Neuron
512 18k 65k 1M 2048 131k 1M 40k 328k

Number of

Synapses
128k 18M 100M 256M 4M 128M

120M

(> for CNN)
9.75M

279k

(up to 6.16G for CNN)

Normalized Neuron Density

(Neu/mm2)
79 706 2.93k 431 628 1011 374 514 11k

Normalized Synaptic

Density

(Syn/mm2)

20k 705k 4.51M 110k 1.23M 99k 45k 125k 9.3k

Normalized Power

(process only)

(mW/mm2)

3600 2000 415 27 163 16 - 172 0.42

Normalized Power

(process & VDD)

(mW/mm2)

- 2000 2596 11 366 6.2 - 97 0.42
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Figure S5. The Speck [4] architecture (a). The left area indicates both the 128×128 event-based vision sensor with its 2D
asynchronous readout and the sensor event pre-processing pipeline. The middle area indicates the NoC responsible for all the
event routing between all the components. The area indicated on the right incorporates all the nine SNN cores that handle one
convolution and one pooling layer each. The SNN cores can optionally be operated as fully connected SNN layers with some
restrictions. The small bottom area indicates the decision readout logic. This core enables interfacing to simple synchronous
periphery. The convolution core [5] architecture (b). An event {c,x,y} enters the convolution core pipeline, with c as the
incoming channel/feature, x as the horizontal coordinate and y as the vertical coordinate. After padding, the event is now
expanded to {c,xp,yp}. The Kernel Anchor determines the anchor in both kernel and neuron space {c,x0,y0,xk

0,y
k
0}. With

x0,y0 being the anchor in the neuron space and xk
0,y

k
0 for the kernel space. The kernel address sweep now calculates the kernel

expansion in x, y and f the output channel/features to Z ∗{(c, f ,xk,yk),( f ,x,y)}, with Z being the synaptic fan-out. The
parallel address compression packs the storage addresses compact to avoid unused storage gaps for the neuron
( f ,x,y) => ncomp and kernel (c, f ,xk,yk) => kcomp. Depending on the core, the kernel memory is split into one or multiple
memory blocks for parallel access. The kernel value is read from the storage address kcomp, {w,ncomp} with w being the signed
8-bit synaptic weight. On a simulation tick, the bias/leak sweep will generate a pair of {bcomp,ncomp} for every active neuron,
the address bcomp gets read in the bias/leak memory and forwarded as {w,ncomp} with the kernel events to the neuron.
Depending on the core, the neuron unit is split into one or multiple parallel compute units. The address space decompression
turns the {ncomp} back to { f ,x,y}. The sum pooling operates on the same event structure { f ,xs,ys}. And the Channel shift and
routing prepare it for routing S∗{dx, fs,xs,ys} with S being the source fan-out of 1 or 2, dx corresponding to the destination id
and fs being the arithmetically shifted destination channel. The neuron compute unit [5] (c). It uses in-memory-controller
compute to model the LIF neuron model. The flow control at the input ensures that the controller always has a bubble and is
therefore deadlock-free. The signed 16-bit neuron state variable gets read, modified by the signed synaptic or bias input,
compared and written back. In case a threshold condition is met, the {ncomp} is sent out to indicate the corresponding neuron
spiked. The above-threshold condition can both trigger a subtraction operation or a reset to a fixed value of the corresponding
neuron state variable. The state variable cannot cross a configured lower bound and will be clamped to that value in case any
operation brings the variable below it.
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Figure S6. Unit power measurement based on the linear relationship between SynOps/s and power. Synaptic Operations
(SynOp) is the basic unit of energy consumption assessment in Speck, which is defined as all the steps involved in the life-cycle
of a spike arriving at a layer until it updates the neuron states and generates a spike if applied. A SynOp includes the following
steps: logic → Kernel RAM → logic → Neuron RAM Read → Neuron RAM Write → Logic. Thus, whenever a spike arrives
at a core, the power consumption can be roughly divided into two parts: RAM power and Logic power. We send random events
with fixed firing rates to a specific layer to trigger computations, and measure the RAM and Logic power of the chip. Then, we
get a curve of power-SynOps, and the results are shown in the figure. The intercept and slope of the fitted straight line represent
resting power and energy consumption of a single SynOp, respectively.

Resting Power (mW) Running Power (pJ/SynOp)

Logic 0.36 444 ± 2.7

RAM 0.06 177 ± 1.6

Table S2. Power consumption of Speck with 9 SNN cores. The processor resting power is about 0.42mW. The data in this
table are obtained from Fig. S6.
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Figure S7. DVS power consumption measurement based on the linear relationship between event rate and power.
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Figure S8. Speck’s complete software toolchain for efficient neuromorphic application development. Data management:
The Tonic software can help the user efficiently works on the asynchronous event data. Tonic caters to both the event-based
world that works directly with events or time surfaces as well as to more conventional frameworks which might convert events
into dense representations in one way or another. Simulation: Sinabs is a PyTorch-based SNN development framework, which
enables the design, training, and evaluation of SNNs as well as simulating the hardware-compatible models. Host management:
Samna is developed towards efficiency and user friendly. A set of Python APIs is available with the core running in C++, and it
is possible to work with neuromorphic devices in a professional and elegant manner. Samna also features an event stream filter
system that allows real-time, multi-branch processing of the event stream coming in or out from the device. With an integration
of a just-in-time compiler in Samna, the flexibility of this filter system has been taken to an even higher dimension, which
supports adding users’ defined filter functions at run-time to meet the requirements of different scenarios.

sinabs
docs: https://sinabs.ai

github: https://github.com/synsense/sinab
samna docs: https://synsense-sys-int.gitlab.io/samna/

Tonic
docs: https://tonic.readthedocs.io/en/latest/?badge=latet

github: https://github.com/synsense/sinab

Table S3. Open source URLs related to the Speck software toolchain.
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Figure S9. The comparison between Speck tools and existing general AI development tools. The Speck tools comprise of
softwares that can completely support the hardware-dedicated SNN design and testing. This includes data management tools,
network design and training tools, simulation tools, and deployment tools. Compared to existing AI tools, Speck aims to
provide an efficient way of designing and simulating the network working in a fully streaming, event-driven fashion.
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Figure S10. Complete smart home solution based on Speck. Some typical application examples of the Speck in the smart
home are shown in the figure, e.g., front face detection, gesture recognition, and proximity detection can be used to trigger
certain electronic furniture like lamps and curtains. Moreover, some safety monitoring applications, such as presence detection
and fall detection, can be used to send notices to households. We have provided some movies of the Speck being used in typical
application scenarios as supplementary material.
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Figure S11. Demonstration example of a Speck System communicating with an external Micro-controller Unit (MCU)
device. Speck can be configured to perform bidirectional communication with external devices via multiple interfaces.
SLOW-CLK: external slow clock signal used to drive readout. CLK: External clock signal for data transmission. RESET: reset
signal. FLASH: external memory used to preserve the chip configuration. READOUT: readout output interrupt signal. SPI
SLAVE: used for data transmission.
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Hyper-parameter Gesture/Gait-day/Gait-night
Temporal resolution dt 15
Simulation timestep T 36

Spatial resolution 32×32
Spike firing threshold 0.3

Temporal mask ratio of dynamic SNN 0.5
Batchsize 64
Epochs 100

Weight decay 1e-4
Learning rate 5e-4

Learning algorithm STBP
Loss function CrossEntropyLoss

Optimizer Adam

Table S4. Training Hyper-parameter setting.
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Table S5. Comparison with prior works. The numbers in brackets denote the performance improvement over the
re-implementation baselines. Throughout all ablation experiments, the only variable was whether the proposed module was
plugged into the vanilla SNNs. Considering the requirement of network scale during hardware deployment, on Gesture,
Gait-day, and Gait-night, we limit the size of the baseline model to focus on evaluating the gain of the proposed dynamic
framework on lightweight models.

Dataset Methods Input time Network Average Spiking Acc.
window (ms) Firing Rate (NASFR) (%)

DVS128 Gesture [6]

Recurrent CNN [6] 120 - 92.6
Slayer [10] 1500 - 93.6

STBP-tdBN [11] 1200 0.15 96.9
SEW-ResNet [12] 6000 0.05 97.9

Spiking DS-ResNet [13] - - 97.3
LIF-SNN [14] 540 0.18 89.9
+ AR (Ours) 0.05 95.1 (+5.2)

LIF-SNN [15] 6000 0.07 94.8
+ AR (Ours) 0.04 97.7 (+2.9)

DVS128 Gait-day [7]

EV-Gait [7] 4400 - 89.9
EV-3DGraph [8] 4400 - 94.9
EV-3DGraph [8] 200 - 38.5
LIF-SNN [14] 540 0.23 86.7
+ AR (Ours) 0.06 90.8 (+4.1)

LIF-SNN [15] 4400 0.05 89.9
+ AR (Ours) 0.03 92.6 (+2.7)

DVS128 Gait-night [8]
EV-3DGraph [8] 5500 - 96.0

LIF-SNN [14] 540 0.18 95.7
+ AR (Ours) 0.14 98.8 (+3.1)

HAR-DVS [9]

Event-based Transformer [9]
T = 8

- 51.2
ResNet-18 [9] - 49.2

X3D [9] - 45.8
Res-SNN-18 [12]

T = 8 0.19 45.8
+ AR (Ours) 0.17 46.7 (+ 0.9)
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Figure S12. Synchronous training and asynchronous deployment. To assure the accuracy of event-based vision tasks,
when using the SNN algorithm, the event stream is generally aggregated into an event-based frame sequence, and then sent to
the network for training. As shown in the left part of the figure, after the event stream is converted into a frame sequence, the
amount of information contained in each frame input increases, which helps to improve task accuracy. However, after the
model trained on the GPU is deployed on the neuromorphic chip, the input received is one event after another. As shown in the
right part of the figure, the input information actually received by the neuromorphic chip is sparse. This kind of synchronous
training on the GPU and asynchronous deployment on the neuromorphic chip will inevitably reduce the task accuracy due to
the difference in input data.

S16/S19



a

Step 1: Capture global information Step 2: Model long-range dependencies

…

Attention-based Refine (AR policy)

Input feature maps

𝑿𝑛 ∈ ℝ𝑇×𝑐𝑛×ℎ𝑛×𝑤𝑛

MaxPool
ℎ𝑛,𝑤𝑛,𝑐𝑛

𝑿𝑛 ∈ ℝ 𝑇×1×1×1

AvgPool
ℎ𝑛,𝑤𝑛,𝑐𝑛

𝑿𝑛 ∈ ℝ 𝑇×1×1×1

MaxPool
ℎ𝑛,𝑤𝑛

𝑋𝑡,𝑛 ∈ ℝ 𝑐𝑛×1×1

AvgPool
ℎ𝑛 ,𝑤𝑛

𝑋𝑡,𝑛 ∈ ℝ 𝑐𝑛×1×1

Input feature maps

𝑿𝑛 ∈ ℝ𝑐𝑛×ℎ𝑛×𝑤𝑛

Temporal-wise

Channel-wise

FC

FC

Temporal-wise 
attention

Channel-wise 
attention

ℝ 𝑇×1×1×1

ℝ 𝑐𝑛×1×1

b Attention-based Mask (AM policy)

Winner-take-all

Temporal masking ratio
𝛼 = 0.5Temporal-wise attention

ℝ 𝑇×1×1×1

Temporal-wise 
attention

ℝ 𝑇×1×1×1

Winner-take-all

Channel masking ratio
𝛽 = 0.5Channel-wise attention

ℝ 𝑐𝑛×1×1

Channel-wise 
attention

ℝ 𝑐𝑛×1×1

Step 3: Masking information

c Feature map optimization

… …

Strategic combination

Attention 
dimension

Attention 
location

Masking 
design

…

Figure S13. Attention-based dynamic module design. a, Step1, capture global information. Step2, model long-range
dependencies. b, masking information. c, Feature map optimization. Note, the proposed dynamic framework contains a huge
design space in each step [16,17]. In practice, we can make special designs according to the needs of application scenarios in
terms of accuracy, parameter, and computation workload, etc.
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