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Supplementary Note 1: Calculation of electron’s mean free path

The Fermi surface of the electron doped KTO [1] comprises of three ellipsoids of revolution centered at Γ point
(see Supplementary Fig. 1a) with major axis kF,max and the minor axis kF,min transverse to it. In the presence of
magnetic field along [001] crystallographic axis, electrons traverse around the extremal orbits in the momentum
space as shown in the Supplementary Fig. 1b, leading to the observation of SdH oscillations in magnetoresistance.
Please refer to our earlier work [2] for SdH oscillation data on the same sample which is being investigated in the
current study. These oscillations are periodic in 1/B whose frequency F SdH is related to the area of extremal orbits
Aext as given below [3]

Supplementary Figure 1: a. Ellipsoidal Fermi surfaces of electron doped KTO. Here kF,max was taken to be
1.541 times kF,min for plotting. b. Cross section of the Fermi surface with the plane kZ=0

FSdH = ℏAext/2πe (1)

The extremal orbits corresponding to the two ellipsoids directed along kx and ky axis are ellipses with area
equal to πkF,minkF,max, whereas the extremal orbit corresponding to the ellipsoid along the kz direction is circu-
lar with an area πk2F,min (see Supplementary Fig. 1b). Further, from the literature it is known that [4, 1]

kF,max/kF,min = 1.541 (2)

for electron doped KTO, which would further imply that there are more electrons around elliptical orbit than
those orbiting around circular orbit [5]. From above fact, we assume that the main frequency of SdH oscillation
comes from electrons orbiting around the elliptical orbit and therefore Aext in Supplementary Eq. (1) is taken to
be the area of the ellipse πkF,minkF,max. From the SdH analysis, F SdH for our oxygen deficient KTO is found
to be 12.8 Tesla [2]. Putting this value in Supplementary Eq. (1) and using the Supplementary Eq. (2), we first
calculate kF,max and kF,min individually and then 3D carrier density is determined. For this we note that the total
volume occupied by three ellipsoid is Vk = 3× (4π/3)k2F,minkF,max from which the carrier concentration n
can be calculated as [5]

n = (k2F,minkF,max)/π
2 (3)

Putting the value of kF,max and kF,min in the above Supplementary Eq. (3), the 3D carrier density n for the
oxygen deficient KTO is found to be 5.7×1017 cm−3. Having obtained the 3D carrier density, we next compute
the temperature dependent electron’s mean free path following the well established approach described in the
papers [6, 7].

In the Drude-Boltzmann picture, 3 dimensional conductivity (σ) of a metal with spherical Fermi surface is
given by

σ = ne2τ/m∗ = e2(kF )
2le/3π

2ℏ (4)

where n is the 3D carrier density given by n=kF 3/3π2 (kF is the Fermi wavevector), and τ is scattering time
constant given by τ=lem∗/ℏkF where m∗ is the effective mass of electrons and le is the electron’s mean free
path [8]. Rearranging the Supplementary Eq. (4), the expression for le can be written as

2



le = 3π2ℏ/ρ(kF )2e2 (5)

where ρ=1/σ is the resistivity. Since all the measurements in the present study are performed in Van der Pauw
geometry, the temperature dependent ρ is obtained from the formula

ρ = (π/ln2)Rt (6)

where R is the measured temperature dependent resistance and t is the thickness of the conducting region. In the
present case, t is calculated by equating the 3D carrier density obtained from the SdH analysis with the sheet carrier
density nS obtained from the Hall measurement divided by the thickness [n=nS /t, see the reference [3]]. Apart
from the ρ, kF is the another input parameter in Supplementary Eq. (5) for calculating le. Since the Supplementary
Eq. (5) holds only for the spherical Fermi surface, we make the following approximation. Since the Fermi surface
of KTO is only moderately anisotropic at such dilute carrier density, for simplification, the value of kF has been
calculated by effectively mapping the ellipsoidal Fermi surface onto a spherical Fermi surface wherein we equate
the total volume of the three ellipsoids with a single spherical Fermi surface of radius kF . The value of kF is then
estimated from the relation kF =(3π2n)1/3 [8]. Once we obtain kF , the temperature dependent ρ obtained from
the Supplementary Eq. (6) along with kF is plugged in the Supplementary Eq. (5) and temperature dependent
electron’s mean free path is calculated.

le calculated using this approach for the oxygen deficient KTO has been shown by a blue curve in the Fig.
1d of the main text. As evident from the plot, above ∼130 K, le becomes shorter than the inverse of kF (kF le
> 1) and the system enters into a bad metal phase. A further correction to the calculated le is required above the
Fermion degeneracy temperature above which the thermal de Broglie wavelength (given by Λ=h/

√
2πm∗kBT )

becomes larger than the inter electron separation given by n−1/3. Above this temperature, electrons become non-
degenerate and the modified le is given by l′e∼ le n

−1/3/Λ [6, 7]. For calculation of l′e, one requires an estimation
of m∗. In the present work we estimate the m∗ by analyzing the temperature dependent SdH oscillations and is
found to be 0.56 me (please refer to the section B of the supplemental material of our earlier paper [2] for more
details). The orange curve in Fig. 1d of the main text shows the calculated le for the non-degenerate case. As
evident, this exercise only shifts the curve to a little higher temperature and crossover to bad metal phase occurs
around 145 K, however, the conclusions remain the same. In the current work, observation of glassy dynamics is
inherently constrained to the temperatures which is much lower than the crossover temperature to bad metal phase
and hence for all practical purposes our electron doped KTO system is in good metal regime with well defined
scattering.
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Supplementary Note 2: Sheet resistance vs temperature plot.

As depicted in Fig. 2b of the main text, shining light above 150 K does not have any noticeable effect. This
observation is further supported by the plot shown in Supplementary Fig. 2, where we compare the RS vs T
curve obtained in the dark (taken in the cooling run) with the measurement conducted during the heating run after
exposing the sample to green light (power= 145 µ Watt) for 30 minutes at 10 K. It is evident from the plot that the
two curves converge around 150 K, indicating a lack of any significant photo-doping above 150 K.

 
 

 
 
 

Supplementary Figure 2: Temperature dependent sheet resistance (RS) of oxygen-deficient KTaO3 sample
(n=5.7×1017 cm−3) taken in a cooling run in dark (sky blue curve). The slate-gray color curve shows data
taken in a heating run after shining light for 30 minutes at 10 K.
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Supplementary Note 3: Stretched exponential behavior of resistance relaxation in the light off stage.

The panels a-f in the Supplementary Fig. 3 show the temporal evolution of resistance before and after turning
off the light along with the fitting in light off stage with an stretched exponential function (exp(-(t/τ )β) where
τ is the relaxation time and β (stretching exponent) < 1). As evident, this function provides an excellent fit to
experimental data at range of temperatures.

   

   

Supplementary Figure 3: Fitting of resistance relaxation in the light off stage with stretched exponential function
at several fixed temperatures.
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Supplementary Note 4: Power law behavior of persistence photo-resistance relaxation time (τ ).

Supplementary Fig. 4 shows log-log plot of relaxation time (τ ) as a function of temperature. As evident, the
plot looks linear in wide range of temperatures belo 50 K signifying a power law dependence (τ ∼ T−α). The
value of alpha obtained from fitting is found to be 2.8. We also emphasize that such power-law divergence of
relaxation time has been also discussed theoretically in context of α relaxation in glasses [9].

Supplementary Figure 4: Power law temperature dependence of relaxation time (τ ).
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Supplementary Note 5: Experiment with red light.

In the main text, we have presented all the measurements conducted using the green light. In this section, we
provide an additional set of data obtained in three consecutive cycles (see Supplementary Fig. 5a) using a red light
of wavelength λ = 650 nm, power = 60 µ Watt). Supplementary Fig. 5b and 5c shows the temperature evolution
of β and τ respectively obtained from the fitting. As evident, while the enhancement in τ below 50 K is consistent
with results with green light, β slightly decreases from its peak value at lower temperatures. However, this is
within the error bar and the results qualitatively align with the findings from the measurements using green light
and suggest that the behavior observed is not specific to a particular wavelength of light.

Supplementary Figure 5: a. Temporal evolution of resistance under red light illumination (λ = 650 nm, power
= 60 µ watt) for 30 minutes measured at several fixed temperatures. After 30 minutes, resistance relaxation was
observed in dark for the next one hour. This measurement was repeated for 3 consecutive cycles. For comparative
analysis, change in resistance has been converted into relative percentage change (∆R/R0)×100. b. Temperature
dependence of stretching exponent (β) obtained from fitting of resistance relaxation in light off stage with a
stretched exponential function for all three cycles. c. Temperature dependence of corresponding relaxation time
(τ ) for all three cycles.
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Supplementary Note 6: Long-time relaxation of persistence photo-resistance.

In Fig. 2c of the main text and Supplementary Fig. 5b, the value of the stretching exponent was determined
by fitting the resistance relaxation during the off-stage, which lasted for 1.5 hours. To ensure that the resistance
relaxation was substantial enough to yield a reliable fitting, we conducted an additional measurement where the
resistance relaxation was observed for an entire day (see Supplementary Fig. 6). It is important to emphasize that
even when the data is fitted for an extended period of up to 24 hours, the same value of β = 0.5 is obtained.

Supplementary Figure 6: Temporal evolution of resistance under green light illumination (λ = 527 nm, power =
145 µ Watt) for 30 minutes measured at 15 K. After 30 minutes, resistance relaxation was observed in dark for the
next 24 hours. For comparative analysis, change in resistance has been converted into relative percentage change
(∆R/R0)×100.
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Supplementary Note 7: Deviation of persistence photo-resistance relaxation time (τ ) from activated behav-
ior at low temperature.

In the large lattice relaxation (LLR) model [10], the recombination of electron-hole pairs occurs through the
thermal excitation of electrons over an energy barrier. This process is an activated process of the Arrhenius type.
To validate this model, we have plotted ln τ against 1000/T in Supplementary Fig. 7. It is evident from the plot
that the data does not exhibit the expected linear behavior at low temperatures signifying that the LLR model can
not account for our experimental observation of glassy dynamics below 35 K.

Supplementary Figure 7: Arrhenius plot of photo-resistance relaxation time (τ ). As evident, a clear deviation
from activation behavior is observed below 35 K.
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Supplementary Note 8: Dielectric loss in pristine KTaO3.

In its ideal form, KTaO3 is perfectly centrosymmetric and hence, should not possess any electric dipole mo-
ment. However, the presence of impurities and disorder can disrupt the crystal’s inversion symmetry, leading to
the development of permanent electric dipoles [11, 12, 13, 14, 15, 16]. In highly polarizable host such as KTaO3,
these dipoles polarize the surrounding lattice leading to formation of polar nano regions (PNRs) [17]. Under an
applied AC electric field, these PNRs act as a source of dielectric losses, which can be observed as a peak in the
loss tangent (tan δ = ϵ

′′
/ϵ

′
, where ϵ

′
and ϵ

′′
are the real and imaginary parts of the complex dielectric function,

respectively).
Our temperature-dependent measurement of dielectric function indeed reveals the presence of PNRs even in

our pristine KTaO3 single crystal (see inset of Supplementary Fig. 8). Further, frequency-dependent measurements
reveal that the dielectric loss is an activated process emphasizing that the PNRs in pristine crystals are very dilute
and independent.

Supplementary Figure 8: Arrhenius plot of dielectric relaxation frequency (f ) for pristine KTaO3. Inset shows
the dielectric loss tangent (tan δ) around 54 K at f = 50 kHz.
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Supplementary Note 9. Correspondence between the appearance of polar nano regions and photo-doping
effect.

In order to study the correlation between PNRs and photo-doping effect, we have compared the temperature-
dependent total SHG intensity with the fraction of resistance (in terms of relative percentage change (∆R/R0)×100)
which has not been recovered at the end of 1.5 hours after turning off the light. We call this quantity the persistence
photo resistance denoted with the symbol δ. See the inset of the bottom panel of Supplementary Fig. 9 for the
definition of δ. As evident, the appearance of finite signal in SHG exactly coincides with the δ, strongly signifying
the direct role of PNRs behind the effective electron-hole separation of our samples.

Supplementary Figure 9: (upper panel) Temperature-dependent SHG intensity measured on oxygen deficient
KTaO3 sample. (lower panel) Temperature dependence of persistence photo resistance (δ) in terms of relative
percentage change at the end of 1.5 hours after turning off the light (see the inset of the lower panel for the
definition of δ).
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Supplementary Note 10: Raman measurement on a metallic oxygen deficient KTO.

Supplementary Fig. 10 shows the Raman spectra for one of the metallic oxygen-deficient KTO sample at
room temperature. As evident, the soft polar mode (TO1, marked by a red arrow) is preserved even in the metallic
sample [18, 19, 20, 21, 22]. This result is consistent with our SHG measurement.

Supplementary Figure 10: Raman spectra of a metallic oxygen deficient KTO sample at room temperature.

12



Supplementary Note 11: Presence of potassium vacancy.

To investigate the presence of potassium vacancy in our oxygen-deficient KTaO3 sample, K 2p core levels
were collected at the Hard X-ray Photoelectron Spectroscopy (HAXPES) beamline (P22) at PETRA III, DESY.
Supplementary Fig. 11a shows one representative experimental data (recorded with an incident photon energy of
5800 eV at room temperature) along with its fitting with the convolution of Lorentzian and Gaussian functions. It
is evident from the figure that, in addition to the K 2p 3/2 peak at 292.65 eV arising from the lattice, there is an
extra peak appearing at 293.1 eV. It has been previously shown that the presence of an additional peak at a higher
binding energy is a characteristic feature of a potassium vacancy in the system [23]. In order to further understand
the potassium vacancy profile in our sample, we have carried out measurements with varying photon energy from
3400 eV to 5800 eV (see Table I for the values of mean free path (MFP) and mean escape depth (MED)). As
evident from Supplementary Fig. 11b, there are hardly any significant alterations in the line shape of the spectra
as the photon energy was increased. This observation indicates that the potassium vacancy profile is homogeneous
throughout the bulk of the sample.

Supplementary Figure 11: a Deconvolution of K 2p core level spectrum (for oxygen-deficient KTaO3 sample)
by using the convolution of Lorentzian and Gaussian function. This data was recorded at room temperature with
photon energy hν = 5800 eV. Yellow-filled circles denote the experimental data and a solid black line denotes the
simulated spectra. Curves filled with gray and sky blue color correspond to the lattice potassium and potassium
vacancy respectively. The dashed black line denotes the Shirley background and the red-filled curve corresponds
to the difference between the experimental data and simulated spectra. b K 2p core level spectra recorded with
varying incident photon energy. All the spectra were recorded at room temperature.

Photon energy (eV) MFP (nm) MED (nm)
3400 5 15
4600 6.4 19.2
5800 7.7 23.1
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Supplementary Table 1: Table of mean free path (MFP) and mean escape depth (MED) with increasing photo
n energy. MFP wascalculated from the formula m(K.E.)γ where K.E. is the kinetic energy of the ejected          
electrons and the values ofm and γ were taken to be 0.12 and 0.75 respectively [24]. Further, MED was roughly 
assumed to be 3 times MFPwhich would roughly account for 95 percent of the total collected intensity. 



Supplementary Note 12: Berry phase calculations.
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Supplementary Figure 12: a. The relaxed structure of KTaO3 with Ta off-centering along the (100) and (110)
direction around K vacancy (antisite like Ta defect) for a supercell of size 2×2×2. b. Band structure plot for
(110) direction antisite like Ta defect calculated using density functional theory within PBE-GGA (shown in red
solid lines) and Wannier interpolated bands (shown in black dotted lines). The blue solid line is the Fermi energy.
c. Plot of total Berry curvature in the plane kz = 0 (in log scale) for the (110) antisitelike Ta defect structure
calculated on a 2D k-mesh of sample-size 41× 41 (top panel) and 101× 101 (bottom panel).

We have investigated the probable mechanism for the realization of PNRs theoretically using noncollinear
density functional (DFT) theory. Antisite defect in perovskite materials like SrTiO3 and complex perovskite oxides
(Ca, Sr)3Mn2O7 is known for causing macroscopic polarization in the system [25, 26]. Due to the similarities in
the electronic properties of SrTiO3 and KTaO3, we expect KTaO3 to develop polarization due to antsite defects.
We have created Ta antisite defect in a supercell of size 2×2×2 conventional unit cell. In our calculations, the Ta
off-centering is considered along (100) and (110) directions. The relaxed structures are shown in Supplementary
Fig. 12a. In Supplementary Fig. 12b we have shown the band structure of the system with Ta antisite defect
along (110). The red solid lines are the bands calculated using DFT within PBE-GGA[27]. In order to calculate
the macroscopic polarization in the system, we use the modern theory of polarization. The change in electronic
contribution to the polarization ∆P is defined as [28, 29]

∆P = − e

2π
ϕ (7)

where ϕ is the Berry phase, which is the integral of the Berry curvature over a surface S bounded by a closed path
in k−space, i.e., [30]

ϕ =

∫
S

Ω(k)dk (8)

One can calculate Berry curvature using Bloch states un(k) as

Ωαβ(k) =
∑
n

fn(k)Ωn,αβ(k) =
∑
n

−2fn(k)Im
〈
∂un(k)

∂kα

∣∣∣∣∂un(k)

∂kβ

〉
(9)

where α, β are the cartesian indices and fn(k) is the occupation number of the state n. Ta antisite defects in
KTaO3 have a partially occupied band. As it well known, taking derivatives of un(k) in a finite-difference scheme
in the presence of band crossing and avoided crossing becomes difficult. We followed the procedure described
by X. Wang et. al. [31] for the calculation of Berry curvature using Wannier functions as implemented in the
Wannier90 code [32]. In Supplementary Fig. 12b, we have shown the Wannier interpolated bands in black dotted
lines. From the figure, it is clear that both the set of bands calculated using DFT and Wannier interpolation match
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very well near the Fermi level. In Supplementary Fig. 12c, we have shown the total Berry curvature for the antisite
Ta defect along (110) in the plane kz = 0 calculated using 2D k-mesh of size 41× 41 (top panel) and 101× 101
(bottom panel). While there are small quantitative differences, the qualitative features in both the panels remain
the same.
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Supplementary Note 13: Toy model of complex inter-band electronic relaxation mediated by a glassy bath.

As discussed in the main text, we consider the following model of coupled electron (el)-glass (gl) system.

H = Hel +Hgl +Hel−gl (10a)

Hel = −
Nc∑

i,j=1

tijc
†
i cj − ε0

Nf∑
α=1

f†
αfα, (ε0 > 0) (10b)

Hgl =

Ng∑
µ=1

p2µ
2m

+ U({xµ}) (10c)

Hel−gl =
∑
iαµ

(Viαµc
†
ifα + h.c.)xµ (10d)

The electronic part consists of a conduction band and a flat impurity band at energy −ε0. We consider three
different energy dispersions for the conduction band, corresponding to different lattices and hopping amplitudes
tij , namely – (1) a flat band or δ function density of states (DOS) with bandwidth W = 0, (2) a semicircular DOS,
g(ϵ) = (1/2π)

√
W 2 − ω2θ(W −|ω|) with band width W [θ(x) is heaviside step function], e.g., corresponding to

a Bethe lattice, and (3) DOS corresponding to three-dimensional (3d) simple cubic lattice with nearest-neighbour
hopping W/12. The band gap between the conduction band minimum and the impurity band is ∆ = ε0 −W/2.
We set the chemical potential at the center of the conduction band, i.e., µ = 0, as appropriate for a metallic system
(see Fig. 5(a) of main text.

The Hamiltonian Hgl for a set of particles with positions {xµ}, and their canonically conjugate momenta pµ
([xµ, pν ] = ıδµν with ℏ = 1) models the dynamics of a local glassy background. The exact form of the inter-
particle interaction U({xµ}) is not crucial for our calculations. However, as an example, we take U({xµ}) =∑

µ<ν<γ Jµνγxµxνxγ with the spherical constraint
∑

µ x
2
µ = Ng , corresponding a well-known solvable model

for glasses, namely the infinite-range spherical p-spin glass model with p = 3-spin coupling [33]. Here, Jµνγ
is real Gaussian random number with zero mean and variance J2

µνγ = 3!J2/2N2
g , where the overline denotes

averaging over different realizations of Jµνγ . The particular scaling with Ng ensures extensive free energy in
the thermodynamic limit Ng → ∞. The p-spin glass model, with both quantum [33] and classical dissipative
[34] dynamics, undergoes a glass transition at temperature Tg ∼ J . For temperature T ≳ Tg , the model gives
rise to a supercooled liquid regime, like standard structural glasses [35], with complex two-step relaxation for the
dynamical correlation function

Cgl(t) = ⟨xµ(t)xµ(0)⟩ = Ae−|t|/τs +Be−(|t|/τα)β (11)

, having a short-time exponential decay, and long-time stretched exponential decay.
To obtain a solvable model for the coupled el-gl system, we also take the coupling Viαµ between the glass, and

the conduction and impurity electronic states, infinite range. Here Viαµ is a complex Gaussian random number
with zero mean and variance |Viαµ|2 = V/(NcNfNg)

1/3. The particular scaling ensures a well-defined thermo-
dynamic limit Nc, Nf , Ng → ∞ with finite ratios pf = Nf/Nc and pg = Ng/Nc. The ratios allow us tune the
backaction of one part of the system on the other. For example, for simplicity, and to gain an analytical under-
standing, as discussed below, we take pf , pg ≫ 1, such that the back actions of the conduction electrons on the
impurity electrons and the glass are negligible. We expect our main conclusions to be valid for pf , pg ≈ 1, i.e.,
when the backaction is substantial.

For the above-disordered model (Supplementary Eq. (10)), using the standard replica method [36, 33], we
calculate the disorder-averaged connected equilibrium dynamical density-density correlation function for the con-
duction electrons, Cel(t) = ⟨ni(t)ni(0)⟩ − ⟨ni(0)⟩2, at temperature T ≪ ∆. Here ni = c†i ci is the conduction
electron density. The correlation function Cel(t) captures the relaxation of the thermally excited electrons in the
conduction band at a finite temperature.

We obtain the replicated partition function, Zn =
∫
D(c̄, c)D(f̄ , f)Dx exp

(
−S[c̄, c, f̄ , f, x]

)
, as coherent-

state imaginary-time path integral over the fermionic Grassmann fields {c̄ia, cia, f̄αa, fαa} and position variables
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{xia}, with replica index a = 1, · · · , n and the action,

Sn =

∫ 1/T

0

dτ
∑
ij,a

c̄ia(τ)[(∂τ − µ)δij − tij ]cja(τ) +

∫ 1/T

0

dτ
∑
α,a

f̄αa(τ)(∂τ − µ− ε0)fαa(τ)

+

∫ 1/T

0

dτ

[
1

2

∑
µ,a

[m(∂τxµa)
2 + zx2

µa] +
∑
µνγ,a

Jµνγxµa(τ)xνa(τ)xγa(τ)

]

+

∫ 1/T

0

dτ
∑
iαµ,a

[Viαµc̄ia(τ)fαa(τ)xµa(τ) + h.c.], (12)

where the Lagrange’s multiplier z(τ) imposes the spherical constraint on xµa(τ). After averaging over the distri-
butions of Jµνγ and Viαµ, we obtain Zn and the corresponding action as

S̃n =

∫ 1/T

0

dτ
∑
ij,a

c̄ia(τ)[(∂τ − µ)δij − tij ]cja(τ) +

∫ 1/T

0

dτ
∑
α,a

f̄αa(τ)(∂τ − µ− ε0)fαa(τ)

+
1

2

∫ 1/T

0

dτ
∑
µa

xµa(τ)(−m∂2
τ + z)xµa(τ) +Nc

∫
dτdτ ′

∑
ab

[
V 2(pfpg)

1/3Gab(τ, τ
′)Gba(τ

′, τ)Qab(τ, τ
′)

− J2pg
4

Q3
ab(τ, τ

′)

]
, (13)

where we have introduced the large N -fields,

Gab(τ, τ
′) = − 1

Nc

∑
i

cia(τ)c̄ib(τ
′) (14a)

Gab(τ, τ
′) = − 1

Nf

∑
α

fαa(τ)f̄αb(τ
′) (14b)

Qab(τ, τ
′) =

1

Ng

∑
µ

xµa(τ)xµb(τ
′) (14c)

To promote the above as fluctuating dynamical fields, conjugate fields Σba(τ
′, τ), σba(τ

′, τ) and Πab(τ, τ
′) are

introduced for G, G and Q, respectively, e.g., by using the relation∫
DG

∏
aτ,bτ ′

δ(NcGab(τ, τ
′) +

∑
i

cia(τ)c̄ib(τ
′)) =

∫
DGDΣe−

∫
dτdτ ′Σba(τ

′,τ)[NcGab(τ,τ
′)+

∑
i cia(τ)c̄ib(τ

′)] = 1

(15)

As a result, we can now integrate out the fields (c̄, c), (f̄ , f), and x. Assuming replica diagonal ansatz, e.g.,
Gab(τ, τ

′) = δabG(τ, τ ′), we obtain Zn =
∫
D(G,G, Q,Σ, σ,Π)e−nSeff and the effective action

Seff = −Nc

∫
dϵg(ϵ) Tr ln

(
− ∂τ + µ− ϵ− Σ

)
−Nf Tr ln

(
− ∂τ + µ+ ε0 − σ

)
+

Ng

2
Tr ln

(
−m∂2

τ + z −Π
)

−Nc

∫
dτdτ ′

[
Σ(τ, τ ′)G(τ ′, τ) + pfσ(τ, τ

′)G(τ ′, τ)− pg
2
Π(τ, τ ′)Q(τ ′, τ) +

pgJ
2

4
Q(τ, τ ′)3

− V 2(pfpg)
1/3G(τ, τ ′)G(τ ′, τ)Q(τ, τ ′)

]
(16)

In the large Nc limit, the saddle point solution is obtained by varying the above action with respect to G,Σ,G, σ,Q,Π
and setting the variations to zero. Due to time-translation invariance at equilibrium, e.g., G(τ, τ ′) = G(τ−τ ′) and
z(τ) = z. As a result, we can write the saddle point equations in the following form after performing a Matsubara
Fourier transform first, e.g., G(τ − τ ′) → G(ıωn) with fermionic Matsubara frequency ωn, and then doing an
analytical continuation, G(ıωn) → GR(ω + ı0+), to real frequencies, where GR is the retarded Green’s function.
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GR(ω) =

∫
dϵg(ϵ)

1

ω + µ− ϵ− ΣR(ω)
(17a)

G−1
R (ω) = ω + µ+ ε0 − σR(ω) (17b)

Q−1
R (ω) = −mω2 + z −ΠR(ω) (17c)

Σ(τ) = V 2(pfpg)
1/3G(τ)Q(τ) (17d)

σ(τ) = V 2p1/3g p
−2/3
f G(τ)Q(τ) (17e)

Π(τ) =
3J2

2
Q3(τ) + V 2p

1/3
f p−2/3

g G(τ)G(−τ) (17f)

In the limit pf , pg ≫ 1, we can approximate σ(τ) ≈ 0 and Π(τ) ≈ (3J2/2)Q3(τ), and neglect the back action of
the conduction electrons on the impurity states and the glass.

In this limit, following the numerical procedure similar to that in reference [37, 38], we can numerically solve
the above self-consistency equations for various conduction electron DOS g(ϵ) to obtain the retarded functions
GR(ω) and QR(ω), whereas the retarded Green’s function of the impurity band is given by GR(ω) = (ω+ ı0+ +
µ+ ε0)

−1. However, instead of self-consistently solving for QR(ω), we use the Supplementary Eq. (11) to obtain
the spectral function of the glass from the fluctuation-dissipation relation

ρgl(ω) = − 1

π
ImQR(ω) = − 1

π
tanh

( ω

2T

)
Cgl(ω), (18)

where Cgl(ω) =
∫∞
−∞ dteıωtCgl(t). As a result, the conduction electron self-energy can be obtained as

ΣR(ω) = V 2

∫
dω1dω2ρf (ω1)ρgl(ω2)

nF (ω1)nB(ω2)− nF (−ω1)nB(−ω2)

ω − ω1 − ω2 + ı0+
, (19)

where nF (ω) and nB(ω) are Fermi and Bose functions, respectively, and ρf (ω) = δ(ω+ ε0) is the spectral func-
tion of the impurity electrons. Here we have redefined V 2(pfpg)

1/3 as V 2. Thus, using ΣR(ω) in Supplementary
Eq. (17a)), we can obtain the conduction electron Green’s function GR(ω).

0.1 Density density correlation function
To capture the manifestation of the glassy relaxation in the electron-hole recombination process we look into
the connected density-density correlator Cel(t) = ⟨ni(t)ni(0)⟩ − ⟨ni(0)⟩2, which captures the relaxation of the
thermally excited carriers at temperature T . Cel(t) can be obtained from the imaginary-time correlation func-
tion Cel(τ) = ⟨n(τ)n(0)⟩ − ⟨n(0)⟩2, where n(τ) = (1/Nc)

∑
i c

†
i (τ)c(τ). In the large-Nc limit, the connected

correlator is given by the bubble diagram and can be expressed as Cel(τ) = G(τ)G(−τ). Performing Matsub-
ara Fourier transformation and then analytically continuing iΩn → ω + i0+, where Ωm is bosonic Matsubara
frequency, we can obtain the retarded correlator

Cel,R(ω) =

∫
dω1dω2ρc(ω1)ρc(ω2)

(
nF (ω1)nF (−ω2)− nF (−ω1)nF (ω2)

ω1 − ω2 − ωn − i0+

)
, (20)

where ρc(ω) = −(1/π)ImGR(ω) is the conduction electron spectral function. Using the fluctuation-dissipation
theorem, we can relate Cel,R(ω) to the Fourier transform of the real-time density-density correlation function
Cel(t) as Cel(ω) = coth(ω/2T )ImCel,R(ω). Finally, performing the inverse Fourier transform we obtain the
real-time density-density correlation function Cel(t) =

∫∞
−∞(dω/2π)e−iωtCel(ω). We show the results for the

numerically computed Cel(t) in Fig. 5(c) of the main text for (1) a flat conduction band (W = 0), and (2)
a semicircular conduction band DOS, using Cgl(t) from Supplementary Eq. (11) (Fig. 5(b), main text). For
the latter, we take a temperature-independent stretching exponent β = 0.5 and the α-relaxation time τα(T ),
which varies as ∼ T−2.8, consistent with our experimental results (Fig. 2(c), main text). We also vary the
coefficient B(T ) ≤ 1 such that it increases with decreasing temperature, while A(T ) = 1− B(T ). This leads to
a more dominant long-time stretched exponential part in Cgl(t) at lower temperatures, compared to the short-time
exponential decay in Supplementary Eq. (11). In Supplementary Fig. 13, we show the results for the conduction
band energy dispersion corresponding to a nearest-neighbour tight binding model on a simple cubic lattice. We
can see that in all the cases the glassy relaxation of the bath influences the relaxation of the conduction electrons
leading complex and temperature dependent relaxation profile for Cel(t).
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Supplementary Figure 13: The density-density correlation function of conduction electron Cel(t) vs. t for three
temperatures corresponding to a nearest-neighbour tight binding model on a simple cubic lattice

We can obtain a simple analytical understanding of the above results as follows. From Supplementary Eq.
(19), we can obtain for µ = 0

γ(ω) = ImΣR(ω) = −πV 2ρgl(ω + ε0)
(
nF (−ε0) + nB(−ε0 − ω)

)
(21)

Thus, by defining k(ω) = ReΣR(ω), we obtain from Supplementary Eq. (17a)

ImGR(ω) =

∫
dϵg(ϵ)

γ(ω)

(ω − ϵ− k(ω))2 + γ(ω)2
(22)

As a result, from Supplementary Eq. (20) we get

ImCel,R(ω) =

∫
dω1ρc(ω1)ρc(ω1 − ω)

(
nF (ω1)− nF (ω1 − ω)

)
(23)

The above can be expressed as

ImCR(ω) =
1

π2

∫
dϵ1dϵ2g(ϵ1)g(ϵ2)

∫
dω1

[
γ(ω1)

(ω1 − ϵ1 − k(ω1))2 + γ(ω1)2

γ(ω1 − ω)

(ω1 − ω − ϵ2 − k(ω1 − ω))2 + γ(ω1 − ω)2

](
nF (ω1)− nF (ω1 − ω)

)
(24)

Thus,

Cel(t) =

∫ ∞

−∞
dω1dωe

−ıωtρgl(ω1 + ε0)ρgl(ω1 + ε0 − ω)F (ω, ω1) (25)

can be written as a convolution over the glass spectral function ρgl(ω), where

F (ω, ω1) =
V 4

2π

∫
dϵ1dϵ2

g(ϵ1)g(ϵ2) coth (ω/2T ) [nF (ω1)− nF (ω1 − ω)]

[(ω1 − ϵ1 − k(ω1))2 + γ(ω1)2][(ω1 − ω − ϵ2 − k(ω1 − ω))2 + γ(ω1 − ω)2](
nF (−ε0) + nB(−ε0 − ω1)

)(
nF (−ε0) + nB(−ε0 − ω1 + ω)

)
(26)
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The spectral function of the glass contains the information about the multiple time scales and the non-trivial
temperature dependence of the glassy relaxation. Thus if appropriate conditions on the electronic energy scales
W and ε0 (∆) are made relative to the energy scales of the glass, e.g., τ−1

s and τ−1
α , then the complex relaxation

of the conduction electrons can be obtained. We numerically find that these conditions are met if the glassy bath
is broad, i.e., the bandwidth of the glass is comparable or larger than the electronic energy scales.
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