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Supplementary Note 1

The following describes how to calculate the Q-vector for a given diffractometer geometry. We will
consider a 4S+2D diffractometer using two differing (rectilinear) coordinate systems.

The general (right-handed) rotation matrices about each axis, independent of the orientation of a
chosen (rectilinear) coordinate system are:

Rx̂(θ) =

1 0 0
0 cos θ − sin θ

0 sin θ cos θ

 (1)

Rŷ(θ) =

 cos θ 0 sin θ

0 1 0
− sin θ 0 cos θ

 (2)

Rẑ(θ) =

cos θ − sin θ 0
sin θ cos θ 0
0 0 1

 (3)

The coordinate system assumes the beam oriented along the positive ŷ direction, the x̂ direction
pointing upwards and ẑ direction along the x̂ × ŷ direction [1, 2]. Rotations about µ, η, χ and ϕ
according this coordinate system are as follows:

Rµ(µ) = Rx̂(µ)

Rη(η) = Rẑ(−η) i.e. left handed
Rχ(χ) = Rŷ(χ)

Rϕ(ϕ) = Rẑ(−ϕ) i.e. left handed
R∆(δ) = Rẑ(−δ) i.e. left handed

(4)
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To obtain the complete rotation matrix, matrices in Equation 4 are multiplied form the outer
most circle (µ) to the inner most circle (ϕ). Noting that the X-ray beam (ki) is aligned along the
positive ŷ direction with magnitude k,

ki =

0k
0

 (5)

the reflected wavevector (kf ) is given by:

kf =

kfx̂kfŷ
kfẑ

 = R∆ki (6)

Using Equations 5 and 6, the Q-vector is then obtained in the laboratory frame of reference as:

Q = kf − ki (7)

The standard coordinate transform in Bonsu [3], however uses a standard 4S+2D diffractometer
right handed coordinate system where the X-ray beam is assumed to align along the positive ẑ
direction, the x̂ direction pointing upwards as before, but the ŷ direction pointing along the ẑ × x̂
direction.

In this system, rotations about µ, η, χ and ϕ are as follows:

Rµ(µ) = Rx̂(µ)

Rη(η) = Rŷ(η)

Rχ(χ) = Rẑ(χ)

Rϕ(ϕ) = Rŷ(ϕ)

R∆(δ) = Rŷ(δ)

(8)

The X-ray beam (ki) is aligned along the positive ẑ direction with magnitude k,

ki =

00
k

 (9)

where k = 4πsin(θ)
λ is the wave vector magnitude.The Q-vector is then obtained in the laboratory

frame of reference as before, as shown above.

To correct multi-Bragg rotations, each Qn-vector obtained using the above methods and each
coordinate corrected diffraction pattern, is rotated back to a position Q∗

n where the kf vector
aligns parallel to the ki vector. This ensures that the angles between each Q-vector correspond to
the correct direction in reciprocal space:

Q∗
n = Rϕ(−ϕ)Rχ(−χ)Rη(−η)Rµ(−µ)Qn (10)

ρ∗n(q) = Rϕ(−ϕ)Rχ(−χ)Rη(−η)Rµ(−µ)ρn(q) (11)

An alternative approach is to rotate all vectors relative to a choice of Qn-vector. This produces
equivalent results.
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Supplementary Note 2

Reflection χ η ϕ

110 66.63 9.105 33.476
111 80.22 2.947 44.98

11m1 53.33 16.39 24.81
212 76.59 1.69 31.50
300 45.29 6.31 0.488

Supplementary Table 1. The diffractometer rotations done to align each of the reflections to
Qn = G.

Reflection Qx Qy Qz

110 16.67 -41.75 7.49
111 11.16 -44.19 -0.39
111̄ 23.63 -36.50 13.65
212 16.42 -41.81 -7.732
300 30.87 -31.07 -12.61

Supplementary Table 2. The components of the calculated Q vectors after geometry corrections
for each of the 5 reflections.
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Supplementary Note 3

Supplementary Figure 1. 3-dimensional rendering of the collected diffraction patterns. The
colour map represents the amplitude.
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Supplementary Figure 2. The Fourier transform of line scans through each of the diffraction
patterns which illustrates the consistency in the frequency of fringes.
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Supplementary Note 4
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Supplementary Figure 3. Cross-Sectional planes of the phase maps of the (a)(111) (b) (110)
and (c)(212) reflections at different points in the reconstructed crystal.
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Supplementary Figure 4. Cross-Sectional planes of the phase maps of the (a) (111) (b) (110)
and (c) (212) reflections at different points in the reconstructed crystal.



6

0

200

400

600

800

εxx

a)

z

y

εxy

z

y

εxz

z

y

εyy

z

y

εyz

z

y

εzz

z

y

0

200

400

600

800

b)

z

y

z

y

z

y

z

y

z

y

z

y

0 250 500 750
0

200

400

600

800

c)

z

y

0 250 500 750

z

y

0 250 500 750

z

y

0 250 500 750

z

y

0 250 500 750

z

y

0 250 500 750

z

y

−0.04 −0.02 0.00 0.02 0.04
Strain

Supplementary Figure 5. Strain tensor maps for all components perpendicular to the x-axis
direction taken at the a) first, b) section and c) third locations the phase maps.
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Supplementary Figure 6. Strain tensor maps for all components perpendicular to the y-axis
direction taken at the a) first, b) section and c) third locations the phase maps.



7

0 100 200 300 400 500

Distance (nm)

−3

−2

−1

0

1

2

3

C
om

pl
ex

ph
as

e
Line Scan of Phase In Experimental Domains

(212) Reflection

Supplementary Figure 7. A line scan of the reconstructed phase for the (212) reflection across
the two domains. We can observe the nearly constant phase and the symmetrical nature of the
phase across the two domains.
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Supplementary Note 5

Phase Value In Simulated Domains
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Supplementary Figure 8. A line scan of the simulated phase for the -Q of the three reflections.
We observe the phase values of each -Q to be the exact negative of the +Q.

By examining the reconstructed phase in conjunction with the relative angles between the
scattering vectors corresponding, we utilise reconstructed the phase information as an additional
layer of discrimination between +Q and −Q, as the crystal structure is not centrosymmetric.
Specifically, the simulated data for the (111) reflection indicates a positive phase, contrasting with
a negative phase for the (1̄1̄1̄) reflection. This phase relationship suggests that the experimental
(111) reflection corresponds to a positive Q direction as it also demonstrated positive phase, leading
to the correct identification of the +Q rather than its Friedal pair for the experimental (111)
reflection.

The geometrical relationships between between pairs of Q-vectors can be analysed to determine
whether we are observing +Q or -Q. For instance, the angle between (111) and (2̄1̄2̄) reflections
is significantly different from that between (111) and (212), with measured angles of 168.7◦ and
11.28◦, respectively. Our experimental value of the relative angles between these Q vector matches
the latter, validating the direction of the (212) to be the +Q direction. This in turn validates
the choice for the simulation, and validates that we have the correct polarity for the experimental
circular mean.

An additional layer of evidence comes from the necessity for consistency among all reflections
during concurrent phase retrieval. This process inherently penalizes and filters out inconsistent
reflections, which would not reconstruct accurately if the assumed Q-vector orientations were
incorrect. The successful reconstruction of our dataset, with all reflections showing consistent
phase relations as per our simulations, further validates our methodology and conclusions. These
arguments, in conjunction with the matching magnitude of the circular mean of the (212) reflection
with that of the simulated data, provide a robust argument supporting the identification of +Q
vector orientations. There is no matching magnitude of the circular mean if we were observing -Q.
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