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SUPPLEMENTARY NOTE 1 - REGIME OF INCOHERENT GOOD NTD-CAVITY COUPLING

In the regime of incoherent good cavity coupling, 2g ≪ γ + γ∗ + κ and κ < γ + γ∗ holds [1] , where g is the light-
matter coupling strength, γ is the population decay rate, κ is the cavity linewidth and γ∗ is the pure dephasing
rate. γ = γr + γnr is the sum of radiative and nonradiative decay rates γr and γnr, respectively. We determined
κ = 35.4 ± 0.1 µeV for the lowest accessible longitudinal mode order, and γ∗ = 8 ± 2 meV from the cavity length sweep
in Fig. 2b of the main text. As pointed out ibidem, our two-photon interference and PL lifetime measurements indicate
a biexponential NTD population decay with fast and slow timescales τfast = 2 ps and τslow = 91 ps, respectively,
corresponding to γfast = 330 µeV and γslow = 7.3 µeV. Obviously, κ < γ + γ∗ holds in our system for both γ = γfast
and γ = γslow.

We estimate the light-matter coupling strength using

g =
√

3λ2c/(8πn3Vcτrad), (1)

with the speed of light c, the wavelength λ, the cavity mode volume Vc, the refractive index n and the radiative
lifetime τrad [2]. For our cavity, we calculated Vc = 8.2 µm3 for the lowest accessible mode order. We use n = 1 in
our estimate of the light-matter coupling strength, neglecting that the NTDs are placed on a polystyrene spacer with
refractive index n = 1.57. This results in an upper bound for g. For the type of NTDs investigated in this work, τrad
was found to range between 1 and 15 ns [3, 4]. Varying τrad within 1 − 15 ns, we expect g to range between 17 and
64 µeV. With the results above, we conclude that 2g ≪ γ + γ∗ + κ holds in our system, consistent with the regime of
incoherent good cavity coupling.

SUPPLEMENTARY NOTE 2 - MODEL FOR NTD-CAVITY COUPLING DYNAMICS

We first consider a two-level emitter coupled to an optical cavity. This setting was studied in Ref. [1], where
the time-dependent density operator ρ̂(t) of the coupled emitter-cavity system was obtained from a Lindblad master
equation in Markovian approximation. In the regime of incoherent cavity coupling, the influence of the density operator
coherences on the system dynamics was shown to be negligible. The coupled system is therefore fully described by
the populations of cavity and emitter, which exchange photons at a rate R given by [5]:

R = 4g2/(κ + γ + γ∗). (2)

As explained in the main text, our two-photon interference and PL lifetime measurements indicate a biexponential
NTD population decay, attributed to the presence of an additional dark excitonic reservoir. In order to model the
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coupling of such an NTD to a cavity, we first focus on the value of R in our system. Given incoherent cavity coupling,
the denominator in Eq. 2 is dominated by the pure dephasing rate γ∗, such that R ≈ 4g2/γ∗. From the measured
value γ∗ = 8 ± 2 meV and the estimated range for g (17 − 64 µeV), we expect R to range between 0.14 and 2.04 µeV.

We now extend the model of Ref. [1] to an NTD exhibiting dark and bright exciton states. The dark state has no
effect on the limit of incoherent coupling due to its vanishingly small coupling to the cavity. The bright state, on the
other hand, will exchange photons with the cavity at rate R, analogous to a radiative two-level system. Based on
these considerations, we describe our experiment with the set of partial differential equations:

∂ρc

∂t
= −(κ + R)ρc + Rρb (3)

∂ρd

∂t
= −γdρd + γbdρb − γdbρd (4)

∂ρb

∂t
= −(γb + R)ρb + Rρc − γbdρb + γdbρd (5)

with the populations of the cavity ρc, dark state ρd and bright state ρb. Here, γbd/db is the population exchange rate
between ρb, and ρd and γb/d are the sum of radiative and nonradiative decay rates of ρb and ρd.

The parameters γb/d, γbd/db and ρb(0) are free parameters in our model. We choose them such that our model
prediction fulfils two criteria. First, the predicted time-dependent PL intensity, which is the cavity population ρc
convoluted with the instrument response function, should agree with the measured time-dependent PL in Fig. 4d of
the main text. Second, the biexponential bright state decay, obtained for setting R = 0 in Eqns. 3 – 5, should have
a short population lifetime τshort = 2 ps. This is indicated by the two-photon interference measurement in Fig. 4b
of the main text, as explained ibidem and in Supplementary Note 5. The result of this parameter adaptation is the
solid line in Fig. 4d and agrees well with the measured data.

SUPPLEMENTARY NOTE 3 - REGIME OF LOW PURCELL ENHANCEMENT

A. Purcell factor and PL lifetime

The PL lifetime τpl of emitters coupled to the cavity is given by τpl = τfs/(1 + F ∗
p ), with the free-space population

lifetime τfs = 1/γ and the effective Purcell factor F ∗
p = R/γ [6]. For the slow population decay component with

1/γ = 91 ps, F ∗
p ranges between 0.018 and 0.28 for the previously estimated range of R (0.14 − 2.04 µeV). For the

fast decay component, the expected value for F ∗
p is even smaller (4.1 · 10−4 − 6.2 · 10−3). We infer from this result

that population lifetime shortening effects due to the cavity coupling are negligible in our system, corresponding to a
regime of low Purcell enhancement.

While F ∗
p quantifies enhancement of the total emitter decay rate by cavity-coupling, the enhancement of the radiative

decay rate γrad = 1/τrad is quantified by Fp = 3λ3Qeff/(4π2n3Vc), with the effective Q-factor Qeff = (Q−1
cav + Q−1

em)−1

and the Q-factors of cavity Qcav and emitter Qem, respectively. In the limit of incoherent coupling, Fp approximates
to Fp ≈ R/γrad ≈ 3λ2c/(4πVcγ∗) [7]. For our system, we expect Fp = 1.6. We note that for κ ≫ γ + γ∗ (bad cavity
regime, different from our experiment), Fp is called ideal Purcell factor [8] and evaluates to the original expression
given by Purcell [9] Fp ≈ 3λ3Qc/(4π2n3Vc) = 4g2/(γradκ). Finally, we also note that the effective Purcell factor can
be expressed as F ∗

p = ηQFp, with the quantum yield ηQ = γr/γ. From the expected range of radiative lifetimes given
above, we infer an estimated range of 6 · 10−3 − 9 · 10−2 for ηQ, where we only considered the fast decay component
since the majority of the population decays on this timescale (see Supplementary Note 4). The estimated values agree
with previously measured NTD quantum yields.

B. Single photon efficiency

The single photon emission efficiency βc gives the probability that a photon is emitted into the spectral window
of the cavity linewidth κ, given an initial excitation of the emitter. Each excitation pulse generates a photon in the
cavity with probability βcηem, where ηem is the free space photon emission efficiency at the respective pump power.
The rate of photons registered by the detector Iem is then given by:

Iem = fexcηoutηsysηemβc, (6)

where fexc is the repetition rate of the excitation source, ηout is the probability for a photon to exit the cavity through
the flat mirror, ηsys is the combined transmission and detection efficiency of the setup.
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The measurement of ηem would require excitation near or above the saturation threshold. This in turn requires
high excitation powers, which can lead to NTD degradation and limit single photon purity and indistinguishability.
Since NTD 1, 2 and 3 were used to benchmark single photon purity and indistinguishability, we refrained from
measurements at such excitation powers. However, using the maximum measured value Iem = 1840 ± 30 counts/s
for NTD1 and the upper bound ηem = 1, combined with the measurement of ηsys and the value for ηout obtained
from transfer matrix simulations of the mirror coating, we obtain a lower bound of min(βc) = (3.9 ± 0.1) · 10−3 for
the single photon emission efficiency. The theoretically expected value is calculated from the time-dependent cavity
population ρc as [1]:

βc = κ

∫
ρc(t)dt. (7)

Solving Eqns. 3 – 5 for ρc, we obtain an expected value βc = 6.6 · 10−3 for the single photon emission efficiency.
In the main text, we compared the above values to the expected upper bound for the emission efficiency for

spectrally filtered free-space emission βfs, similar to Ref. [1]. The actual value for this quantity is likely smaller due
to the non-unity quantum yield in our system, which we expect to reduce βfs to ηQκ/(πγ∗). This expression is easily
understood by noting that βfs gives the probability that a photon is emitted into the spectral window of a filter with
bandwidth κ, given an initial excitation of the emitter. Using the estimated range for ηQ given above, we expect that
the single-photon emission efficiency in our system outperforms that expected for filtered free space emission by at
least a factor of 44. This drastic increase in emission spectral density is a direct consequence of cavity-coupling in the
good cavity regime and was found to be quantified by the ideal Purcell factor Fp,ideal = 3λ3Qc/(4π2n3Vc) as defined
in Supplementary Note 3.A [10], for which we expect Fp,ideal = 91 for the parameters given in Supplementary Note 1.

We also use the measured single photon efficiency to confirm the result for the light-matter coupling strength g
from Supplementary Note 1. If defined as in Eq. 6, the efficiency is given by βc = Fp/(Fp + γ/γrad) [8]. We note that
this expression is valid for all regimes of cavity-coupling. From the measured values of slow population decay lifetime
and βc, we find an experimental upper bound max(τrad) = 35.0 ± 0.9 ns for the radiative lifetime, corresponding to
min(g) = 13.5 ± 0.3 µeV. A more realistic value is obtained by also considering the fast population decay component.
Since τfast ≪ τslow, both decay processes contribute to the overall efficiency on different timescales, such that we can
approximate βc ≈ ÃfastFp/(Fp + γfast/γrad) + ÃslowFp/(Fp + γslow/γrad), with the fractional amplitudes Ãfast/slow
defined as in Eq. 15. We find τrad = 12.3 ± 0.3 ns for the radiative lifetime, corresponding to g = 22.8 ± 0.6 µeV, in
agreement with the result from Supplementary Note 1.

C. Cavity-enhancement of PL intensity

From Eq. 6, we derive a quantitative description of the increase in the PL intensity observed in Fig. 2c of the
main text as the cavity length is tuned to the lowest accessible mode order. The single photon emission efficiency is
given by βc = κR/[κR + γ(κ + R)] [5], which in the Purcell regime (R ≪ κ, as is the case for our system) simplifies
to βc ≈ R/γ/(1 + R/γ) = F ∗

p /(1 + F ∗
p ). Combined with Eqns. 1 and 2, we find Iem ∝ R ∝ V −1

c to first order in R,
which quantitatively describes the behaviour observed in Fig. 2c. We conclude that in our system, cavity coupling
increases the single photon emission efficiency βc via enhancement of light-matter coupling strength.

SUPPLEMENTARY NOTE 4 - TWO-PHOTON INTERFERENCE VISIBILITY

We quantify the indistinguishability of photons emitted by the NTD-cavity system by the two-photon interference
visibility v one would obtain in an interferometer with balanced beamsplitters (BSs) and unity classical visibility. To
determine v from the experimental correlation histograms, we account both for imbalanced interferometer arms and
non-ideal single photon purity of each NTD.

A fiber-based interferometer as in Fig. 4a of the main text was used to perform two-photon interference experiments.
The stream of photons entering the interferometer was divided at BS 1 with transmission and reflection T1 and R2,
respectively, and recombined after a tunable delay at BS 2 with transmission and reflection T2 and R2. In our
interferometer, the transmission of the delay arm is µ < 1. The delay time equals the excitation pulse separation,
and is orders of magnitude larger than the coherence time and population lifetimes in our system. We therefore treat
the reduced transmission in the delay arm as an effect of imbalanced transmission and reflection of BS 1, and use the
effective values T̃1 = T1/(T1 + µR1) and R̃1 = µR1/(T1 + µR1) for its transmission and reflection.

Using effective transmission and reflection values, we derive expressions for the integrated peak counts N in the
experimental histograms (as shown in Supplementary Fig. 1 for NTD 3) obtained by integrating correlation events in
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SUPPLEMENTARY FIG. 1. HOM autocorrelation histograms for NTD3. HOM correlations for NTD 3 for co-polarized
(a) and cross-polarized (b) interferometer arms with delay of one excitation pulse. Coincidence counts were binned in 2.5 ns
time windows. The HOM autocorrelation function in Fig. 4b of the main text was calculated from the displayed data (see the
Methods section for details).

a 2.5 ns time window. We extend the calculation of Ref. [11] to obtain N from the intensity autocorrelation between
the output ports of BS 2. For large |τ |, we find

N∞ = H
[
R̃1T̃1(R2

2 + T 2
2 ) + R2T2(R̃1

2 + T̃1
2)

]
, (8)

with an integration constant H.
For the height of the peak at τ = 0 for co-polarized interferometer arms (Supplementary Fig. 1a), we find

N0,co = H
[
R̃1T̃1

[
1 − 2R2T2 − 2R2T2(ϵP )2v

]
+ g

(2)
HBT(0)R2T2(1 − 2R̃1T̃1)

]
. (9)

In this expression, ϵP is the overlap between the polarization modes of the interferometer arms. The height of the
central histogram peak for cross-polarization N0,cross (Supplementary Fig. 1b) is obtained by setting v = 0 in Eq. 11,
which yields

N0,cross = H
[
R̃1T̃1 (1 − 2R2T2) + g

(2)
HBT(0)R2T2(1 − 2R̃1T̃1)

]
. (10)

To determine v for NTD 3, we first extracted the raw visibility vraw = 1 − g
(2)
HOM,co(0)/g

(2)
HOM,cross(0) from the

data in Fig 4b. Next, we calculated vraw = 1 − N0,co/N0,cross from Eqns. 11 and 12 and solved for v, yielding
an expression which depends on vraw, g

(2)
HBT(0) and the interferometer parameters T̃1, R̃1, T2, R2 and ϵP . Using

experimental values for these quantities (T̃1 = 0.4, R̃1 = 0.6, T2 = 0.49, R2 = 0.51 and ϵP = 0.96), we finally
obtained v = 0.51 ± 0.21 for NTD 3. Based on the experimental values T̃1, R̃1, T2, R2, ϵP and g

(2)
HBT(0) for NTD 3, we

estimate g
(2)
HOM,cross(0) = N0,cross/N∞ = 0.53 ± 0.04 for cross-polarized interferometer arms, in good agreement with

the experimental value of 0.61 ± 0.12.
For NTD 1, we obtained the raw visibility vraw = a from the amplitude a of the best-fit to the HOM dip in Fig. 4d

of the main text, and calculated v from vraw, g
(2)
HBT(0), and the interferometer parameters as described above to

obtain v = 0.65 ± 0.24 stated in the main text. The observed asymmetric increase in the visibility towards large
positive delays is the result of a degradation-induced decrease in the single photon purity during the measurement.
For large interferometer delays, we expect g

(2)
HOM(0) = N0,cross/N∞ = 0.64 ± 0.05 as an estimate for the offset c in the

data of Fig. 4d. This value is smaller than the best-fit value c = 0.80 ± 0.08, which could stem from the degradation
observed during the measurement resulting in an overall increase in g

(2)
HOM. In Supplementary Fig. 2, we show the

autocorrelation histograms for interferometer delays of -5, -3, 0, 3 and 5 ps, respectively. The reduction of correlation
events at zero time delay τ provides evidence for two-photon interference for NTD 1. Each data point in Fig. 4d of
the main text was obtained by taking such histograms and computing g

(2)
HOM(0) as described above.

For completeness, we also calculate the values of the HOM autocorrelation function at time delays corresponding
to one excitation pulse separation, τ = ±12.5 ns. As explained e.g. in the supplement of Ref. [12], g

(2)
HOM is smaller

than one for these delays. For the respective histogram peak heights, we find

N12.5 = H
[
R̃1T̃1T 2

2 + R2T2(1 − 2R̃1T̃1) + g
(2)
HBT(0)R̃1T̃1R2

2

]
(11)
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SUPPLEMENTARY FIG. 2. HOM autocorrelation histograms for NTD 1. a–c, HOM autocorrelation function measured
on NTD1 for interferometer delays -5 ps (a), -3 ps (b), 0 ps (c), 3 ps (d) and 5 ps (e), as used to extract the data points of
the HOM dip in Fig. 4c of the main text. The dashed line indicates the mean value of the histogram peaks at time delays
|τ | > 12.5 ns, N∞. An interferometer delay of 0 ps corresponds to separation by exactly one excitation pulse, resulting in
maximum probability for two-photon interference and reduced correlation events at zero time delay τ .

and

N−12.5 = H
[
R̃1T̃1R2

2 + R2T2(1 − 2R̃1T̃1) + g
(2)
HBT(0)R̃1T̃1T 2

2

]
. (12)

We note that these expressions are valid for both co- and cross-polarized interferometer arms since the excitation
pulse separation greatly exceeds the photon coherence time, leading to vanishing contributions of quantum inter-
ference at these time delays. From our measured values of the interferometer parameters, we calculate the ex-
pected value g

(2)
HOM(−12.5 ns) = N−12.5/N∞ = 0.77 ± 0.02, in agreement with the value 0.87 ± 0.13 measured in co-

polarized configuration and close to the value 0.58 ± 0.12 measured in cross-polarized configuration. We also expect
g

(2)
HOM(12.5 ns) = N12.5/N∞ = 0.79 ± 0.02, in agreement with the values 0.71 ± 0.12 and 0.75 ± 0.13 measured for co-

and cross-polarized interferometer arms, respectively. Overall, these results confirm the good correspondence between
our measurements and our theoretical description of the interferometer.

In order to calculate the expected two-photon interference visibility v for cavity-coupled NTDs, we solve Eqns. 3 – 5
for the cavity population ρc and evaluate [1]:

v =
∫ ∞

0 dtρ2
c(t)

∫ ∞
0 dτe−Γcτ

1
2

∣∣∫ ∞
0 dtρc(t)

∣∣2 . (13)

In this equation, Γc = κ + R, with Γc ≈ κ in our system. With this expression, we find v = 0.3 for the theoretically
expected visibility without significant dependence on R within the previously estimated range (0.13 − 2.0 µeV).

Finally, to estimate the two-photon interference v for free space NTDs, we set the coupling rate in Eqns. 3 – 5 to
zero, R = 0, to obtain the free-space bright state decay as:

ρb(t) = ρb(0)
(

Afaste
−t/τfast + Aslowe−t/τslow

)
. (14)

In this expression, Afast/slow ∈ 0, 1 are amplitude factors which obey Afast + Aslow = 1. We assume that fast and
slow process have visibilites vfast/slow = T2/(2τfast/slow), where the coherence time is given by the dephasing time as
T2 ≈ 1/γ∗ = 80 fs. All simulation results presented in the main text were obtained for a decay with free-space
parameters Afast = 0.92 and Aslow = 0.08.
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SUPPLEMENTARY FIG. 3. Two-photon interference timescale. a, b, HOM autocorrelation function as a function of
electronic delay τ , for interferometer delay ∆t = 0 ps (a) and ∆t = 50 ps (b). c, d, Integrated HOM autocorrelation function
as a function of interferometer delay ∆t. In all panels, the limiting cases of a fast, lifetime limited decay with lifetime 2 ps, and
a slow decay with lifetime 100 ps and cavity-limited coherence time 20 ps are considered. Scenarios shown: two independent
sources with unity single photon purity probed on a beamsplitter (dark green and orange solid lines); a single source with unity
single photon purity probed in a Mach-Zehnder interferometer with 50:50 beamsplitters (blue and yellow solid lines); a single
source with non-unity single photon purity (NTD 1) probed in our experimental Mach-Zehnder interferometer with imperfect
beamsplitters (blue and orange dashed lines).

The fraction of the population which decays via the fast and slow process, respectively, is quantified by the relative
fractional amplitudes Ãfast/slow given by [13]:

Ãfast/slow =
Afast/slowτfast/slow

Afastτfast + Aslowτslow
. (15)

For the emitter dynamics considered in our simulation, we find Ãfast = 0.34 and Ãslow = 0.66. We estimate v as
a weighted sum of visibilities for fast and slow process, v = Ãfastvfast + Ãslowvslow to arrive at a vanishingly small
free-space visibility v = 0.003.

SUPPLEMENTARY NOTE 5 - TWO-PHOTON INTERFERENCE TIMESCALE

As discussed in the main text, we associate the timescale τHOM in the fit to the HOM dip in Fig. 4d with the
emitter population lifetime. To explain this, we consider a monoexponentially decaying emitter with lifetime T1 and
coherence time T2. Each data point in Fig. 4d is obtained from a correlation histogram as in Fig. 4c of the main text.
When probing two independent emitters with unity single photon purity on a beamsplitter, the peak around time
delay τ = 0 in such a histogram is described by [14]:

g
(2)
HOM(τ) = 1

4e−|τ−∆t|/T1 + 1
4e−|τ+∆t|/T1 − 1

2e−|τ |(2/T2−1/T1)−|τ−∆t|/(2T1)−|τ+∆t|/(2T1). (16)

When probing a single emitter in a Mach-Zehnder interferometer with 50:50 beamsplitters, a prefactor of 1/2 has to
be included to account for reduced coincidence probability around τ = 0 [12, 15].

We now consider the limiting cases of a lifetime-limited fast decay (T1 = 2 ps, T2 = 4 ps) and a cavity-limited slow
decay (T1 = 100 ps, T2 = 20 ps given by the measured cavity lifetime), featured by two independent emitters and
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a single emitter probed in a Mach-Zehnder interferometer. We plot the results of Eq. 16 for each of these cases in
Supplementary Fig. 3a and b, with interferometer delay ∆t = 0 ps and ∆t = 50 ps, respectively. The lifetime-limited
coherence of the fast decay enables two-photon interference, which results in vanishing correlation counts.

As obvious from Eq. 16 and Supplementary Fig. 3a and b, the coherence time T2 can in principle be probed by
varying the electronic delay τ . By contrast, tuning of the interferometer delay changes the photon arrival time at the
beamsplitter, such that this measurement probes the emitter population lifetime. In our experiment, the histogram
bin size is much larger than the population lifetime and coherence time, and thus the histogram peak at τ = 0 is
given by [14]:

g
(2)
HOM(τ = 0) =

∫
N0

g
(2)
HOM(τ)dτ = 1

2

[
1 − T2

2T1
e−2|∆t|/T2 − 1

2T1/T2 − 1

(
e−|∆t|/T1 − e−2|∆t|/T2

)]
, (17)

where integration is carried out over all counts in the histogram bin at τ = 0 (c.f. Supplementary Fig. 1). In
Supplementary Fig. 3c and d, we plot Eq. 17 for the limiting cases considered above. In addition, we also include the
case of NTD 1 (as a single source with non-unity single photon purity) probed in our experimental Mach-Zehnder
interferometer with imperfect beamsplitters described in Supplementary Note 4. As explained above, in this case the
values of g

(2)
HOM(τ = 0) are offset due to interferometer imbalance and nonzero g

(2)
HBT(0).

As obvious from Supplementary Fig. 3c and d, the slow decay process will have an associated HOM timescale of
100 ps at two-photon interference visibility of around 0.1. By contrast, the fast decay process will have an associated
HOM timescale of 2 ps, and unity interference visibility (HOM correlations do not vanish at ∆t = 0 ps due to nonzero
g

(2)
HBT(0)). This motivates the interpretation presented in the main text: the fast decay process results in photons

with near-unity visibility, which is reduced to our measured value of around 0.6 by photons generated at reduced
indistinguishability via the slow process in the PL decay of Fig. 4e of the main text.

Finally, we note that for highly indistinguishable photons with T2 ≈ 2T1, Eq. 17 simplifies to:

g
(2)
HOM(τ = 0) ≈ 1

2

(
1 − T2

2T1
e−|∆t|/T1

)
. (18)

The function used to fit the data in Fig. 4d of the main text has the same functional form.

SUPPLEMENTARY NOTE 6 - EXPERIMENTAL CAVITY LINEWIDTH

The cavity linewidth κ was obtained from the cavity transmission of a diode laser with a wavelength measured as
1468.2 nm and limited by the resolution of the spectrometer. Supplementary Fig. 4a shows the measured transmission
as the cavity length is tuned by 1.3 free spectral ranges (FSRs), obtained after laterally positioning the cavity mode
on the bare mirror away from NTDs. The two resonances at maximum transmission correspond to the TEM00-modes
of the lowest accessible longitudinal mode orders q = 4 and 5, respectively. Their distance corresponds to exactly one
FSR, or half the wavelength, and was used to compute the time-dependent change in cavity length. The additional
resonances stem from higher order TEM modes. From Lorentzian fits to the transmission of the q = 4 resonance as
in Supplementary Fig. 4b, we obtained an averaged cavity linewidth κ = 35.4 ± 0.1 µeV from ten repetitions of the
measurement.

SUPPLEMENTARY FIG. 4. Experimental cavity linewidth. a, Cavity transmission at a wavelength of 1468.2 nm as a
function of cavity length, which is tuned over 1.3 free spectral ranges b, Close-up on the resonance corresponding to longitudinal
mode order q = 4 shown in a and best fit of a Lorentzian line profile (solid orange line) with a linewidth of κ = 34.8 µeV.
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