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REVIEWER COMMENTS

Reviewer #1 (Remarks to the Author):

Summary: Tan and colleagues reported results of neural dynamics within an empathy network, 

including anterior insula (AI), anterior cingulate (ACC), amygdala (AMY), and inferior frontal gyrus 

(IFG) in supporting the perception of other’s pain. The data was collected in 22 drug-resistant 

epilepsy patients while they were undergoing seizure monitoring for potential surgical treatment at 

the hospital. Participants were presented with a series of images stimulation applied to other’s 

hands (e.g., a hand was/wasn’t cut by a knife) and were instructed to make a judgement of painful 

or non-painful decision. 16/22 participants also completed the post-iEEG session, during which 

they report subjective ratings of each stimulus, including their empathic responses, intensity of 

perceived pain in others and their own unpleasantness. Overall, authors examined the oscillatory 

power, power correlation, inter-regional directionality and phase amplitude among this empathy 

network, and evaluate the predictive power of the observed neural features with participants’ 

painfulness judgement. In particular, they found:

1) An early and sustained high-gamma power increase in IFG, an early beta oscillatory increase in 

ACC, but decreased beta oscillation in AI and AMY for painful compared to non-painful conditions.

2) Power correlation in beta band was increased within ACC-AMY and AI-AMY pairs for painful 

condition compared to non-painful cases.

3) Phase amplitude coupling between IFG high-gamma activity and beta phases of AMY/AI/ACC 

increased for painful compared to non-painful conditions.

4) Several neural features, including AMY/ACC/AI low frequency powers, their power correlation and 

interaction with IFG high gamma activity can predict participants’ strength of empathic responses.

The dataset is unique and precious, with unparalleled spatiotemporal resolution in understanding 

the perception of others’ pain in humans. The results are interesting and potentially provide circuit-

level understanding for the proposed empathy network. However, the manuscript is not very well 

written, missing clear theoretical motivation, clarification of method selection, and interpretation 

of findings. I have listed several major concerns and some minors as well that need to be addressed 

to meet the quality standard to be published in Nature Communication.

Major:

1. The introduction needs to be better written to: 1) include more information that inspires and is 

related to this study. For example, more literatures of anatomical/functional connectivity within this 

empathy network, similar to Line 106-107, can help readers better understand the motivation of 



looking into these four regions. 2) the content in each paragraph should have a clear topic. For 

example, Line 73- 81 and its following paragraph seem to contain redundant information, please 

consider rephrase the paragraph and make the description consistently and concisely. 3) clarify the 

findings from previous literatures and how it inspires this study. For example, line 70-71, what does 

the prior knowledge mean in this sentence “The ACC activity also mediates the top-down 

modulation of empathic responses to others’ pain (e.g., prior knowledge27).”

2. The task design has some potential pitfalls that raise concerns about whether it is suitable to 

address the scientific questions tested here.

a. As authors reported (line 753-754), there were only 10 painful stimuli and 10 non-painful stimuli 

in this task, that only presented once. The actual trial numbers included in this task would be even 

smaller, after excluding the trials with incorrect pain judgement and inter-ictal discharges. It is 

questionable whether such limited trial number (n < 10 per condition) has enough statistical power, 

especially for SVM decoding analyses (see Major point 5 as well).

b. A subgroup of participants (16/22) provided their subjective ratings, including empathy strength, 

intensity of perceived pain in others, own unpleasantness during the post-iEEG period, which were 

likely collected several days after participants performed the original task recording. How 

representative these subjective ratings were in reflecting participants’ internal states when 

performing the original task? Author should provide evidence to support the utilization of such 

subjective ratings that were collected far away from the original experiment. Also, the subjective 

ratings are collected during the second exposure to the stimuli that might be influenced by the 

adaptation effect. Therefore, the results in Fig. 6 that use the neural features collected during real 

experiment and ratings during post-iEEG period is hard to interpret.

3. Almost all the results reported here are based on the statistical testing between painful and non-

painful conditions. However, to claim that the observed neural features are due to the perception of 

others’ pain, it is also important to demonstrate the significance level within each condition. 

Because a given neural signature might show significant difference across conditions but not 

significant within condition. Below are listed several analyses are related to this concern.

a. Figure 2E-H, is power in painful or nonpainful condition significantly different from the baseline? 

It is worth extending the analysis window to baseline to ensure that the conditional differences are 

due to the process of painful vs nonpainful stimuli.

b. Fig. 3A-C, what’s the actual correlation value without Fisher-z-transfer? Also, whether this is 

significant before comparing across conditions The following statement can be hardly supported 

with the current figure: “AI-amygdala pairs showed significant alpha/beta power correlations in 

both painful (8-35 Hz; Fig. 3C) and non-painful (8-34 Hz; Fig. 3C) conditions.” Is the significance 

measured simply against to zeros?

c. Fig. 4A-C, what phase-amplitude coupling look like for painful or non-painful condition 

separately? Are they significant within condition as well?



4. The inclusion/exclusion criteria for specific analyses in this paper lacks clear justification.

a. Fig. 3A-C and Line 999-1001, the power correlation analysis was focused on the channels 

showing significant power difference between painful and non-painful conditions. However, the 

computation of power correlation analysis itself was done individually on each condition first and 

then compare across. Then why significant power differences should be a selection criterion here 

for the power correlation analysis? Also, even with this selection criteria, why the power correlation 

analysis are not covering theta band, which AI (Fig. 2E) shows significant power difference between 

painful versus nonpainful conditions?

b. Fig. 3D-E, is there any evidence to support the exclusion criteria for the Transfer entropy analysis? 

Authors wrote that (line 324 -326) “situations without significant power correlation indicated that no 

meaningful functional interaction was involved and further investigation on the information transfer 

flow was unwarranted.” First, various of methods that quantifies inter-regional functional 

interactions are phase based (e.g., phase locking value) that does not require strong power 

correlation. Therefore, power correlation is not necessary for meaningful functional interaction. 

Second, based on the definition of transfer entropy as the author described (Line 1031 -1033), it is 

possible to have it without significant increased power correlation. The directionality could be 

totally independent from this. So why significant power correlation should be a selection criterion 

here?

5. Question about the SVM analyses

a. Line 1087-1089, it seems like authors split the dataset for training and testing at the channel 

level. Does that mean authors were decoding the subjective ratings across participants? If so, I 

found this very problematic, as the subjective ratings across participants might not consistent with 

each other, and also the neural signatures might contained individual variations. If not, I found it 

hard to decode within participant with such limited trial number (n < 10 trials per condition, see 

Major point 2 as well).

b. Fig. 5B, why does the decoding accuracy drop after integrating more features (>8)? Isn’t it 

supposed to get higher or at least stay the same?

c. Fig. 5C, it is expected to have higher decoding accuracy with more features. If authors tried to 

emphasize the importance of top 6 features for decoding, a better comparison here should be with 

models excluding randomly 6 features.

d. Fig. 5D, how to understand the negative correlation value between features 2-5 and Empathy 

strength?

6. Some analytic approaches used in this paper might not be suitable and needs additional 

controls.



d. Line 177, Is the similarity simply the correlation of rating scores from patient group and control 

group? If so, it might be problematic as the ratings here (e.g., Fig. S1) are averaged across all the 

patients or across all healthy subjects without taking into account the variations across subjects. A 

better statistical method needs to be used.

e. Line 846-848, what is the pairwise Euclidean distance between the corresponding rating 

differences for each participant pair? Even the two subject population have comparable age and 

gender, pairing subjects across groups seems nonsense.

7. The discussion section is supposed to summarize the key findings in the paper, provide 

reasonable interpretation, and inspire additional research directions. However, it is really hard for 

readers to learn from the reported results in this paper and how that could strengthen our 

knowledge about the empathy network.

a. For example, Line 620-624, author makes the claim that “increased ACC beta oscillations may 

support the top-down modulation of vicarious pain perception by prior knowledge or experience 

while decrease AI beta oscillations may associate with bottom-up affective responses triggered by 

perceived pain in others.” How does this hypothesis fits into this task?

b. Line 641 and 642, then what is the functional role of amygdala in perception of other’s pain? 

Especially with such late response

c. Line 645 to 661, what information the inter-regional communication can provide in addition to the 

power increase/decrease?

d. How to understand the results from the directionality analyses?

e. Line 680- 683, based on what results, that authors conclude that IFG might play a role in 

understanding the target’s action itself and automatic action simulation? Also, how does this 

connect to the perception of others’ pain?

8. Authors should be mindful of using terms like “first” when descripting the results. For example, 

Line 566 -568, authors claim that “our study is the first attempt to integrate region-specific neural 

oscillations and inter-regional interactions to decode vicarious pain perception, enabling us to 

characterize how these neural features jointly contributed to viscarious pain perception”. Also, Line 

1028-1030, “our study is among the first to examine the electrophysiological basis for effective 

connectivity within human empathy network, and no clear assumptions on interaction pattern 

existed.”



Minor:

1. It will be helpful to provide a schematic plot, similar to Fig. 1A, to demonstrate the post-iEEG 

session as well. Also, how much time away from pain judgement and post-iEEG session?

2. XX ± XX, standard deviation vs. standard error mean needs to be stated in the manuscript.

3. Line 142 to 144, it is helpful to show the actual value of response accuracy and response time 

along with the t-test.

4. I assume that the data was collected with Chinese instruction. We appreciate that the authors 

have translated the instruction to English (Figure 1A). It is also informative to show the original task 

instruction in a supplementary Figure.

5. Maybe Colorbar label in Figure 2E-H should not be Power, but instead a power difference (t 

value)?

6. Figure 2I-L, is the plotted power here normalized? The value seem to be around zero before t= 0. If 

so, please update the y axis to normalized power instead.

7. Fig. 2J, the figure title “Beta band” seems to be smaller than the rest.

8. Are the results (Fig. 3 and Fig. 4) only include electrode pairs within the same subject and same 

hemisphere? If so, please clarify in the text.

9. The thickness of the lines in Fig. 3A-C seems not very consistent, is this on purpose?

10. In Fig. 3D, What’s the significance level for AI-amygdala within alpha band between painful and 

nonpainful conditions?

11. It seems like transfer entropy is larger for Non-painful compared to painful conditions? What 

does that mean?

12. What is the difference between Fig.4 and Fig. S6? What is the varying vs fixed bandwidth? Also, 

why the results between IFG and amygdala are so different between Fig 4 and Fig. S6?

13. Line 787- 789, please provide details for how the arousal assessment was done in patients. 

Categorically measured or continuously measured?

14. Line 793-794, author mentioned that they have recruited the gender-matched healthy control 

group for the study, which has 22 subjects in total with 9 males while the patient group has 13 

males. So it’s not entirely matched. Please make sure the consistency of description.

15. Authors mentioned that the spikes (defined as >100uV changes between consecutive samples) 

were removed from original data. Spikes can also refer to single neuron activation. It might be less 

confusing to change it to a different term

16. Line 1015 and Line 1019, what is the cluster-based permutation here, each trial has only one 

correlation coefficient?



Reviewer #2 (Remarks to the Author):

The paper revolves around the neural underpinnings of empathy for pain using intracranial 

electroencephalography (iEEG) to elucidate with high-resolution the spatio-temporal profiles of 

neural oscillatory activity and inter-regional communications within the empathy network during 

the perception of others' pain. While the research protocol for testing empathic reactivity to pain is 

a standard one, the technique used is a sophisticated one and the analytic approach state-of-the 

art. While this paper may advance our understanding of the neural dynamics that underpins 

empathy for pain there are several points that need to be clarified

A point by point list of comments is provided below.

1. The introduction does not provide a detailed overview of the importance of empathy in social 

interactions and its neural basis. In particular, the paper does not provide a thorough and well-

defined overview of the existing literature that utilizes intracranial electroencephalography (iEEG) to 

explore empathy for pain. Notably, the works of Soyman et al. (2022) and Mo et al. (2022) are absent 

in the manuscript, leading to an incorrect assertion of the technique's novelty within the field. This 

is a major point of weakness. While this may be considered as a lack of scholarship, it may 

correspond to a simple overlook. However, discussing the above papers is fundamentally important 

for comparing the findings of the present research with what is already known.

2. The methods section detailing the use of iEEG in epilepsy patients is well-described. However, 

additional information regarding patient selection criteria, ethical considerations, and potential 

confounders would enhance the methodological robustness of the study. Moreover, it is not clear to 

me whether 6 patients were excluded because failed to complete the post iEEG session or whether 

they did not have electrodes implanted in the regions of interest. Both sentences are written in the 

manuscript, and it is hard to understand why 6 patients were excluded from the data (or if in 

different moment different 6 patients were excluded). Moreover, it might be interesting to indicate 

for each patient where the electrodes were implanted (e.g., patient 1, X electrodes in AI, X 

electrodes in ACC, etc).

3. A main concern is whether the authors have data about areas which are not involved in the 

empathic network to control for general activities (see Soyman et al., for a comparison between the 

insular electrodes and “random”electrodes). It seems that the authors use signal from white matter 

as reference but there isn’t an actual comparison between areas which shouldn’t be implicated in 

processing empathic responses.

4. Related to this, the introduction lacks the rational of selecting AI, ACC, IFG and the amygdala and 

no other areas, such as the motor or the somatosensory cortex or the mCC (Fallon et al., 2020).

5. In the neural features analysis, it is not clear why authors selected 7 features and then excluded 

the seventh one and select 6 as sufficient. Please explain this choice.

6. Other analytical choices are not clearly motivated. On page 12,line 241, for example, it is not 

clear why the authors adopt one-sided (rather than two sided) comparisons.



7. The discussion is difficult to read. I would like to suggest that the authors help the readers by 

adding title for each section (as they did for the result).

8. Previous studies hinting at the dynamic nature of brain rhythms during empathy for pain should 

be quoted and briefly discussed even if they do not use iEEG (e.g. Betti et al, 2009; Zebarjadi et al, 

2021)

Minor points

a) Some of the information in the analysis part repeated in the method section. I suggest avoiding 

presenting them twice and to leave the information sufficient to understand the analysis in the 

results section and all the details in the methodology.

b) The results are presented in a clear and logical manner. However, the manuscript is very dense, 

presenting several analyses in a way that it is hard to follow. Some sections with many statistics 

could be organized into tables.

c) Line 511: it is not clear to me why one behavioral component has been removed from this 

analysis.

d) Line 190: I would suggest the authors to state that the empathic responses to vicarious pain were 

comparable to healthy controls – more than representative of a general population.

e) Line 123- 130: this sentence needs to be rephrased

f) Line 140: felt painful

g) Supplementary tables with the subjective data of patients and controls rather than just similarity 

indices may be useful

Reviewer #3 (Remarks to the Author):

This work utilizes intracranial electrophysiological recordings in humans to examine in detail the 

complex interplay between the anterior insula, the anterior cingulate cortex, the amygdala and the 

inferior frontal gyrus across different oscillation frequencies at a millisecond timescale during 

vicarious pain perception. Highly valuable iEEG data collected from pre-clinical epilepsy patients in 

a well-established pain judgment task was analyzed with advanced intra- and inter-regional 

neurophysiological analysis techniques and the results were presented in a highly organized and 



clear manner. In addition, the relative importance, the necessity, and the sufficiency of a wide array 

of neural activity markers were assessed via a decoding algorithm to construct a neurodynamic 

model of empathy for pain. Overall, this is a very challenging, and thus highly valuable work that 

enhances our understanding of the interactions between critical brain regions that underlie 

vicarious pain representations.

I have a number of comments/recommendations that I believe will increase the impact and the 

understandability of the manuscript.

In the third paragraph of the Introduction section, immediately after discussing the limitations of 

studying empathic neural responses using fMRI and EEG/MEG and the advantages of using 

intracranial methods, the goal of the present study is introduced. This gives the feeling that 

vicarious pain responses have never been investigated before using intracranial recordings in the 

four regions of interest in the human brain. However, this is not true. The authors should refer to 

studies such as

Hutchison, W. D., Davis, K. D., Lozano, A. M., Tasker, R. R., & Dostrovsky, J. O. (1999). Pain-related 

neurons in the human cingulate cortex. Nature neuroscience, 2(5), 403-405.

Soyman, E., Bruls, R., Ioumpa, K., Müller-Pinzler, L., Gallo, S., Qin, C., ... & Gazzola, V. (2022). 

Intracranial human recordings reveal association between neural activity and perceived intensity 

for the pain of others in the insula. Elife, 11, e75197.

In the last paragraph of the Introduction section, different sentences use different tenses. For 

readability, please stick with the present or past tense consistently throughout the paragraph.

The fact that iEEG participants did not show any significant differences in accuracies and reaction 

times between the painful and non-painful stimuli during the pain judgment task is shown in 

sufficient detail. However, the average, the standard deviation, the minimum, and the maximum of 

these accuracies and reaction times for painful and non-painful stimuli are not shown in the 

Results or the Methods section. These values must be clearly reported so that the reader can grasp 

what type of performances the participants showed in the task.

In the sentence starting at line 257, it is stated that a smaller sliding window was used for the 

analysis reported in the Supplementary Figure 3. Although, it is reported clearly in the earlier pages 

that the first analysis was conducted with a 100-ms window and this analysis is conducted with a 

50-ms window, the reader has to go between several pages to fully grasp what is being changed in 

this analysis. The reader would substantially benefit if the authors clearly state here the change was 

from the earlier 100-ms to 50-ms time window.



In the sentence starting at line 257, the authors state that the smaller sliding window analyses 

showed similar temporal profiles to the longer sliding time window. However, as seen in 

Supplementary Figure 3G, there was a very critical difference in that the latency of the IFG high-

gamma responses were 160 ms, as opposed to the 60-ms latency in the analyses with the longer 

smoothing window. This latency difference challenges the neurodynamic model proposed in Figure 

6, which present very early IFG responses followed by other brain regions. The authors must 

discuss this critical difference openly in the manuscript.

In the paragraph starting at line 308, the authors use sentences as “The ACC and amygdala 

synchronized to a greater degree in the painful than non-painful conditions…”. It is as if there was 

synchronization in both conditions and one condition was higher than the other one. In fact, the 

analyses show that there was no synchronization at all in the non-painful condition. All the 

sentences in this paragraph must be rephrased to capture this critical information in order to 

prevent such misinterpretations.

In Figure 5D and the related analyses in the text, the statistical significance of the correlations 

between empathic strength and neural features are reported in detail. However, quite importantly, 

some of these correlations are positive and some are negative, which is not stated or discussed in 

the manuscript. Especially for neural features 4, 5, and 6, the direction of the correlations are quite 

surprising given the analyses reported in earlier sections of the manuscript. To take neural feature 6 

as an example, the amygdala beta oscillation analyses reported in Figure 2K shows that these 

oscillations are significantly decreased during vicarious pain. Since empathic processing would 

increase during vicarious pain, one would expect a negative correlation between these two 

measures, whereas Figure 5D shows a positive correlation. I do understand that these ladder 

analyses are conducted on painful-nonpainful conditional difference scores, and thus do no argue 

that there is necessarily an analytic error here. But these nuanced differences in analyses must first 

be explicitly stated in the Results section and then also how they should be interpreted, as well as 

their potential explanatory power in terms of the neurodynamical processes underlying empathic 

processing, must be openly discussed in the Discussion section.

In the sentences starting at line 540, the authors report that the neural activity did not vary as a 

function of arousal levels. However, whether there was a significant difference between the painful 

and on-painful stimuli in these arousal levels is not reported. The results of such an analysis must 

be reported here.

The Discussion section would benefit substantially if the authors discuss their anterior insula 

findings in relation to the findings of the Soyman et al. (2022) study, which analyzed intracranial 



recordings from the insula while the participants engaged in a vicarious pain perception task 

similar to the one used in this study.

In the sentence starting at line 769, the authors state that the participants pressed the left or right 

button for reporting their answers for the presence or the absence of pain. Was the assignment of 

the buttons to the responses randomized across trials or participants? If not, wouldn’t the 

systematic association of one motor behavior with one response lead to systematic biases in the 

neural responses?

In the sentences starting at line 774, the authors state that the 20 pictures were shown once, which 

means that the maximum number of trials that could go into any analysis was 20. Furthermore, in 

the sentence starting at line 913, it is stated that any channel with more than 30% epochs removed 

from either painful or non-painful conditions was excluded. This means that it was possible for a 

channel to be included in the analyses if it had 7 painful and 7 non-painful trials. For 

electrophysiological analyses, these are surprisingly low numbers of trials. In addition, some of the 

analyses in the manuscript are conducted by taking the conditional difference between matched 

pairs of painful and non-painful stimuli. If unmatched trials were rejected, these analyses would be 

conducted with even lower numbers of matched trials. For each analysis, the author must report 

the mean, the standard deviation, the minimum, and the maximum number of trials (across 

channels) that were taken into account when computing that particular metric or conducting that 

analysis for transparent reporting of the analytical procedures.

The MNI coordinates of all channels included in the final analyses must be reported in a 

supplementary table or file. In addition, this file must have, for each channel, the MNI coordinates 

of the nearest white-matter neighbor reference channel used in the bipolar montage analyses. In 

the Methods section, around the sentence starting at line 899, the authors must clearly state, in 

this bipolar montage referencing, whether the same nearest white-matter reference channel was 

used for channels that were placed in different regions in the brain. The purpose of the bipolar 

analyses is to overcome the potential problem of increasing the estimated correlations between 

different brain regions that can stem from having the same reference signal for those brain regions. 

Thus, the authors must clearly state that indeed different reference channels are used for channels 

in different brain regions in the bipolar montage.

In the sentence starting at line 1039, the authors state that transfer entropy was computed at a lag 

of 10 ms. Considering that the spectral power data was down-sampled to 100 Hz and a 100-ms 

sliding time window was used for sliding, responses at a 10-ms lag would be heavily influenced by a 

wide temporal window that intersects at a substantial amount of earlier and later time points in the 

two channels. The transfer entropy analysis must be conducted at various lags starting from 0 ms 

to 100 ms to assess the sensitivity of the reported results.



Reviewer #4 (Remarks to the Author):

I co-reviewed this manuscript with one of the reviewers who provided the listed reports as part of 

the Nature Communications initiative to facilitate training in peer review and appropriate 

recognition for co-reviewers.



 Responses to Reviewer #1’s comments:

Summary: The dataset is unique and precious, with unparalleled spatiotemporal resolution in
understanding the perception of others’ pain in humans. The results are interesting and
potentially provide circuit-level understanding for the proposed empathy network. However, the
manuscript is not very well written, missing clear theoretical motivation, clarification of method
selection, and interpretation of findings. I have listed several major concerns and some minors as
well that need to be addressed to meet the quality standard to be published in Nature
Communication.

General response: We appreciated the questions about the methodology and analysis
details, and constructive suggestions for the introduction and discussion sections. In
preparing the revision, we made appropriate and significant revisions to the
Introduction and Discussion to include discussion of relevant key literature, make our
research background, question, and motivation clearer, and provide interpretation of
the main findings. Second, we have conducted all the required and additional analyses.
We are happy to report that these new analyses confirmed our initial findings and
added to our understanding of the neural dynamics of vicarious pain perception.
Specifically, we collected new data to demonstrate the stable subjective rating and
verify our observation between neural features and subjective ratings. We also
conducted a series of analyses to show the robustness of our results and results from
data simulation indicated that our decoding accuracy was reliable and insensitive to the
number of trials. Third, we provided a comprehensive explanation for our rationale
behind each analysis, elaborated on the experimental procedure, clarified the analysis
pipelines, and provided additional details about our methodology in the revised
Method and Supplementary Materials.

#Point 1. The introduction needs to be better written to: 1) include more information that inspires
and is related to this study. For example, more literatures of anatomical/functional connectivity
within this empathy network, similar to Line 106-107, can help readers better understand the
motivation of looking into these four regions. 2) the content in each paragraph should have a clear
topic. For example, Line 73- 81 and its following paragraph seem to contain redundant information,
please consider rephrase the paragraph and make the description consistently and concisely. 3)
clarify the findings from previous literatures and how it inspires this study. For example, line 70-71,
what does the prior knowledge mean in this sentence “The ACC activity also mediates the
top-down modulation of empathic responses to others’ pain (e.g., prior knowledge27).”

Response: We thank Reviewer #1 for these very helpful suggestions to improve the
Introduction. Accordingly, we have re-written the Introduction (Pages 3-6 Lines
51-148) to make our research background, question, and motivation clearer.
Specifically, we i) provided a more detailed literature overview of empathy-related
neuroscience findings; ii) illustrated how these lines of literature motivated research
questions of the current study; and iii) re-structured the Introduction so that the topic of
each paragraph was clear to the audience. We hope that you agree that these changes
helped to create an improved, clearer Introduction.



#Point 2. The task design has some potential pitfalls that raise concerns about whether it is
suitable to address the scientific questions tested here.
2a. As authors reported (line 753-754), there were only 10 painful stimuli and 10 non-painful
stimuli in this task, that only presented once. The actual trial numbers included in this task would
be even smaller, after excluding the trials with incorrect pain judgement and inter-ictal discharges.
It is questionable whether such limited trial number (n < 10 per condition) has enough statistical
power, especially for SVM decoding analyses (see Major point 5 as well).

Response:We thank Reviewer #1 for raising this question, which provides us with the
opportunity to clarify this issue. Accordingly, we i) presented evidence from the
literature justifying the exceptionally high signal quality of iEEG as a means to
illustrate the feasibility of utilizing limited number of trials (Ball et al., 2009; Parvizi &
Kastner, 2018; Mercier et al., 2022); ii) provided evidence from previous studies (Shao
& Lunetta, 2012; Stelzer et al., 2013;Valizadeh et al., 2019) supporting that our choice
of decoding approach and decoding parameters can mitigate the potential impact of
low trial numbers on the neural results (Page 44 Lines 1236-1241, Lines 1244-1251);
and iii) performed data simulation to directly examine how changes in trial numbers
affected the decoding performance in our dataset, thus confirming the robustness of
our findings. Detailed clarifications and results were elaborated below. In addition, we
have now explicitly acknowledged the potential limitation of low trial numbers and
encouraged future studies to examine empathic neural responses with larger trial
numbers in the revised Discussion (Page 28 Lines 759-763).

i) As pointed out the reviewer, the number of trials in our study was relatively limited
compared to fMRI and scalp EEG studies. We made this choice due to a) the clinical
and hospital constraints associated with intracranial EEG recording and b) the practical
consideration that patients were donating their time and energy during a challenging
period (Parvizi & Kastner, 2018; Mercier et al., 2022). Therefore, we minimized the
experimental duration (Mercier et al., 2022) and reduced the number of trials
accordingly. However, this potential limitation in trial numbers can be compensated for
by the exceptional signal-to-noise ratio (SNR) observed in iEEG data compared to
fMRI or scalp EEG data (Parvizi & Kastner, 2018; Mercier et al., 2022). For example,
when simultaneously recording scalp EEG and iEEG signals, Ball and colleagues
(2009) found that the signal quality of iEEG data was 20 to over 100 times better than
that of scalp EEG. Furthermore, recent iEEG studies have demonstrated that, with the
high SNR of iEEG data, particularly in functionally specialized brain regions,
stimulus-evoked neural responses can be reliably observed using fewer trials (Mercier
et al., 2022; Lachaux, 2023). For example (Fig. R1, adapted from Mercier et al., 2022,
Fig. 11), broadband and high-frequency neural activity can be reliably observed with
just 2 trials while maintaining consistent patterns across a range of 2 to 59 trials.



Figure R1. Neural responses with different number of averaged trials. The broadband activity (A)
and the magnitude envelope of high-frequency activity (40-150 Hz, B) showed similar patterns
across a range of 2 to 59 trials (adapted from Mercier et al., 2022, Fig. 11).

ii)When conducting the decoding analysis, we also took into consideration the limited
number of trials and carefully selected an appropriate approach and model parameters
to mitigate the potential impact caused by a small trial number. We opted for the
support vector machine (SVM) approach, which has been demonstrated to be suitable
for decoding analysis with a small sample size (LaConte et al., 2005; Fan et al., 2007;
Linn et al., 2016). The SVM was found to be less sensitive to the size of the training
sample compared to other classification algorithms such as multilayer perceptron
neural networks, and classification and regression trees (Shao & Lunetta, 2012;
Valizadeh et al., 2019). For example, researchers found that there was only around a
3% difference in decoding accuracies achieved by SVM when using 20 samples vs.
800 samples to train the model (Fig. R2, adapted from Shao & Lunetta, 2012, Fig. 2).
The SVM has been widely used in studies with limited sample sizes, demonstrating
relatively high decoding accuracy even when applied to small datasets (e.g., Bisenius
et al., 2017; Levitt et al., 2020; Wu et al., 2023). In addition, we opted for a “linear”
kernel instead of a “non-linear” kernel when constructing the SVM classifier to reduce
model complexity and minimize the likelihood of overfitting due to the small sample
size (Han & Jiang, 2014).

Moreover, we employed permutation testing to assess the statistical significance of the
decoding accuracy, which provides robust statistical control over the decoding
accuracy, particularly when dealing with small sample sizes (Stelzer et al., 2013;
Combrisson & Jerbi, 2015; Varoquaux, 2018). By implementing multiple random
shuffling of class labels, permutation testing allows us to estimate chance-level
decoding accuracy while considering sample size and controlling for its impact on the
variability of decoding accuracy (Combrisson & Jerbi, 2015). Specifically, we
randomly shuffled class labels (painful vs. non-painful) for multiple times while



maintaining other characteristics of the SVM model unchanged, including the sample
size (trial number). This generated an empirical distribution of chance-level decoding
accuracy that well-captured the variability of decoding accuracy corresponding to the
current sample size. We assessed the significance of our observed decoding accuracy
based on this permutation distribution. Therefore, we utilized permutation testing as a
reliable approach to determine statistical significance and ensure the reliability of our
result, especially when dealing with low trial numbers as in the current study.

Figure R2. The classification performance for SVM, multilayer perceptron neural networks (NN),
and classification and regression trees (CART) using a range of training sample sizes (adapted from
Shao & Lunetta, 2012, Fig. 2).

iii) Besides carefully considering methodological factors and drawing empirical
supports from existing literature, we conducted additional data simulation analyses
based on our own dataset to assess the impact of trial numbers on decoding accuracy
and further validate the stability of our findings. Similar to previous data simulation
work (Chu et al., 2012; Nieuwenhuis et al., 2012; Valizadeh et al., 2019), we
performed random resampling of trials and channels/channel-pairs to create different
data pools differing in sample sizes of training data (ranging from 7-50 trials per class,
200 resampled datasets for each training sample size). For each resampled dataset, we
repeated the classification procedure using a linear SVM algorithm combined with
five-fold cross-validation to classify painful and non-painful stimuli (the same
procedure as our original analysis). We found that the classification performance
showed low variability across different resampled datasets (relatively small standard
errors) in each sample size (Fig. R3). Moreover, the results obtained from our data
simulation analysis also suggested relatively stable classification performances across
different training sample sizes (Fig. R3), as changing the number of trials containing
similar information as our original dataset would only result in slight changes (5.5%
difference in decoding accuracy between 7 and 50 trials) in the decoding accuracy.
These results aligned with previous SVM studies (Shao & Lunetta, 2012; Valizadeh et
al., 2019) and further demonstrated that our decoding results was insensitive to
variations in trial numbers.



Finally, although the number of trials only slightly influenced the decoding accuracy,
we admitted that a larger number of trials will be beneficial and recommended using
datasets with larger trial numbers to further examine observed empathy-related neural
features in the revised Discussion (Page 28 Lines 759-763).

Figure R3. The decoding accuracy for different training sample sizes (trial numbers) in the data
simulation analysis of our own dataset. We observed only slight increases in the overall decoding
accuracy when the training sample size (per class) increased from 7 to 50 (5.5% difference in
decoding accuracy). Error bars show the standard errors.

#Point 2b. A subgroup of participants (16/22) provided their subjective ratings, including empathy
strength, intensity of perceived pain in others, own unpleasantness during the post-iEEG period,
which were likely collected several days after participants performed the original task recording.
How representative these subjective ratings were in reflecting participants’ internal states when
performing the original task? Author should provide evidence to support the utilization of such
subjective ratings that were collected far away from the original experiment. Also, the subjective
ratings are collected during the second exposure to the stimuli that might be influenced by the
adaptation effect. Therefore, the results in Fig. 6 that that use the neural features collected during
real experiment and ratings during post-iEEG period is hard to interpret.
Minor #point 1. It will be helpful to provide a schematic plot, similar to Fig. 1A, to demonstrate
the post-iEEG session as well. Also, how much time away from pain judgement and post-iEEG
session?

Response: In response to questions regarding the post-iEEG ratings, we i) provided a
comprehensive explanation for our rationale behind using the post-iEEG rating
procedure (Page 31 Lines 842-849); ii) elaborated on the experimental procedure used
to collect post-iEEG ratings (revised Fig. S11); iii) presented our interpretation of the
correlation between neural features and subsequent post-iEEG ratings; and iv)
recruited an independent cohort of participants to validate the reliability of ratings
collected on different days.

The decisions to employ a pain-judgment task during iEEG recording and to collect
subjective ratings related to empathy after, but not during, iEEG-recording were made



based on several considerations. a) The majority of previous neuroimaging studies on
empathy for other’s pain have asked participants to passively view painful (and
non-painful) stimuli or perform pain judgment during EEG or fMRI signal recordings
and have successfully elicited empathic neural responses, and collected subjective
ratings after neural recordings (Avenanti et al., 2005; Fan & Han, 2008; Xu et al., 2009;
Morelli & Lieberman, 2013; Chen et al., 2014; Feng et al., 2016; Huang et al., 2023). b)
Moreover, it has been shown that reporting subjective experience of empathy can
evoke intentionally controlled empathic processes instead of voluntarily focusing their
empathy on others (de Greck et al., 2012). Therefore, by utilizing a simple
pain-judgment task during iEEG recording and the post-iEEG rating procedure, we
aimed to capture spontaneous neural processing of empathy for others’ pain rather than
intentional, response-type modulated empathy and avoid potential influence on the
empathic neural responses caused by self-report empathic ratings. c) This experimental
design enabled us to separately measure different dimensions of empathy-related
ratings. These advantages led us to choose collecting empathy-related ratings after
(rather than during) iEEG recording. As pointed out by the reviewer, we also had
considered the potential adaptation effect caused by immediate repeated exposure to
experimental stimuli. To minimize potential adaptation effects, we had decided to
collect the empathy-related ratings on separate days. In addition, we provided a
schematic plot to elaborate on the procedure of the post-iEEG rating session (revised
Fig. S11).

It is important to note that, despite the separate acquisition of our empathy-related
neural features and subjective ratings, we indeed observed significant correlations
between these neural features and subjective ratings. Furthermore, these correlations
were robustly observed in different neural features and survived a stringent statistical
correction for multiple comparisons. Consistent with our observation, such
neural-subjective rating associations have been previously reported in studies where
participants’ ratings were also collected after the neural recordings (Fan & Han, 2008;
Han et al., 2008; Chen et al., 2014; Feng et al., 2016; Gonzalez-Liencres et al., 2016;
Huang et al., 2023). Therefore, we believe that the observed associations between
neural features and post-iEEG ratings are reliable. We hypothesize that this may be
attributed to the relative stability of participants’ empathy-related subjective feelings
towards targets’ pain over time or across different sessions.

We then empirically tested this possibility by examining the consistency of
empathy-related subjective ratings over time with experimental data. To this end, we
recruited a new sample of healthy participants (n = 29; 18 males, age = 22.24  7.99
years old) and asked them to provide empathy-related ratings (including subjective
ratings of empathy strength, intensity of perceived pain in others, and one’s own
unpleasantness) for our experimental stimuli on separate days with a relatively long
interval. We found that empathy-related subjective ratings demonstrated considerable
stability across time, providing further evidence supporting our hypothesis about the
associations between neural responses and subjective ratings on separate days.



Specifically, we conducted two sets of analyses to assess the similarity between ratings
collected on separate days. a) We assessed the differences between ratings from two
sessions. More importantly, b) we examined the cross-stimulus correlation between
ratings from two sessions. Each set of analysis was performed among all stimuli
(including painful and non-painful stimuli), followed by further examinations of only
painful stimuli to check the robustness.

a) We constructed linear mixed models to test the significance of differences in rating
scores between Time 1 and Time 2 while controlling for individual variations among
participants (Model: Rating difference (Time 1-Time2) ~ 1 + (1|subject)). This analysis
suggested that there were no significant differences in subjective ratings across the
two sessions for each dimension (all stimuli, empathy strength: FDR-corrected p =
0.108; perceived pain intensity: pFDR = 0.711; unpleasantness: pFDR = 0.711). Similar
patterns were observed when only painful stimuli were included (empathic strength:
pFDR = 0.942; perceived pain intensity: pFDR = 0.888; unpleasantness: pFDR = 0.678).

b) Moreover, consistent with previous studies (Knoll et al., 2015; Lin et al., 2021), we
constructed linear mixed models to test for the correlation between ratings of Time 1
and ratings of Time 2 while adding participants as a random effect to control for
individual variations among participants (Model: Rating(Time2) ~Rating(Time1) +
(1|subject)). This analysis showed that subjective ratings of two time points were
highly correlated with each other (all stimuli, empathy strength: β = 0.92, SE = 0.02,
t479 = 61.08, pFDR < 0.001; perceived pain intensity: β = 0.97, SE = 0.01, t481 = 92.88,
pFDR < 0.001; unpleasantness: β = 0.99, SE = 0.01, t486 = 84.57, pFDR < 0.001; even
when only painful stimuli were considered: empathy strength: β = 0.55, SE = 0.05, t265
= 10.68, pFDR < 0.001; perceived pain intensity: β = 0.59, SE = 0.05, t256 = 12.94, pFDR
< 0.001; unpleasantness: β= 0.66, SE = 0.05, t260 = 14.61, pFDR < 0.001).

These results suggested that the empathy-related subjective ratings were relatively
stable over time, providing important evidence supporting the reliability of our
post-iEEG ratings and relevant findings.

#Point 3. Almost all the results reported here are based on the statistical testing between painful
and non-painful conditions. However, to claim that the observed neural features are due to the
perception of others’ pain, it is also important to demonstrate the significance level within each
condition. Because a given neural signature might show significant difference across conditions
but not significant within condition. Below are listed several analyses are related to this concern.

Response: This is an excellent point, and we now have tested the significance of each
condition. In the revised manuscript, we have made adjustment to the reporting
structure of our results. For each analysis, we first reported the results of the contrast
between painful and non-painful conditions. We then separately presented the
statistical significance of the corresponding neural index for painful and non-painful
conditions in relation to significant conditional differences.



#Point 3a. Figure 2E-H, is power in painful or nonpainful condition significantly different from the
baseline? It is worth extending the analysis window to baseline to ensure that the conditional
differences are due to the process of painful vs nonpainful stimuli.

Response: Following suggestions of the reviewer, we examined the significance of
spectro-temporal power within each condition by conducting two-tailed one-sample
t-tests separately for painful and non-painful conditions on clusters with significant
conditional differences (revised Methods, Pages 37-38 Lines 1044-1047). The results
revealed that all these clusters exhibited significant power changes in at least one
condition (results were reported in Pages 10-11 Lines 250-267; see Fig. R4, revised
Fig. S2).

Second, per the reviewer’s suggestion, we extended the analysis window to include the
baseline period (i.e., 200 ms prior to stimulus onset). Our findings indicated that i) no
clusters with significant conditional differences were observed before stimulus onset
and ii) all results reported in the original manuscript remained unchanged (Fig. R5).

These two lines of evidence confirmed that the observed conditional differences were
indeed associated with the processing of others’ pain (vs. non-pain). We thank the
reviewer for this suggestion, as it has allowed us to gain a better understanding of
empathic neural responses by unveiling distinct patterns to painful and non-painful
conditions in different brain regions. Our findings indicated an increase in oscillatory
power for the low-frequency bands of AI (Fig. R4A, B), ACC alpha band (Fig. R4C,
D), and amygdala beta band (Fig. R4E, F) in the non-painful condition, while the
perception of other’s pain suppressed the oscillatory power. In contrast, we observed a
decrease in beta power for ACC in the non-painful condition, and empathic pain
perception enhanced ACC beta power (Fig. R4G, H). In the IFG, we found a
high-gamma power increase for both painful and non-painful conditions, with a more
substantial increase in the painful condition (Fig. R4I, J).



Figure R4. Spectro-temporal power for each condition in the AI, ACC, amygdala, and IFG. Split-half
violin plots indicate the probability density of the averaged power across time-frequency points that
exhibited significant conditional differences (significant clusters in Fig. 2e-h) in each condition for the
AI low-frequency cluster (A, B), ACC alpha cluster (C, D), amygdala beta cluster (E, F), ACC beta
cluster (G, H), and IFG high-gamma cluster (I, J). The boxplots showed the interquartile range of 50%
with lower and upper quartile limits at 25% and 75%, respectively. Within the boxplot, the middle line
represents the median and whiskers are extended to the most extreme data points that are no more than
1.50 times the interquartile range. *p < 0.05, **p < 0.01, ***p < 0.001, NS, not significant.

Figure R5. Spectro-temporal power differences in the AI, ACC, amygdala, and IFG when
including the baseline period. The spectro-temporal power differences between the painful and
non-painful condition from 200 ms before to 500 ms after the stimulus onset for the AI (A), ACC
(B), amygdala (C), and IFG (D). Significant clusters are highlighted with black contours (corrected
p < 0.01, 1000 permutations, survived the cluster-based permutation test for multiple comparisons)
with insignificant time-frequency ranges presented with transparency. Warmer colors indicate
higher t values. Horizontal dashed lines indicate boundaries between frequency bands and Hγ
represents the high-gamma band.



#Point 3b. Fig. 3A-C, what’s the actual correlation value without Fisher-z-transfer? Also, whether
this is significant before comparing across conditions The following statement can be hardly
supported with the current figure: “AI-amygdala pairs showed significant alpha/beta power
correlations in both painful (8-35 Hz; Fig. 3C) and non-painful (8-34 Hz; Fig. 3C) conditions.” Is the
significance measured simply against to zeros?
#Point 4a. Fig. 3A-C and Line 999-1001, the power correlation analysis was focused on the
channels showing significant power difference between painful and non-painful conditions.
However, the computation of power correlation analysis itself was done individually on each
condition first and then compare across. Then why significant power differences should be a
selection criterion here for the power correlation analysis? Also, even with this selection criteria,
why the power correlation analysis are not covering theta band, which AI (Fig. 2E) shows
significant power difference between painful versus nonpainful conditions?

Response: The points #3b and #4a, both pertaining to the analyses of power
correlations (Fig. 3a-c), were collectively addressed here. In summary, i) regarding the
Fisher-z-transformation for power correlation values, we provided a detailed
explanation for the necessity of Fisher-z-transformation before conducting further
statistical analyses on the coefficients. Additionally, we presented the raw power
correlations without Fisher-z-transformation to indicate that this transformation did not
introduce any distortions to the original result pattern. ii) We clarified how we
identified frequency bands of interest for the power correlation analysis (revised
Results, Page 13 Lines 319-322, Lines 325-331). iii) To address concerns about single
conditions, per reviewer’s suggestion, we examined the significance of power
correlations within each condition in frequency ranges showing significant conditional
differences in power correlations (revised Methods, Page 40 Line 1118-1123; results
were reported in revised Results, Pages 13-14 Lines 338-351).

 i) Regarding the Fisher-z-transformation for the power correlation values

According to the suggestion of Cohen (2014), we applied the Fisher-z transformation
to the power correlation values in order to satisfy the assumption of normal
distribution for statistical evaluation. Correlation coefficients do not follow a normal
distribution; instead, they have a bounded distribution between -1 and +1. Therefore, it
is necessary to transform correlation coefficients prior to statistical evaluation (Cohen,
2014). The Fisher-z transform, as the most typical transform for correlation
coefficients (Bichot et al., 2015; Caggiano et al., 2016; Mann et al., 2017), can
effectively “stretch out” the data range to achieve a broader and more normal-looking
distribution (Fig. R6, adapted from Cohen, 2014, Fig. 27.3). This transformation was
commonly employed in previous studies for assessing the significance of correlation
values (Oehrn et al., 2018; Sterpenich et al., 2021). For illustrative purpose, here we
also presented the original power correlation values (without Fisher-z transformation),
which exhibited an extremely high level of similarity with those obtained after
applying the Fisher-z-transformation (Fig. R7).



Figure R6. The distribution of correlation coefficients without (A) or with (B)
Fisher-z-transformation. The distribution of Fisher-z-transformed correlation coefficients (B) was
more normal-looking (adapted from Cohen, 2014, Fig. 27.3).

Figure R7. Power correlations between ACC, AI and amygdala without (A-C) or with (D-F)
Fisher-z-transformation. Purple (painful condition) and gray (non-painful condition) lines (shadows)
indicate the mean (standard error) of frequency-resolved power correlations across all channel pairs.
Dashed vertical lines indicate boundaries between frequency bands.

 ii) Frequency bands of interest for power correlation analysis

Below and in the revision (revised Results, Page 13 Lines 319-322, Lines 325-331), we
have provided further clarification on how we identified the frequency bands of
interest for power correlation analysis. Specifically, this identification was based on a
comprehensive review of studies investigating the neurophysiological basis of
inter-regional interactions and low-frequency coupling, as well as the results of our
time-frequency analysis. i) Local neural oscillations have been found to be closely
associated with inter-regional functional interactions (Fries, 2005; Donner & Siegel,
2011; Siegel et al., 2012; Snyder et al., 2015). For example, Snyder et al. (2015) found
that EEG oscillation amplitude was related to an index of functional connectivity at the



neuronal level (i.e., correlation of spike count across neurons). Siegel et al. (2012)
pointed out that local neural oscillations provided a fundamental temporal scaffolding
for inter-regional communications and therefore, the frequency of these oscillations
may be an important factor in determining the frequency of inter-regional interactions.
Therefore, most studies assessing inter-regional interactions focused on frequencies of
functionally relevant neural oscillations (Oehrn et al., 2018; Griffiths et al., 2019;
Chen et al., 2021). ii) The research on low-frequency coupling predominantly focused
on cross-region, same-frequency coupling (Kam et al., 2019; Li et al., 2022; Manssuer
et al., 2022). This focus was supported by a plausible mechanistic explanation that
synchronized oscillations of distinct neuronal groups operating at the same frequency
can coordinate the rhythmic opening of their communication windows, thereby
facilitating effective inter-regional communications (Fries, 2005). Due to the emphasis
on same-frequency coupling, previous investigations primarily measured
low-frequency coupling in overlapping frequency bands across different brain regions
(Kam et al., 2019; Chen et al., 2021).

Based on these two lines of evidence, our power correlation analysis focused on the
empathy-relevant frequency bands that overlapped between each pair of brain regions.
Specifically, we focused on the overlapping frequency bands that significantly
differentiated painful from non-painful conditions in different brain regions, namely
the beta band for ACC-amygdala and AI-amygdala pairs, as well as the alpha and beta
bands for the ACC-AI pairs (see updated results in Fig. R8, revised Fig. 3a-c).

For illustrative purposes only, we also presented here power correlation results
including all low-frequency bands, which further confirmed the robustness of our
findings (still surviving correction for multiple comparisons) and not contingent upon
our criterion for frequency bands of interest (Fig. R9).

Figure R8. Power correlations between ACC, AI and amygdala in the frequency bands of
interest. (A-C) Power correlations (z-scored) averaged across all channel pairs are plotted as a
function of frequency for ACC-AI (A), AI-amygdala (B), and ACC-amygdala (C) pairs.



Figure R9. Power correlations between ACC, AI and amygdala for all low-frequency bands.
(A-C) Power correlations (z-scored) averaged across all channel pairs are plotted as a function of
frequency for ACC-AI (A), AI-amygdala (B), and ACC-amygdala (C) pairs.

 iii) Power correlations within each condition

We followed the same logic as shown in response to Point #3a. We first identified the
frequency ranges with significant conditional differences in power correlations
(revised Fig. 3a-c). Subsequently, we assessed the significance of power correlation
within each condition for these frequency ranges (revised Methods, Page 40 Line
1118-1123). This analysis indicated that all the frequency ranges (with significant
conditional differences) were accompanied by significant power correlations in at least
one condition (results were reported in Pages 13-14 Lines 338-351; see Fig. R10,
revised Fig. S4). Specifically, we found significant synchronization between the ACC
and AI at 25-32 Hz and between AI and amygdala at 18-24 Hz in the non-painful
condition, but this synchronization was inhibited or absent during the perception of
others’ pain (Fig. R10A-D). While the ACC-amygdala synchronization at 18-22Hz was
only observed in the painful condition but not in the non-painful condition (Fig. R10E,
F), the ACC-amygdala synchronization at 25-30Hz was only observed in the
non-painful condition, not in the painful condition (Fig. R10G, H).



Figure R10. Power correlations between ACC, AI and amygdala within each condition. Purple
(grey) split-half violin plots indicate the probability density of the averaged Fisher-z-transformed
power correlation values across frequency ranges that significantly differentiated between painful
and non-painful stimuli (significant clusters in Fig. 3a-c) in the painful (non-painful) condition for
ACC-AI (A, B), AI-amygdala (C, D), and ACC-amygdala (E-H). The boxplots showed the
interquartile range of 50% with lower and upper quartile limits at 25% and 75%, respectively.
Within the boxplot, the middle line represents the median and whiskers are extended to the most
extreme data points that are no more than 1.50 times the interquartile range. ***p < 0.001, NS, not
significant. βlow/high, low (high) frequency range within the beta band.

#Point 3c. Fig. 4A-C, what phase-amplitude coupling look like for painful or non-painful condition
separately? Are they significant within condition as well?

Response: Per reviewer’s suggestion, we conducted additional analyses to assess the
significance of phase-amplitude coupling (PAC) within each condition (revised
Methods, Pages 42-43 Lines 1186-1195). Following the same logic as shown in
response to Point #3a & 3b, we examined the PAC within each condition in the
spectral pairs showing significant conditional differences in PAC. It is important to
note that PAC values were indexed by circular-linear correlation coefficients (see
formula (1)), thus the PAC values were non-negative (i.e., larger than 0, Zheng et al.,
2017, 2019). Thus, we could not simply conduct one-sample t-tests to test the
significance of PAC values for each condition.
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Where rca = c(cos�[�], a[n]), rsa = c(sin�[�], a[n]) and rcs = c(cos�[�], sin�[�]), with
c(x, y) equal to the Pearson correlation between x and y, �[�] equals to the
instantaneous phase, and a[n] equals to the instantaneous analytic amplitude.

To solve this issue, we assessed the significance of PAC values for each condition
using permutation tests. Within each permutation, we cut the amplitude time series at a
random time-point into two parts and then reversed the order of these two parts to
generate the permutated amplitude time series (Zhang et al., 2017; Hülsemann et al.,
2019). Same analyses of PAC were then applied to the permutated data and the PAC
values were averaged across all channel-pairs to generate a distribution of permuted
PAC values (200 permutations). The PAC value of painful or non-painful condition
was compared to this permutation distribution, which was defined as significant if it
was larger than 95% of this permutation distribution (Mukamel et al., 2014; Zhang et
al., 2017). Results showed significant PAC between high-gamma amplitude of IFG and
the beta phases of ACC/AI/amygdala or alpha phase of AI specifically in the painful
condition (results were reported in Page 16 Lines 425-426; Fig. R11, revised Fig. S5).

Figure R11. Phase-amplitude coupling (PAC) between ACC/AI/amygdala and IFG within each
condition. Bar plots indicate the averaged Fisher-z-transformed PAC values across spectral pairs
that significantly differentiated between painful and non-painful stimuli (significant clusters in Fig.
4a-c) in each condition for ACC-IFG (A, B), AI-IFG (C-F), and amygdala-IFG (G, H). Horizontal
dashed lines correspond to a threshold for a p value of 0.05. Error bars represent standard errors.
**p < 0.01, NS, not significant.



#Point 4b. Fig. 3D-E, is there any evidence to support the exclusion criteria for the Transfer
entropy analysis? Authors wrote that (line 324 -326) “situations without significant power
correlation indicated that no meaningful functional interaction was involved and further
investigation on the information transfer flow was unwarranted.” First, various of methods that
quantifies inter-regional functional interactions are phase based (e.g., phase locking value) that
does not require strong power correlation. Therefore, power correlation is not necessary for
meaningful functional interaction. Second, based on the definition of transfer entropy as the
author described (Line 1031 -1033), it is possible to have it without significant increased power
correlation. The directionality could be totally independent from this. So why significant power
correlation should be a selection criterion here?
# Point 10. In Fig. 3D, What’s the significance level for AI-amygdala within alpha band between
painful and nonpainful conditions?

Response: We agree with Reviewer 1’s perspective that power correlations analysis
and transfer entropy (TE) analysis could be performed as separate analyses, and we
have removed the aforementioned sentence from the revised manuscript. Instead, in the
revision (revised Results, Page 14 Lines 353-355), we clarified that the purpose of
employing transfer entropy analysis was a follow-up analysis to the power correlation
analysis. This choice was made because our specific research question in the current
study aimed to reveal the direction of inter-regional interactions already exhibiting
significant power correlation, rather than addressing a general question about the
overall direction of all low-frequency coupling. Therefore, we decided to perform TE
analysis on frequency bands demonstrating significant power correlations.

Unlike PAC, which can reflect directional information indicating whether the
low-frequency phase of one brain region entrains or modulates the high-frequency
amplitude of another region (Jensen & Colgin, 2007; Canolty & Knight, 2010; Zheng
et al., 2019), power correlation itself cannot convey directional information about
inter-regional interactions (Cohen et al., 2014). Therefore, we aimed to uncover
additional directional information through transfer entropy analysis to enhance readers’
understanding of our power correlation results (a follow-up analysis rather than an
independent analysis) (revised Methods, Page 40 Lines 1125-1128). Based on this
rationale, we only computed the transfer entropy within the frequency ranges that
exhibited significant conditional differences in power correlations (Fig. R12, revised
Fig. 3d-f).

In addition, in response to Reviewer 1’s questions, we conducted an exploratory
analysis on transfer entropy across all overlapping empathy-relevant frequency bands
for each pair of brain regions. This analysis yielded the same patterns of main effects
or interactions (Fig. R13) as those revealed using our ‘power-correlation based’
frequency bands. Moreover, the significant frequency ranges identified in this analysis
largely overlapped with the frequency range of interest in our ‘power-correlation based’
transfer entropy analysis (Fig. R12, Fig. R13). This analysis provided further support
for the robustness and reliability of our transfer entropy findings.



Figure R12. Transfer entropy (TE) for ACC-AI (A), AI-amygdala (B), and ACC-amygdala (C). Purple
(painful) and gray (non-painful) violin plots indicate the probability distribution of TE values, with inner
boxplots showing the interquartile range of 50% (lower and upper quartile limits are 25% and 75%).

Figure R13. Transfer entropy (TE) for all overlapping empathy-relevant frequency bands for
each region-pair. Transfer entropy averaged across all channel pairs are plotted as a function of
frequency for the main effect of pain in ACC-AI (A), the interaction effect in AI-amygdala (B) and
the main effect of pain in ACC-amygdala (C).

#Point 5. Question about the SVM analyses
a. Line 1087-1089, it seems like authors split the dataset for training and testing at the channel
level. Does that mean authors were decoding the subjective ratings across participants? If so, I
found this very problematic, as the subjective ratings across participants might not consistent with
each other, and also the neural signatures might contain individual variations. If not, I found it
hard to decode within participant with such limited trial number (n < 10 trials per condition, see
Major point 2 as well).

Response: We appreciate Reviewer 1 for raising this question, which provides us with
an opportunity to clarify the methodological details of our decoding analysis. Please
allow us to clarify here and in the revision, that we did not split the dataset at the
channel level for training and testing, nor did we preform cross-participant decoding.
In the revision (revised Methods, Page 43 Lines 1199-1210, Page 44 Lines 1228-1231),
we clarified that we employed a two-step data split procedure for the decoding
analysis.



 The rationale and methodological details of the first-step data split:
Similar to previous studies (Weston et al., 2000; Vandana & Chikkamannur, 2021), we
performed the feature selection independent of the learning of classifier parameters.
We divided our data set into two parts: i) a feature-identifying dataset (70%) to
identify neural features that were selective for painful stimuli; ii) a decoding dataset
(30%) to construct the classification model. This data split was performed at the
channel or channel-pair levels. Please note that this split was done prior to conducting
the decoding analysis, and both decoding model training and testing was carried out
using only the second dataset. This first-step data split was taken in order to ensure that
the neural features were identified independent of the decoding dataset (Kriegeskorte
et al., 2009; Pereira et al., 2009).

 The rationale and methodological details of the second-step data split:
We constructed the classification model using the decoding dataset. Within this dataset,
we computed the average of each identified feature across channels (or channel-pairs)
to obtain the neural features for each trial. The decoding analysis was then performed
across trials (not participants) to decode the stimulus type (painful vs. non-painful).
Then a second-step data split was implemented: i) training and ii) testing datasets. This
involved utilizing a five-fold cross-validation approach, where all trials were divided
into five separate folds, with each fold used in turn for testing and the remaining folds
for training (Pereira et al., 2009; Quandt et al., 2012). Regarding concerns about the
trial number for decoding analysis, we have provided a detailed response in Point #2a.

#Point 5b. Fig. 5B, why does the decoding accuracy drop after integrating more features (>8)? Isn’t
it supposed to get higher or at least stay the same?

Response: It is not necessarily the case that decoding accuracy will increase or remain
the same when incorporating additional features. The ‘Curse of dimensionality’ (also
known as the Hughes phenomenon, Hughes, 1968) has clarified the relationship
between the number of features and decoding performance. According to the Hughes
phenomenon, with a given number of training samples, only when the number of
features does not exceed the optimal feature number would we observe an
improvement in decoding performance with increased feature numbers (Hughes, 1968).
However, beyond this point, adding more features would actually deteriorate classifier
performance (Hughes, 1968). This phenomenon occurs because an excessive number
of features could lead to overfitting given a fixed amount of training data (Hughes,
1968; Pallarés et al., 2018). This overfitting problem would result in increased
generalization errors and consequently cause a decline in decoding accuracy.



#Point 5c. Fig. 5C, it is expected to have higher decoding accuracy with more features. If authors
tried to emphasize the importance of top 6 features for decoding, a better comparison here
should be with models excluding randomly 6 features.

Response: We thank Reviewer 1 for suggesting a comparison between the decoding
accuracy when removing top features and removing (same number) random features
(revised Methods, Page 45 Lines 1267-1271). Please note that, as a result of the
modifications made in response to Main Point #3b and Minor Point #12, we updated
our decoding results that the top 8 features formed a necessary feature combination
(the decoding accuracy dropped to 49.78% and did not significantly differ from chance
level, p = 0.617, Fig. 5b, c). By incorporating the suggested comparison, we
demonstrated that the removal of top 8 features led to significantly lower decoding
accuracy compared to removing an equal number of random features (p < 0.001,
reported in the revised Results, Page 19 Lines 488-491). This finding further supports
the importance of this eight-feature combination in vicarious pain perception.

#Point 5d. Fig. 5D, how to understand the negative correlation value between features 2-5 and
Empathy strength?

Response: We thank Reviewer #1 for raising this inquiry. Accordingly, we have
presented our understanding of the correlations between empathy strength and neural
features (revised Results, Page 19-20 Lines 511-530).

First, please note that we have updated our correlation results based on modifications
made in response to Main Point #3b and Minor Point #12 and the implementation of
linear mixed-effect models to account for individual variations. In the updated results,
only two neural features (ACC alpha oscillations and AI low-frequency oscillations)
were reliably associated with empathic strength (revised Results, Page 20 Lines
519-525, revised Fig. 5d). The correlations with other features reported in the original
submission did not survive multiple correction under the examination of linear-mixed
effect models. Therefore, in the revision, we only focused on correlation results
between empathy strength and these two features. The negative association between
ACC alpha power/AI low-frequency power and empathy strength indicated that
stronger empathic responses were linked to greater suppression of ACC alpha
oscillations and AI low-frequency oscillations. These observed correlation patterns
were consistent with the patterns of decreased low-frequency power observed in the
“painful vs. non-painful” contrast (Fig. 2e, f; Fig. R4A, B). Together, suppressed
low-frequency power in the ACC (alpha) and AI not only facilitated qualitative
differentiation between others’ pain and non-pain (signaling the presence of other’s
pain), but also quantitatively tracked the strength of empathic responses.

To aid in the interpretation of the functional meaning of low-frequency power in the
ACC (alpha) and AI, we further investigated their association with perceived pain



intensity in others and one’s own level of unpleasantness (revised Results, Page 20
Line 532-547). We revealed a negative association between ACC alpha oscillations and
perceived pain intensity (revised Fig. 5e), suggesting that higher suppression of ACC
alpha power predicted stronger perceived pain. Consistent with this, a recent iEEG
study showed that decreased ACC alpha power predicted higher pain states in
participants (Shirvalkar et al., 2023). Thus, suppression of ACC alpha power was
implicated in encoding both the intensity of pain experienced by oneself (Shirvalkar et
al., 2023) and vicariously by others (current study). For the AI, we observed a negative
correlation between AI low-frequency oscillations and perceived pain intensity
(similarly reported by Soyman et al., 2022), but also a positive correlation with one’s
own unpleasantness (revised Fig. 5f). This suggested that, during empathy for other’s
suffering, the suppression of AI low-frequency power may enhance other-related
processing (e.g., the perception of intensity of others’ pain) while inhibited self-related
processing (e.g., the generation of stronger personal unpleasantness).

#Point 6. Some analytic approaches used in this paper might not be suitable and needs additional
controls.
a. Line 177, Is the similarity simply the correlation of rating scores from patient group and control
group? If so, it might be problematic as the ratings here (e.g., Fig. S1) are averaged across all the
patients or across all healthy subjects without taking into account the variations across subjects. A
better statistical method needs to be used.
b. Line 846-848, what is the pairwise Euclidean distance between the corresponding rating
differences for each participant pair? Even the two subject population have comparable age and
gender, pairing subjects across groups seems nonsense.

Response: We thank the reviewer for raising these questions, which provide us with
the opportunity to explain the rationale behind our analysis and elucidate the
methodological details of our analysis on empathy-related ratings here and in the
revision. Specifically, i) we would like to clarify that we examined whether the
empathy-related ratings between patients and healthy participants were comparable by
two sets of analyses that: a) assessed whether patients and healthy participants showed
different subjective ratings to vicarious pain and b) examined how similar in subjective
ratings between patient and healthy participants. For both sets of analyses, we indeed
employed analytical methods that considered inter-individual variations (revised
Methods, Page 33 Lines 913-915, Page 34 Lines 929-942, revised Results, Page 7
Lines 180-190, Page 7-8 Lines 197-213, Fig. 1e-g). ii) Per reviewer’s suggestion, we
have replaced the patient-healthy pairing approach with the comparison between
different individuals and the normative rating. This modification was similar to
established method used in previous studies for assessing similarity between patient
and healthy groups (Yang et al., 2020; Soyman et al., 2022). iii) Regarding the
Euclidean distance index, we agreed with the reviewer that this index might be less
intuitive and less easy-to-understand. Thus, we have opted for a more straightforward
measurement, i.e., the Pearson correlation coefficient (Abrams et al., 2013; Conroy et
al., 2013).



 The analysis to test whether patients and healthy participants showed different
subjective ratings to vicarious pain

Consistent with previous studies (Chen et al., 2019; Legendre et al., 2019), we
constructed linear mixed-effect models to examine the group differences in
empathy-related ratings while including participants as a random effect to control for
individual variations (Model: Rating ~ Group + Pain + GroupPain + (1|participant)).
Patients and healthy participants showed comparable subjective ratings in
differentiating painful and non-painful stimuli, as indicated by insignificant
interactions of pain (painful vs. non-painful) and group (patient vs. healthy) for all
dimensions of empathy-related ratings (all p-values for interaction > 0.05, F-tests on
linear mixed effects models; detailed statistical information in the revised Table S1).
Moreover, comparable subjective ratings between patients and healthy participants
were observed in each stimulus pair (all FDR-corrected ps for interaction > 0.05).

 The analysis to indicate how similar in subjective ratings between patient and healthy
participants

Next, we examined the similarity in subjective ratings across stimuli between patient
group and healthy group. We have taken into account Reviewer 1’s concerns regarding
the pairing of participants across groups. Accordingly, we have employed an
alternative approach to assess the similarity in the empathy-related subjective ratings
between patients and healthy participants. This method has been previously used to
assess the similarity between patient and healthy groups (Yang et al., 2020; Soyman et
al., 2022). Specifically, the average rating from all healthy participants was considered
as the normative rating (Libkuman et al., 2007; Soyman et al., 2022). To account for
individual variations in subjective ratings, we calculated the similarity between each
patient’s or each healthy participant’s ratings and the normative ratings. We conducted
permutation tests (Chen et al., 2016; Hyon et al., 2020) and found that ratings from
patient individuals and healthy individuals were similar to the normative ratings for
each empathy-related measure (patient-normative similarity: all ps < 0.01,
healthy-normative similarity: all ps < 0.001, survived FDR correction for multiple
comparisons, no matter when all stimuli or only painful stimuli were considered; Fig.
R14, revised Fig. 1e-g, detailed statistical information in the revised Table S3).
Moreover, the patient-normative similarity was comparable to the healthy-normative
similarity (all ps > 0.05 regardless of all stimuli or only painful stimuli were included;
Fig. R14, revised Fig. 1e-g, detailed statistical information in the revised Table S3),
indicating that patients and healthy participants indeed provided similar
empathy-related ratings on the experimental stimuli.



Figure R14. The similarity between ratings of patients and healthy participants and the normative
ratings across painful stimuli for empathy strength (A), perceived pain intensity (B), and
unpleasantness (C). The split-half violin plots show the probability density of the data and the left
boxplots show the 25th, 50th, and 75th percentiles with whiskers extended to the most extreme data
points that are no more than 1.50 times the interquartile range.**p < 0.01, ***p < 0.001, NS, not
significant.

#Point 7. The discussion section is supposed to summarize the key findings in the paper, provide
reasonable interpretation, and inspire additional research directions. However, it is really hard for
readers to learn from the reported results in this paper and how that could strengthen our
knowledge about the empathy network.

Response:We appreciated the helpful and constructive suggestions for the discussion
section and made significant and appropriate revisions to the Discussion accordingly.
In the revised Discussion (Pages 21-28 Lines 561-776), we summarized the main
findings of empathy-related oscillatory power and inter-regional interactions
(paragraphs 1 and 2), presented our understanding of observed regional oscillatory
power changes (paragraphs 3 and 4), indicated the importance of observed
inter-regional communications in unraveling the functional organization of empathy
network (paragraphs 5-9), and discussed other considerations as well as pointed
towards new directions for future studies (paragraphs 10-11).

#Point 7a. For example, Line 620-624, author makes claim that “increased ACC beta oscillations
may support the top-down modulation of vicarious pain perception by prior knowledge or
experience while decrease AI beta oscillations may associate with bottom-up affective responses
triggered by perceived pain in others.” How does this hypothesis fit into this task?
e. Line 680- 683, based on what results, that authors conclude that IFG might play a role in
understanding the target’s action itself and automatic action simulation? Also, how does this
connect to the perception of others’ pain?

Response: We thank Reviewer #1 for bringing these points to our attention. We agree
that these arguments cannot be directly inferred from our findings or align with the
current task, as our experimental task did not differentiate between top-down and
bottom-up processes nor directly measure the understanding processing. Accordingly,
we have now removed these claims.



#Point 7b. Line 641 and 642, then what is the functional role of amygdala in perception of other’s
pain? Especially with such late response

Response: We thank Reviewer #1 for raising this inquiry. Accordingly, we have
discussed the possible functional role of this late amygdala response in the revised
Discussion (Page 24 Lines 630-655).

Page 24 Line 630-655: “While animal electrophysiological studies have documented
the important role of the amygdala in empathic responses28-30, the fMRI evidence for
the involvement of the amygdala in human empathy has been inconsistent9,56,57,
leaving whether the amygdala is crucial for the processing of human empathy for pain
an open question. Our iEEG findings fill the gaps between animal electrophysiological
findings and human fMRI studies by providing electrophysiological evidence for the
crucial and sophisticated role of amygdala in the perception of vicarious pain.
Specifically, the late decrease in beta oscillations in the amygdala,
beta-band-coordinated coupling between ACC and amygdala, and cross-frequency
coupling between IFG and amygdala were found to be pivotal for decoding vicarious
pain perception. Interestingly, we showed that the amygdala oscillatory activity
responded to others’ pain later than the ACC, AI, and IFG. The late amygdala
oscillation observed in the current study was less expected, but was consistent with
findings of animal research showing that amygdala neurons responded to cues
associated with electric shocks to another mouse later than neurons in the ACC28. The
late amygdala beta suppression and inter-regional communications with other regions
likely reflected the processing of late-stage information by the amygdala, such as the
integrated neural representation of others’ pain resulting from interactions with other
regions. This processing aids in differentiating from others’ emotional states and
generating one’s own negative emotional responses. Two lines of neural evidence
supported this possibility. First, previous studies on animal and humans have identified
the amygdala and its interaction with other brain regions (e.g., ACC) as important
neural features that facilitated the subjective experience of negative affective responses,
including pain and fear28,29,58,58. Second, the amygdala beta suppression has been
linked to negative emotional states, such as heightened levels of anxiety60 and more
severe depressive symptoms61. It would be valuable for future research to directly test
this possibility.”

Point #7c. Line 645 to 661, what information the inter-regional communication can provide in
addition to the power increase/decrease?
Point #7d. How to understand the results from the directionality analyses?
Minor Point #11. It seems like transfer entropy is larger for Non-painful compared to painful
conditions? What does that mean?

Response: We’re very grateful to Reviewer #1 for these questions, which motive us to
think further about the significance and interpretations of the inter-regional



communication. Accordingly, we elaborated on how we understood the findings of
inter-regional communications, and how these findings furthered our understanding of
the functional organization of the empathy neural network below and in the revised
Discussion (Pages 24-27 Lines 657-723).

Pages 24-27 Lines 657-723: “The discovery of empathy-related inter-regional
communications has advanced our mechanistic understanding of the functional
organization of the empathy network. Previous iEEG studies on empathy26,27 and our
findings on regional power changes (e.g., ACC alpha power suppression and IFG
gamma power increase) have reflected cognitive operations within individual brain
regions. However, these findings did not inform us whether the regions within the
empathy network responded independently or interact with each other62. The current
study highlighted rapid inter-regional communications within the human empathy
network, indicating that empathic responses cannot solely be attributed to isolated
operations within single brain regions but also require dynamic interactions across
multiple regions involved in empathy processes.

Furthermore, we identified two potential pathways for inter-regional communication:
beta-band-coordinated coupling between ACC, AI, and amygdala; and cross-frequency
coupling between high-gamma IFG and beta ACC/AI/amygdala. These two distinct
inter-regional communication mechanisms support cross-spatiotemporal organization
of the empathy network. Previous animal studies have identified critical functional
roles of the AI-amygdala30 and ACC-amygdala28,29 circuits in observational learning
and the formation of empathic pain. However, to date, it remains unclear how rapid
communications between empathy-relevant brain regions support empathic responses
in humans. Our iEEG results provided electrophysiological evidence for the
engagement of these two circuits in human empathy, suggesting the ACC/AI-amygdala
circuit as an evolutionarily conserved mechanism of empathy. Moreover, we identified
a new mode of inter-regional communication related to empathy — cross-frequency
coupling between high-gamma IFG and beta ACC/AI/amygdala — which points
towards new directions for future investigations into empathy-related circuits.

Moreover, the current study provided evidence for both increased functional
interactions (e.g., enhanced coupling between ACC beta phase and IFG gamma
amplitude) and decreased inter-regional communications (e.g., attenuated beta
coupling between ACC and AI) within the empathy network. These patterns
highlighted rapid information flow among different brain regions to coordinate diverse
processes of empathy. When processing others’ pain, the brain needs to not only
enhance functional interactions between specific empathy-related regions (e.g.,
between ACC and IFG), potentially facilitating their coordination and information
integration, but also appropriately suppress certain inter-regional communications in
order to reduce mutual distractions and increase functional specialization of relevant
brain regions (e.g., ACC and AI).



Taking the ACC and IFG as an illustrative example of increased functional interactions.
In terms of regional oscillations, while low-frequency oscillations in the ACC
responded to perceived pain, we observed a distinct spectro-temporal profile of the
IFG with early high-gamma oscillatory activity. Previous studies have suggested that
low-frequency oscillations are entrained across distant regions and subserve long-range
interactions, whereas high-gamma activity mainly reflects local neuronal responses
and serves as a signature of local encoding63. This suggested fundamentally distinct
engagement and functions of ACC low-frequency oscillations and IFG high-gamma
oscillations in empathic responses. The cross-frequency coupling mechanism, i.e.,
phase-amplitude coupling with low-frequency phases modulating high-frequency
amplitudes, serves to convert information from slow timescales into fast local
processing and integrates functions across spatio-temporal scales39,40. Thus, the finding
of the enhanced modulation of IFG high-gamma amplitude by the ACC beta phase
suggests a possible mechanism underlying information integration from ACC and IFG,
echoing previous findings on anatomical connections between ACC and IFG64,66.

In contrast, we observed weaker functional communications between the ACC and AI,
which may be associated with a reduced bidirectional exchange of information related
to perceiving others’ emotional states and generating personal emotional responses.
This may facilitate functional specialization and prevent emotional responses from
biasing the evaluation of other’s pain67. This observation may be supported by the
bi-directional structural connections between the ACC and AI68, and was consistent
with a recent iEEG study showing the important role of bidirectional connectivity
between the ACC and AI in emotional processing69. Thus, these findings on
empathy-related inter-regional communication aid in understanding how the brain
generates empathic responses towards others’ pain.”

Point #7d. How to understand the results from the directionality analyses?

Response: We thank Reviewer #1 for raising this question. Accordingly, to help the
audience better understand the directionality results, we summarized the information
conveyed by the results of directionality analysis in the revised Results section (Page
14 Lines 362-376) and (briefly) discussed how these results aided in understanding the
patterns observed in low-frequency coupling analysis and whether they were consistent
with previous anatomical and fMRI findings in the revised Discussion (see detailed
illustrations in the responses to Major Point #7c, reported in Pages 26-27 Lines
714-721). Please note that the directionality analysis served as a supplementary
analysis to the power coupling analysis and was not the primary focus of the current
study. In addition, we lacked direct evidence to indicate the functional meaning of the
observed directionality. Therefore, we chose not to extensively elaborate on these
results in order to maintain emphasis on our main research questions.

revised Results (Page 14 Lines 362-376): “We detected a significant main effect of
pain in ACC-AI at 25-32 Hz (F1, 233 = 30.04, p = 1.10  10-7, ηp2 = 0.11, Fig. 3d),



suggesting reduced beta information transfer in both directions from-ACC-to-AI and
from-AI-to-ACC. Interestingly, the effect of pain was direction sensitive in
AI-amygdala at 18-24 Hz as indicated by a significant Pain  Direction interaction on
TE values (F1, 299 = 13.67, p =2.5910-4, ηp2 = 0.04, Fig. 3e). Perception of painful
stimuli specifically suppressed information transfer from the amygdala to AI
(amygdala-to-AI: t299 = -3.25, p = 0.001, Cohen’s d = -0.19, 95% CI: -0.009, -0.002;
AI-to-amygdala: t299 = -0.48, p = 0.629, Cohen’s d = -0.03, 95% CI: -0.004, 0.003; Fig.
3e). For ACC-amygdala pairs, we found a significant main effect of pain at 18-22 Hz
(F1, 71 = 20.14, p = 2.72  10-5, ηp2 = 0.22, Fig. 3f), reflecting enhanced information
transmission between ACC and amygdala during the processing of others’ pain,
irrespective of the specific directions. For the interactions between the ACC and
amygdala at 25-30 Hz, no significant results were found for the main effect of pain or
the interaction effect (Main effect of pain: F1, 71 = 0.33, p = 0.569, ηp2 = 0.01;
Interaction: F1, 71 = 1.83, p = 0.191, ηp2 = 0.03). ”

Point #8. Authors should be mindful of using terms like “first” when descripting the results. For
example, Line 566 -568, authors claim that “our study is the first attempt to integrate
region-specific neural oscillations and inter-regional interactions to decode vicarious pain
perception, enabling us to characterize how these neural features jointly contributed to viscarious
pain perception”. Also, Line 1028-1030, “our study is among the first to examine the
electrophysiological basis for effective connectivity within human empathy network, and no clear
assumptions on interaction pattern existed.”

Response: We thank Reviewer #1 for this reminder. In the revision, we have removed
these terms from the manuscript.

Minor:
2. XX ± XX, standard deviation vs. standard error mean needs to be stated in the manuscript.
3. Line 142 to 144, it is helpful to show the actual value of response accuracy and response time
along with the t-test.
4. I assume that the data was collected with Chinese instruction. We appreciate that the authors
have translated the instruction to English (Figure 1A). It is also informative to show the original
task instruction in a supplementary Figure.
5.Maybe Colorbar label in Figure 2E-H should not be Power, but a power difference (t value)?
6. Figure 2I-L, is the plotted power here normalized? The value seem to be around zero before t= 0.
If so, please update the y axis to normalized power instead.
7. Fig. 2J, the figure title “Beta band” seems to be smaller than the rest.
8. Are the results (Fig. 3 and Fig. 4) only include electrode pairs within the same subject and same
hemisphere? If so, please clarify in the text.
9. The thickness of the lines in Fig. 3A-C seems not very consistent, is this on purpose?
11. It seems like transfer entropy is larger for Non-painful compared to painful conditions? What
does that mean?
13. Line 787- 789, please provide details for how the arousal assessment was done in patients.
Categorically measured or continuously measured?



Response: We are very grateful to the reviewer for these detailed suggestions and the
time you put into the manuscript, highly appreciated. We took these suggestions and
have now accordingly addressed these points in the revision. Specifically, we have
now included the statistical information (point #2; Page 6 Lines 157-162, Page 7 Lines
172-175); the values of accuracy and response time (point #3; Page 6 Lines 157-162);
provided the original Chinese instructions in the revised Methods (point #4; Page 30
Lines 832-834); the information about channel-pairs (point #8; Page 36 Lines
1010-1011, Page 39 Lines 1103-1106); provided an understanding of the transfer
entropy pattern (point #11; see detailed illustrations in the responses to Major Point
#7c,d; Page 14 Lines 362-364, Page 26-27 Lines 714-721); details arousal
measurement (point #13; Page 31 Lines 860-864). We have also revised the colorbar,
label of y-axis, font of Fig. 2 (points #5-7; revised Fig. 2) and the line thickness of Fig.
3 (point #9; revised Fig. 3) according to the reviewer’s suggestions.

Point #3 (revised Results, Page 6 Lines 157-162): “Patients showed no significant
differences in response accuracies (response accuracy difference: 5.91%  4.73%, t21 =
1.26, p = 0.221, Cohen’s d = 0.27, 95% CI: -0.07, 0.27) and response times (RTs, RT
difference: -0.02  0.09, t21 = -0.16, p = 0.874, Cohen’s d = -0.03, 95% CI: -0.06, 0.05)
between painful and non-painful conditions, suggesting comparable attentional
engagement and motor responses to painful and non-painful stimuli.”

Point #4 (revised Methods, Page 30 Lines 832-834): “participants were asked to
indicate whether the person in each picture experienced pain or not (as specified by in
Chinese instruction: “请您判断图片中的人是否感到疼痛”) ”

Point #8 (revised Methods, Page 36 Lines 1010-1011, Page 39 Lines 1103-1106):
“Note that channels from both hemispheres were collapsed to improve statistical
power33,34,37.” “To eliminate the potential influence of individual differences, we only
considered pairs of channels within each participant (i.e., the two channels of each pair
from the same participant) and included participants with at least one channel pair.”

Point #13 (revised Methods, Page 31 Lines 860-864): “In addition, to confirm that the
neural findings did not result from possible differences in arousal levels between
painful and non-painful stimuli, patients also provided ratings of arousal level for each
stimulus (“How intense is your emotional response induced by this picture”; 0 =
extremely calm, 100 = extremely strong).”

# Point 12. What is the difference between Fig.4 and Fig. S6? What is varying vs fixed bandwidth?
Also, why the results between IFG and amygdala are so different between Fig 4 and Fig. S6?

Response: In response to this point, we first clarified that the only difference between
Fig. 4 and Fig. S6 lied in the bandwidth used to filter the amplitude signal in the
phase-amplitude coupling analysis (PAC). Specifically, Fig. 4 utilized fixed-bandwidth
filtering while Fig. S6 used varying-bandwidth filtering. Below, we clarified the



primary differences between these two filtering approaches and how these differences
contributed to variation in PAC result patterns.

To further examine whether these approaches yielded qualitative differences, we tested
whether the significant cluster identified using the fixed-bandwidth method remained
significant with the varying-bandwidth method, and vice versa. We found similar
amygdala-IFG PAC patterns using both methods. Notably, spectral clusters identified
as significant with one approach remained significant when testing the conditional
differences by averaging the spectral pairs with another approach (Fig. R15). In
addition, previous studies have indicated that the varying-bandwidth method
outperforms the fixed-bandwidth method in investigating PAC (Berman et al., 2012;
Aru et al., 2015; Zandvoort & Nolte, 2021). Therefore, based on its greater reliability
and recommendation within relevant literature, we decided to only report results
obtained through varying-bandwidth filtering in the revised manuscript (revised
Methods, Page 42 Lines 1165-1174, revised Fig. 4a-c). This reporting strategy would
also help prevent potential confusion arising from inconsistency.

 Fixed-bandwidth vs. varying-bandwidth filtering in PAC
These are two approaches for filtering the amplitude signal in the PAC (Berman et al.,
2012; Aru et al., 2015). Specifically, the fixed-bandwidth method uses a constant
bandwidth 2 Hz (Stangl et al., 2021), while the varying-bandwidth method employs a
bandwidth that varies according to the coupling phase frequency (a frequency window
of  phase frequency; Berman et al., 2012; Zandvoort & Nolte, 2021). Here, we take
the example of an amplitude-frequency bin centered at 90 Hz to illustrate the
difference. With the fixed-bandwidth approach, the band-pass filter only allows
components in the frequency between 90 - 2 = 88 Hz and 90 + 2 = 92 Hz, regardless of
the coupling phase frequency. In contrast, with the varying-bandwidth approach, the
specific bandwidth used for filtering the amplitude signal depends on each
corresponding phase frequency.

For example, when centered at a phase-frequency bin of 30Hz, the band-pass filter
passes components in a range between 90 - 30 = 60 Hz and 90 + 30 = 120 Hz; but
when centered at a phase-frequency bin of 20Hz, it passes components in a range
between 90 - 20 = 70 Hz and 90 + 20 = 110 Hz. Thus, the varying-bandwidth (vs.
fixed-bandwidth) approach included a much wider range of frequency components into
the amplitude signal, which could account for the differences in the PAC pattern.



Figure R15. Phase-amplitude coupling (PAC) between amygdala and IFG when employing the
fixed-bandwidth (A/D) or varying-bandwidth method (B/C). The spectral pairs deemed significant
in the fixed-bandwidth (A) or the varying-bandwidth (C) method remained significant in the
varying-bandwidth (B) or the fixed-bandwidth (D) method if we averaged the spectral pairs in the
significant clusters. Error bars show the standard errors. **p < 0.01, ***p < 0.001.

# Point 14. Line 793-794, author mentioned that they have recruited the gender-matched healthy
control group for the study, which has 22 subjects in total with 9 males while the patient group
has 13 males. So it’s not entirely matched. Please make sure the consistency of description.

Response:We appreciate Reviewer #1 for bringing up this concern. We acknowledge
that our patient sample and healthy sample were not identical, and we have removed
any inappropriate statements from the manuscript accordingly. However, we want to
emphasize that despite not being identical, our healthy sample and patient sample had
comparable gender and age distributions, as evidenced by insignificant differences in
age (age: t42 = -0.81, p = 0.424, Cohen’s d = -0.24, 95% CI: -8.91, 3.82, two-sided
two-sample t-test) and gender (gender: χ2(1) = 0.82, p = 0.366, two-sided
Pearson’s Chi-square test of independence) between the two groups. In the revised
manuscript, we rephrased our statement (“we recruited a healthy participant sample
whose gender distribution and age distribution were comparable to those of the patient
sample”) and provided the above-mentioned statistical information to support this
statement (Page 32 Lines 873-877).

# Point 15. Authors mentioned that the spikes (defined as >100uV changes between consecutive
samples) were removed from original data. Spikes can also refer to single neuron activation. It
might be less confusing to change it to a different term.

Response: This is a very valid point, thanks. Accordingly, we have replaced “spikes”
with “jumps between consecutive data points larger than 100 μV” (Page 35 Lines
963-965).



# Point 16. Line 1015 and Line 1019, what is the cluster-based permutation here, each trial has
only one correlation coefficient?

Response: We thank Reviewer #1 for raising this question. Accordingly, we have
detailed the cluster-based permutation test for power correlation analysis in the revised
Methods (Page 40 Lines 1114-1118). Similar to previous iEEG studies, for each
frequency and each channel-pair, every trial yielded a correlation coefficient between
the two corresponding channels’ time series. Within each condition, the correlation
coefficients were Fisher-z-transformed and averaged across trials. In the cluster-based
permutation test, within each frequency, we randomly shuffled the labels of painful and
non-painful conditions for each channel-pair. This enabled us to calculate a t-value
between the shuffled conditions across all channel-pairs using paired-t tests.
Frequencies with uncorrected p-value (< 0.05) were then clustered based on spectral
adjacency (Maris & Oostenveld, 2007). We calculated the sum of t-values for each
cluster as its ‘mass’ and recorded the most extreme cluster mass among all clusters.
These steps were repeated 1000 times to generate a null distribution of differences
between conditions. Finally, significant clusters (corrected p < 0.01) were identified by
comparing the cluster of the true data against this null distribution.



 Responses to Reviewer #2’s comments:

The paper revolves around the neural underpinnings of empathy for pain using intracranial
electroencephalography (iEEG) to elucidate with high-resolution the spatio-temporal profiles of
neural oscillatory activity and inter-regional communications within the empathy network during
the perception of others' pain. While the research protocol for testing empathic reactivity to pain
is a standard one, the technique used is a sophisticated one and the analytic approach state-of-the
art. While this paper may advance our understanding of the neural dynamics that underpins
empathy for pain there are several points that need to be clarified.
A point by point list of comments is provided below.

General response: We thank Reviewer #2 for the positive evaluations of our
manuscript. We have taken the opportunity – both here below and in the revised
manuscript – to address the constructive suggestions.

# Point 1. The introduction does not provide a detailed overview of the importance of empathy in
social interactions and its neural basis. In particular, the paper does not provide a thorough and
well-defined overview of the existing literature that utilizes intracranial electroencephalography
(iEEG) to explore empathy for pain. Notably, the works of Soyman et al. (2022) and Mo et al. (2022)
are absent in the manuscript, leading to an incorrect assertion of the technique's novelty within
the field. This is a major point of weakness. While this may be considered as a lack of scholarship,
it may correspond to a simple overlook. However, discussing the above papers is fundamentally
important for comparing the findings of the present research with what is already known.

Response: We greatly appreciate the suggestions provided by Reviewer 2, which are
extremely helpful in improving the Introduction section of our manuscript. In the
revised Introduction:
i) The first paragraph have now placed greater emphasis on the significance of
empathy in social interactions (Page 3 Lines 51-57): “Empathy enables us to quickly
perceive and share the experiences and feelings of others, rendering it a powerful
catalyst for successful social interactions and prosocial behavior1-3. This ability not
only enhances our understanding of other individuals’ affective states but also equips
us with the foresight to predict their future actions, empowering us to take appropriate
actions within specific social contexts4. Particularly in situations where we witness
others’ suffering, pain empathy grants us the capacity to vicariously experience their
pain and motivates us to provide help2,3. ”

ii) We have now reviewed previous iEEG studies related to empathy, including
Hutchison et al., 1999; Mo et al., 2022; Soyman et al., 2022 (Page 4 Lines 98-105,
Page 5 Lines 118-122).
On one hand, we underscored that these iEEG studies have yielded valuable insights
into the neural basis of empathy. Specifically, Hutchison et al. (1999) conducted
single-neuron recordings of ACC and found that single neurons in the ACC responded
when participants witnessed others’ fingers being pin-pricked, providing



electrophysiological evidence of the engagement of ACC in the processing of others’
pain. Soyman et al. (2022) adopted iEEG to characterize the electrophysiological
responses of insula to others’ pain, with broadband activity of insula encoding other’s
pain intensity. Mo and colleagues (2022) examined the recurrence-related
characteristics of the default-mode network during resting-state and the relationship
with a questionnaire score of empathy trait.

On the other hand, we acknowledged their limitations such as focusing exclusively on
a single brain region (the ACC in Hutchison et al., 1999; AI in Soyman et al., 2022), or
examining empathy-irrelevant, non-task-specific resting-state instead of task-related
and empathy-specific neural activity (i.g., associating empathy-related traits with
resting-state in Mo et al., 2022).

iii) Furthermore, we clarified that significant gaps existed between findings from
these studies and the understanding of multi-areal neural dynamics in vicarious pain
perception. These gaps served as motivation for our current study, which aims to
investigate both temporal order and spectral characteristics of neural oscillatory
activity within empathy-related brain regions, as well as the rapid-scale information
flow among these regions through recording iEEG signals at multiple empathy-related
regions with millimeter and millisecond resolutions during perception of others’ pain.

# Point 2. The methods section detailing the use of iEEG in epilepsy patients is well-described.
However, additional information regarding patient selection criteria, ethical considerations, and
potential confounders would enhance the methodological robustness of the study. Moreover, it is
not clear to me whether 6 patients were excluded because failed to complete the post iEEG
session or whether they did not have electrodes implanted in the regions of interest. Both
sentences are written in the manuscript, and it is hard to understand why 6 patients were
excluded from the data (or if in different moment different 6 patients were excluded). Moreover, it
might be interesting to indicate for each patient where the electrodes were implanted (e.g.,
patient 1, X electrodes in AI, X electrodes in ACC, etc).

Response: We thank Reviewer #1 for raising these questions, which provide us with
the opportunity to clarify these methodological details in the revision. Accordingly, we
have now provided details regarding patient exclusion criteria (Page 29 Lines 788-790,
Page 29 Lines 794-801, Page 31 Lines 842-853), ethical considerations (Page 29 Lines
778-786), and the measures we implemented to exclude potential confounders (Page
29 Lines 790-792, Page 29 Lines 792-794, Page 30 Lines 821-822, Page 6 Lines
157-162, Page 21 Lines 549-557) in the revised Methods section. We also provided the
channel information of each patient in Table R1 (Supplementary Data 3).

 Regarding the number of patients included in each analysis, we clearly stated the
criteria and the number of patients in each analysis in the revised Methods:
Page 29 Lines 788-790: “Data were recorded from 29 epilepsy patients who were
implanted with intracranial depth electrodes and were undergoing intracranial EEG



monitoring to localize the seizure onset zone for potential surgical resection.”

Page 29 Lines 794-801: “The patient selection was based on two inclusion criteria: i)
having electrodes in the ACC, AI, amygdala, or IFG contralateral to or outside of the
epileptogenic zone; and ii) achieving a response accuracy above 50% in the pain
judgment task. Based on these criteria, one patient was excluded due to a low response
accuracy (45%) in the pain judgment task, and six patients were excluded because no
electrodes were implanted in the regions of interest. The remaining 22 patients were
included in the behavioral and neural analysis of the pain judgment task (13 males, age
= 25.73 ± 2.07 years old).”

Page 31 Lines 842-853: “Similar to the majority of previous neuroimaging
studies21,72,73, we invited all patients to a post-iEEG session to measure the empathic
strength and other empathy-related subjective ratings to perceived pain in others after
the iEEG recording. This setting (post-iEEG rating procedure) could avoid potential
influence on the empathic neural responses in the pain judgment task caused by
self-report empathic ratings (e.g., avoid evoking intentionally controlled empathic
processes74), and enabled us to separately measure different dimensions of
empathy-related ratings (see the procedure of post-iEEG session in Supplementary Fig.
11). No data were excluded, but the subjective ratings of six patients were missing as
the six patients were unwilling to or failed to complete the post-iEEG session. ”

 We also clarified relevant ethical considerations of the current study:
Page 29 Lines 778-786: “Electrode localizations were exclusively determined by
clinical needs. We prioritized and maintained the integrity of clinical care during
conducting the current study. All patients provided informed consent after the
experimental procedure had been fully explained, and were acknowledged their right
to withdraw at any time during the study. ”

 In the revised Methods, we also clarified the potential confounders we have considered
in the current study, including other neurological disorders, pain medications, pain
levels, physical characteristics of stimuli, behavioral performance, and arousal levels
related to the experimental stimuli:
Page 29 Lines 790-792: “All participants recruited in the current study had no history
of psychiatric disorders, head trauma, or encephalitis.”

Page 29 Lines 792-794: “Patients did not take pain medication several hours prior to
the iEEG recording of the pain judgment task and were not experiencing any physical
pain during the iEEG recording.”

Page 30 Lines 821-822: “The luminance, contrast, and color of the painful and
non-painful stimuli were matched.”

Page 6 Lines 157-162: “Patients showed no significant differences in response



accuracies (response accuracy difference: 5.91%  4.73%, t21 = 1.26, p = 0.221,
Cohen’s d = 0.27, 95% CI: -0.07, 0.27) and response times (RTs, RT difference: -0.02
 0.09, t21 = -0.16, p = 0.874, Cohen’s d = -0.03, 95% CI: -0.06, 0.05) between painful
and non-painful conditions, suggesting comparable attentional engagement and motor
responses to painful and non-painful stimuli.”

Page 21 Lines 549-557: “It should be noted that we conducted additional control
analyses to exclude the possibility that our neural findings resulted from potential
differences in arousal levels between painful and non-painful stimuli. We asked
patients to provide ratings of the arousal level for each stimulus after the iEEG
recording. We examined the association between the arousal level and ACC alpha
oscillations/AI low-frequency oscillations but did not find any significant results (ps >
0.05; no significant results even when we checked for spectro-temporal power at all
time-frequency points in each brain region, Supplementary Fig. 9). Therefore, the
observed neural effects cannot be attributed to potential differences in arousal levels
between painful and non-painful stimuli.”

# Point 3. A main concern is whether the authors have data about areas which are not involved in
the empathic network to control for general activities (see Soyman et al., for a comparison
between the insular electrodes and “random”electrodes). It seems that the authors use signal
from white matter as reference but there isn’t an actual comparison between areas which
shouldn’t be implicated in processing empathic responses.

Response: This is a very valid point, thank you. Accordingly, we adopted a similar
approach as described in Soyman et al. (2022) to compare the observed effect (clusters
with significant conditional differences in Fig. 2e-h) with that obtained from randomly
selected channels located outside the empathic network (i.e., not within the four ROIs)
(Page 38 Lines 1049-1062). We ensured an equivalent number of channels within each
ROI and of ‘random’ channels. Consistent with our previous analyses, we conducted
paired-t tests to examine the conditional power differences among the random channels.
This procedure was repeated for 1,000 times, resulting in 1000 t-values used to
construct the null distribution. We found that the observed conditional effects of all
these clusters were significantly stronger than the conditional differences calculated
based on random channels (ACC alpha cluster: p = 0.011, ACC beta cluster: p < 0.001;
AI low-frequency cluster: p < 0.001; amygdala beta cluster: p < 0.001; IFG
high-gamma cluster: p < 0.001). The analysis further confirmed that the
empathy-related spectro-temporal power observed in different brain regions indeed
reflected region-specific (rather than general activity) spectral patterns.

# Point 4. Related to this, the introduction lacks the rational of selecting AI, ACC, IFG and the
amygdala and no other areas, such as the motor or the somatosensory cortex or the mCC (Fallon
et al., 2020).

Response:We thank Reviewer 2 for this suggestion. Accordingly, we clarified here, as



well as in the revised manuscript (revised Introduction, Page 4 Lines 81-88; revised
Results, Page 10 Lines 236-238) the rationale of selecting AI, ACC, IFG, and
amygdala as the regions of interest. This choice was made based on two aspects of
considerations:

i) We reviewed previous neuroimaging studies on empathy for other’s pain to identify
empathy-related brain regions (which served as a basis for selecting ROIs in the
current study). The AI, ACC, IFG, and amygdala, along with other brain regions (such
as the somatosensory cortex and the mCC mentioned by the reviewer), have frequently
been reported in the animal electrophysiological and human fMRI studies investigating
pain empathy (Fan et al., 2011; Allsop et al., 2018; Timmers et al., 2018; Fallon et al.,
2020; Zhang et al., 2022).

ii) Moreover, the iEEG recording also imposed practical constraints on our selection
of ROIs. Similar to previous iEEG studies (Parvizi & Kastner et al., 2018; Oehrn,
2023), the current study also had to consider the limited coverage of implanted
electrodes in the brain. Due to this concern, we adopted the same approach as previous
iEEG studies (Zheng et al., 2019; Chen et al. 2021; Sonkusare et al., 2023), focusing
on brain regions that were commonly covered by the implanted electrodes. In our
dataset, we had an adequate number of channels in each of the four targeted brain
regions (40-98 channels), but not in other empathy-related brain regions (e.g., only 4
patients had a total of 21 channels located in the MCC).

Based on these two considerations, we have chosen the AI, ACC, amygdala, and IFG
as our brain regions of interest. In relation to other empathy-related brain regions, we
encouraged future studies to conduct further investigations in the revised Discussion
(Page 28 Lines 759-763).

# Point 5. In the neural features analysis, it is not clear why authors selected 7 features and then
excluded the seventh one and select 6 as sufficient. Please explain this choice.

Response: We apologized for bringing in this confusion. Accordingly, we have
elaborated the analytical procedure and analysis rationale of our decoding analysis here
and in the revision (Page 45 Lines 1260-1276).

In the decoding analysis, we first searched for a necessary feature combination that
was necessary for the classification between painful and non-painful stimuli. We found
that the top 8 features consisted of a necessary feature combination, i.e., removing
these features resulted in a decoding accuracy of 49.78% that did not significantly
differ from chance level. (ps: the number “8” here corresponds to the 7 features in the
original version as we updated the results in response to Reviewer #1’s Main Point #3b
and Minor Point #12).

Second, after identifying the necessary combination, we individually assessed whether



each feature within this necessary combination could sufficiently discriminate between
painful and non-painful stimuli by itself. If a feature by itself was able to significantly
distinguish between two types of stimuli, this feature was considered as a sufficient
feature. This analysis revealed that each of the 8 features was a sufficient feature
(significantly discriminate between painful and non-painful stimuli, all FDR-corrected
ps < 0.01; Page 45 Lines 1271-1276). (ps: this corresponds to the 6 features in the
original version as we updated the results in response to Reviewer #1’s Main Point #3b
and Minor Point #12).

# Point 6. Other analytical choices are not clearly motivated. On page 12,line 241, for example, it
is not clear why the authors adopt one-sided (rather than two sided) comparisons.

Response: We appreciate the reviewer’s suggestion. Accordingly, we have provided a
clear explanation of our choice to use one-sided testing (Page 39 Lines 1082-1087).
Specifically, we clarified that these comparisons were conducted as follow-up analyses
for the time-frequency analyses in order to further reveal the onset time for empathic
neural activity shown in Fig. 2e-h. In the time-frequency power analysis, we already
showed the directionality of the conditional differences, i.e., whether there was higher
or lower power in the painful vs. non-painful contrasts (Fig. 2e-h). Therefore, our aim
in this follow-up analysis was to determine the earliest time point exhibiting the
pattern observed in Fig. 2e-h. Hence, this specific objective motivated us to conduct
one-sided statistical tests.

Additionally, addressing the reviewer’s potential concern, we also conducted two-sided
statistical tests and showed that these results remained robust and significant under
two-sided testing (Fig. R16). However, considering the hypothesis-driven nature of
this follow-up analysis, we decided to retain the use of one-sided comparisons.

Figure R16. The oscillatory power difference between the painful and non-painful condition in the
AI, ACC, amygdala and IFG when conducting one-sided statistical tests (A-D) or two-sided
statistical tests (E-H). Time points with significant conditional power differences are highlighted
with horizontal lines (one-sided statistical tests) or cross symbols (two-sided statistical tests)



(corrected p < 0.05, 1000 permutations, survived the cluster-based permutation test for multiple
comparisons). Solid (painful condition) and dashed (non-painful condition) lines indicate the mean
power across all channels for each time point, with shading representing the standard error.

# Point 7. The discussion is difficult to read. I would like to suggest that the authors help the
readers by adding title for each section (as they did for the result).

Response: We appreciate this helpful suggestion from Reviewer 2. However, due to
the formatting requirements of the journal, the inclusion of subtitles in the Discussion
section was not feasible. Instead, to improve the readability, we re-structured the
Discussion to ensure clarity of the main topic in each section for the audience.

The revised Discussion was organized as: i) we summarized main findings of
empathy-related oscillatory power and inter-regional interactions into an integrated
neurodynamic model of human empathy (paragraphs #1 and #2), ii) presented our
understanding of observed regional oscillatory power changes (paragraphs #3 and 4),
iii) indicated the importance of observed inter-regional communications in unraveling
the functional organization of empathy network (paragraphs #5-9), and iv) discussed
other considerations and pointed towards new directions for future studies (paragraphs
#10 and 11) and drew out the final conclusion (paragraph #12).

# Point 8. Previous studies hinting at the dynamic nature of brain rhythms during empathy for pain
should be quoted and briefly discussed even if they do not use iEEG (e.g. Betti et al, 2009;
Zebarjadi et al, 2021)

Response: We thank Reviewer 2 for this suggestion. Accordingly, the relevant papers
were cited in the revised manuscript (Page 4 Line 91).
Minor points:

a) Some of the information in the analysis part repeated in the method section. I suggest avoiding
presenting them twice and to leave the information sufficient to understand the analysis in the
results section and all the details in the methodology.
b) The results are presented in a clear and logical manner. However, the manuscript is very dense,
presenting several analyses in a way that it is hard to follow. Some sections with many statistics
could be organized into tables.
d) Line 190: I would suggest the authors to state that the empathic responses to vicarious pain
were comparable to healthy controls – more than representative of a general population.
e) Line 123- 130: this sentence needs to be rephrased
f) Line 140: felt painful
g) Supplementary tables with the subjective data of patients and controls rather than just
similarity indices may be useful

Response: We appreciated these helpful suggestions by Reviewer 2. Accordingly, we
have removed redundant methodological details from the Result section (Point #a),



organized the full statistical reports into tables (Point #b; revised Table S1-3), modified
some specific statements (Point #d; Page 8 Lines 214-216; Point #e; Pages 5-6 Lines
137-145; and Point #f; Page 6 Lines 154-155), and provided the subjective ratings of
patients and healthy controls (Point #g; revised Table S5).

Point #d (revised Results, Page 8 Lines 214-216): “Thus, patients’ empathic responses
to vicarious pain were comparable with those of healthy individuals.”

Point #e (revised Introduction, Pages 5-6 Lines 137-145): “In an effort to delineate the
specific contributions of these spectral-temporal-spatial specific patterns to vicarious
pain perception and identify important neural features, we further investigated how
these neural features jointly contributed to the perception of others’ pain. Moreover, to
assess the associations between critical neural features within the pain empathy
network, we tested how these critical neural features were linked to empathy-related
behavioral measures, including the strength of overall empathic responses and
empathy-related subprocesses (i.e., evaluation of perceived pain intensity and one’s
own unpleasantness) during perception of other’s pain.”

Point #f (revised Results, Page 6 Lines 154-155): “Following the picture viewing
phase, patients were asked to judge whether the person depicted in the picture
experienced pain.”

c) Line 511: it is not clear to me why one behavioral component has been removed from this
analysis.

Response: We thank Reviewer #2 for pointing out this issue. Accordingly, we
conducted the similar analysis on the other behavioral component (arousal levels).
Specifically, we examined the correlation between the arousal level and ACC alpha
oscillations/AI low-frequency oscillations and did not find any significant result (ps >
0.05). These results were reported in the revised Results (Page 21 Lines 552-556).



 Responses to Reviewer #3’s comments:

This work utilizes intracranial electrophysiological recordings in humans to examine in detail the
complex interplay between the anterior insula, the anterior cingulate cortex, the amygdala and
the inferior frontal gyrus across different oscillation frequencies at a millisecond timescale during
vicarious pain perception. Highly valuable iEEG data collected from pre-clinical epilepsy patients in
a well-established pain judgment task was analyzed with advanced intra- and inter-regional
neurophysiological analysis techniques and the results were presented in a highly organized and
clear manner. In addition, the relative importance, the necessity, and the sufficiency of a wide
array of neural activity markers were assessed via a decoding algorithm to construct a
neurodynamic model of empathy for pain. Overall, this is a very challenging, and thus highly
valuable work that enhances our understanding of the interactions between critical brain regions
that underlie vicarious pain representations.
I have a number of comments/recommendations that I believe will increase the impact and the
understandability of the manuscript.

General response: We thank Reviewer #3 for the positive evaluations of our
manuscript. We highly appreciate Reviewer #3’s constructive suggestions. Specific
point-by-point responses are listed below:

# Point 1. In the third paragraph of the Introduction section, immediately after discussing the
limitations of studying empathic neural responses using fMRI and EEG/MEG and the advantages of
using intracranial methods, the goal of the present study is introduced. This gives the feeling that
vicarious pain responses have never been investigated before using intracranial recordings in the
four regions of interest in the human brain. However, this is not true. The authors should refer to
studies such as
Hutchison, W. D., Davis, K. D., Lozano, A. M., Tasker, R. R., & Dostrovsky, J. O. (1999). Pain-related
neurons in the human cingulate cortex. Nature neuroscience, 2(5), 403-405.
Soyman, E., Bruls, R., Ioumpa, K., Müller-Pinzler, L., Gallo, S., Qin, C., ... & Gazzola, V. (2022).
Intracranial human recordings reveal association between neural activity and perceived intensity
for the pain of others in the insula. Elife, 11, e75197.

Response: This is an excellent point, we greatly appreciate the constructive suggestion
from Reviewer 3. In the revised Introduction (Page 4 Lines 98-105, Page 5 Lines
118-122), we have now reviewed previous iEEG studies related to empathy for pain,
including Hutchison et al., 1999; Mo et al., 2022; Soyman et al., 2022.

On one hand, we underscored that these iEEG studies have yielded valuable insights
into the neural basis of empathy. Specifically, Hutchison et al. (1999) conducted
single-neuron recordings of ACC and found that single neurons in the ACC responded
when participants witnessed others’ fingers being pin-pricked, providing
electrophysiological evidence of the engagement of ACC in the processing of others’
pain. Soyman et al. (2022) adopted iEEG to characterize the electrophysiological
responses of insula to others’ pain, with broadband activity of insula encoding other’s



pain intensity. Mo et al. (2022) examined the recurrence-related characteristics of the
default-mode network during resting-state and the relationship with a questionnaire
score of empathy trait. On the other hand, we acknowledged their limitations such as
focusing exclusively on a single brain region (the ACC in Hutchison et al., 1999; AI in
Soyman et al., 2022), or examining empathy-irrelevant, non-task-specific resting-state
instead of task-related and empathy-specific neural activity (i.e., associating
empathy-related traits with resting-state in Mo et al., 2022).

Moreover, we clarified that significant gaps existed between findings from these
studies and the understanding of multi-areal neural dynamics in vicarious pain
perception. These gaps served as motivation for our current study, which aims to
investigate both temporal order and spectral characteristics of neural oscillatory
activity within empathy-related brain regions, as well as the rapid-scale information
flow among these regions through recording iEEG signals at multiple empathy-related
regions with millimeter and millisecond resolutions during perception of others’ pain.

#Point 2. In the last paragraph of the Introduction section, different sentences use different tenses.
For readability, please stick with the present or past tense consistently throughout the paragraph.

Response: We thank Reviewer #3 for this reminder. We have made revisions
accordingly to ensure consistency in tenses within that paragraph (Pages 5-6 Lines
134-148). Throughout the entire manuscript, we also devoted special attention to the
issue of tense during the revision.

# Point 3. The fact that iEEG participants did not show any significant differences in accuracies and
reaction times between the painful and non-painful stimuli during the pain judgment task is
shown in sufficient detail. However, the average, the standard deviation, the minimum, and the
maximum of these accuracies and reaction times for painful and non-painful stimuli are not shown
in the Results or the Methods section. These values must be clearly reported so that the reader
can grasp what type of performances the participants showed in the task.

Response: Following the reviewer’s suggestion, we have now reported descriptive
statistical details of response accuracies and response times for painful and non-painful
stimuli in the revised Table S4 (Table R2).

#Point 4. In the sentence starting at line 257, it is stated that a smaller sliding window was used
for the analysis reported in the Supplementary Figure 3. Although, it is reported clearly in the
earlier pages that the first analysis was conducted with a 100-ms window and this analysis is
conducted with a 50-ms window, the reader has to go between several pages to fully grasp what is
being changed in this analysis. The reader would substantially benefit if the authors clearly state
here the change was from the earlier 100-ms to 50-ms time window.

Response: We thank Reviewer #1 for asking us to clarify this issue. It should indeed
be clear to the reader what was done and how. Accordingly, in the revised manuscript,



we decided to only report this analysis in the Methods section and explicitly mentioned
that the change made in this analysis, compared to the original one, lied in adjusting
smoothing parameters (from a 100 ms to a 50 ms time window) (Page 39 Lines
1091-1094).

#Point 5. In the sentence starting at line 257, the authors state that the smaller sliding window
analyses showed similar temporal profiles to the longer sliding time window. However, as seen in
Supplementary Figure 3G, there was a very critical difference in that the latency of the IFG
high-gamma responses were 160 ms, as opposed to the 60-ms latency in the analyses with the
longer smoothing window. This latency difference challenges the neurodynamic model proposed
in Figure 6, which present very early IFG responses followed by other brain regions. The authors
must discuss this critical difference openly in the manuscript.

Response: Thank you, this is a valid point that we did not fully address in the original
submission. Upon closer examination of the results using a smaller sliding window of
50 ms, we found that the early response of IFG high-gamma activity exhibited the
same pattern and remained significant with a traditional threshold of p < 0.05 (Fig.
R17), although it was insignificant at the stringent threshold of p < 0.01. In the revision,
we have chosen to transparently report all these results, including both the significant
results at p < 0.01 and p < 0.05 thresholds, in order to comprehensively present the
pattern of IFG high-gamma activity and alleviate any confusion readers may have
regarding the absence of early IFG high-gamma responses (revised Fig. S15).

Figure R17. Temporal profile of IFG high-gamma power with the power time series smoothed by a
sliding window of 50 ms. We found the early increase of IFG high-gamma power within a
traditional threshold of p < 0.05 (significant increases from 80 ms to 130 ms, 160 ms to 290 ms,
and 390 ms to 460 ms, outlined with cross symbols), although it was not significant at the stringent
threshold of p < 0.01 (significant increases from 160 ms to 290 ms and 390 ms to 460 ms, outlined
with horizontal lines).

#Point 6. In the paragraph starting at line 308, the authors use sentences as “The ACC and
amygdala synchronized to a greater degree in the painful than non-painful conditions…”. It is as if
there was synchronization in both conditions and one condition was higher than the other one. In
fact, the analyses show that there was no synchronization at all in the non-painful condition. All
the sentences in this paragraph must be rephrased to capture this critical information in order to
prevent such misinterpretations.



Response:We agreed with Reviewer #3’s comments. Accordingly, we have revised all
relevant sentences to ensure clarity and prevent any potential misinterpretations.
Additionally, we have reported the significance of each condition (Page 13-14 Lines
338-351):

Page 13-14 Lines 338-351: “The comparison between the painful and non-painful
conditions revealed significant suppression in beta-band power correlations between
the ACC and AI (25-32 Hz, Fig. 3a; significant coupling in the non-painful condition,
which became absent in the painful condition, Supplementary Fig. 4a, b), as well as
between AI and the amygdala (18-24 Hz, Fig. 3b; significant coupling in both
conditions, Supplementary Fig. 4c, d). Interestingly, between the amygdala and ACC
during the perception of other’s pain (vs. non-pain), there were higher power
correlations within the lower frequency range of the beta band (18-22 Hz, Fig. 3c;
significant ACC-amygdala coupling in the painful not non-painful conditions,
Supplementary Fig. 4e, f) but lower power correlations within the upper frequency
range of the beta band (25-30 Hz, Fig. 3c; significant ACC-amygdala coupling in the
non-painful, but not painful, condition; Supplementary Fig. 4g, h). These results
together suggested that the beta oscillation may act as a prominent mediator for
inter-regional communications among the ACC, AI, and amygdala during perception
of other’s pain.”

# Point 7. In Figure 5D and the related analyses in the text, the statistical significance of the
correlations between empathic strength and neural features are reported in detail. However, quite
importantly, some of these correlations are positive and some are negative, which is not stated or
discussed in the manuscript. Especially for neural features 4, 5, and 6, the direction of the
correlations are quite surprising given the analyses reported in earlier sections of the manuscript.
To take neural feature 6 as an example, the amygdala beta oscillation analyses reported in Figure
2K shows that these oscillations are significantly decreased during vicarious pain. Since empathic
processing would increase during vicarious pain, one would expect a negative correlation between
these two measures, whereas Figure 5D shows a positive correlation. I do understand that these
ladder analyses are conducted on painful-nonpainful conditional difference scores, and thus do no
argue that there is necessarily an analytic error here. But these nuanced differences in analyses
must first be explicitly stated in the Results section and then also how they should be interpreted,
as well as their potential explanatory power in terms of the neurodynamical processes underlying
empathic processing, must be openly discussed in the Discussion section.

Response: We thank Reviewer #3 for the valuable suggestions which are helpful to
enhance the readability of our results. In the revised Result section (Page 19-20 Lines
511-530), we have clearly stated how the neural features varied with the strength of
empathy responses, providing our understanding of the correlations between empathy
strength and neural features. We also discussed how results from the contrast and
correlation analysis helped to understand the qualitative and quantitative role of



suppressed low-frequency power in the ACC (alpha) and AI in empathic response, and
have accordingly updated our neurodynamic model of empathy (revised Fig. 6).

First, please note that we have updated our correlation results due to the modifications
made in response to Reviewer #1’s Main Point #3b and Minor Point #12 and the
implementation of linear-mixed effect models to control for individual variations. In
the updated results, only two neural features (ACC alpha oscillations and AI
low-frequency oscillations) were reliably associated with empathic strength (revised
Results, Page 20 Lines 519-525, revised Fig. 5d). The correlations with other features
reported in the original submission did not survive multiple correction under the
examination of linear-mixed effect models. Therefore, in the revision, we only focused
on the correlation results between empathy strength and these two features. The ACC
alpha power and AI low-frequency power were negatively associated with empathy
strength, indicating that stronger empathic responses were linked to greater
suppression of ACC alpha oscillations and AI low-frequency oscillations. These
correlation patterns were consistent with the patterns of decreased low-frequency
power observed in the “painful vs. non-painful” contrast (Fig. 2e, f; Fig. R4A, B). The
observation that ACC alpha power and AI low-frequency power were suppressed in the
“painful vs. non-painful” contrast and negatively associated with empathy strength
suggested that the suppressed low-frequency power in the ACC (alpha) and AI not
only facilitated qualitative differentiation between others’ pain and non-pain (signaling
the presence of other’s pain), but also quantitatively tracked the strength of empathic
responses.

Furthermore, to aid in the interpretation of the functional meaning of low-frequency
power in the ACC (alpha) and AI, we investigated their association with perceived pain
intensity in others and one’s own level of unpleasantness (revised Results, Page 20
Line 532-547). We revealed a negative association between ACC alpha oscillations and
perceived pain intensity (revised Fig. 5e). Consistent with this, a recent iEEG study
showed that decreased ACC alpha power predicted higher pain states in participants
(Shirvalkar et al., 2023). Thus, suppression of ACC alpha power was implicated in
encoding both the intensity of pain experienced by oneself (Shirvalkar et al., 2023) and
vicariously by others (current study). For the AI, we observed a negative correlation
between AI low-frequency oscillations and perceived pain intensity (similarly reported
by Soyman et al., 2022), but also a positive correlation with one’s own unpleasantness
(revised Fig. 5f). This suggested that, during empathy for other’s suffering, the
suppression of AI low-frequency power may enhance other-related processing (e.g.,
the perception of intensity of others’ pain) while inhibited self-related processing (e.g.,
the generation of stronger personal unpleasantness).

#Point 8. In the sentences starting at line 540, the authors report that the neural activity did not
vary as a function of arousal levels. However, whether there was a significant difference between
the painful and on-painful stimuli in these arousal levels is not reported. The results of such an
analysis must be reported here.



Response: We took Reviewer #3’s suggestion and compared the arousal levels
between the painful and non-painful stimuli (results were reported in the revised
Methods, Pages 31-32 Lines 860-869):

Page 20 Line 532-547: “In addition, to confirm that the neural findings did not result
from possible differences in arousal levels between painful and non-painful stimuli,
patients also provided ratings of arousal level for each stimulus (“How intense is your
emotional response induced by this picture”; 0 = extremely calm, 100 = extremely
strong). Although painful stimuli were associated with higher arousal levels than
non-painful stimuli (difference: 55.98  6.00, t15 = 9.33, p = 1.2310-7, Cohen’s d =
2.33, 95% CI: 43.20, 68.76), the observed tempo-spectral patterns did not vary as a
function of arousal levels (Supplementary Fig. 9). These results suggested that the
observed neural effects were not due to potential differences in arousal levels between
painful and non-painful stimuli.”

#Point 9. The Discussion section would benefit substantially if the authors discuss their anterior
insula findings in relation to the findings of the Soyman et al. (2022) study, which analyzed
intracranial recordings from the insula while the participants engaged in a vicarious pain
perception task similar to the one used in this study.

Response: This is a very valid point that we did not address in the initial submission.
We sincerely appreciate this constructive suggestion and further probed the
relationship between our findings and those of Soyman et al. (2022). In summary, we
identified consistent findings and elucidated the distinct patterns of insula activity
(detailed below). In the revision, i) we highlighted the consistent findings that both the
current study and the study of Soyman et al. (2022) showed low-frequency insula
power encoding perceived pain intensity (Page 23 Lines 624-625); ii) we
acknowledged the different spectral patterns of insula observed in our results and theirs
(Soyman et al., 2022) and discussed potential implications arising from these distinct
findings (Pages 27-28 Lines 745-763).

 Consistent findings of insula

In the current study, we found a negative association between AI low-frequency power
and the intensity of perceived pain in others. This finding aligned with Soyman and
colleagues’ finding that a low-frequency cluster within the insula (13-17 Hz) exhibited
a negative correlation with the intensity of perceived pain in others (Soyman et al.,
2022).

 Differences and potential insights

Our work focused on the anterior insula and revealed significant power changes
specifically within low-frequency bands in AI (but not in the gamma and high-gamma



bands). In contrast, Soyman et al (2022) explored activity across both the anterior and
posterior insula and found that broadband activity, rather than specific frequency bands,
was involved in encoding intensity of perceived pain in others. These distinct spectral
patterns may imply that the anterior and posterior insula have different response
profiles during processing of other’s pain. Alternatively, these differences may be
attributed to variations in experimental design and stimulus types between our study
and that of Soyman et al (2022). For example, while our study asked patients to make a
dichotomous judgment on whether the person depicted in a static picture experienced
pain or not, Soyman et al (2022) asked patients to rate the intensity of pain perceived
in a person shown in a video clip using continuous evaluation. It would be interesting
for future studies with larger sample size and trial number to further investigate if and
how the experimental task modulates spectral patterns within different subregions of
the insula as well as other empathy-related regions during processing others’ pain.

# Point 10. In the sentence starting at line 769, the authors state that the participants pressed the
left or right button for reporting their answers for the presence or the absence of pain. Was the
assignment of the buttons to the responses randomized across trials or participants? If not,
wouldn’t the systematic association of one motor behavior with one response lead to systematic
biases in the neural responses?

Response: We thank Reviewer #3 for asking us to clarify this issue. We clearly stated
here and in the revised Method (Pages 30-31 Lines 832-839).

All participants used their dominant right hand to indicate whether they thought the
person depicted in the picture felt painful (or not) by pressing the index (middle) finger.
This judgment-button and response finger was fixed and not randomized across trials
or participants. However, this design did not bias participants’ behavioral
performances, as we found comparable response times and response accuracies
between the painful and non-painful condition (response time: t21 = -0.16, p = 0.874;
response accuracy: t21=1.26, p = 0.221).

Moreover, this design was also unlikely to influence the observed neural results. First,
the motor cortex was not the region of interest in the current study. Furthermore, a
crucial aspect of our experimental setup involved separating the stimulus presentation
phase from the response phase (i.e., separate screens for stimulus display and pain
judgment, Fig. 1a). Participants were instructed to carefully view the picture during the
stimulus presentation phase and make their pain judgment after its disappearance (the
response phase). This separation effectively isolated vicarious pain perception from
any potential biasing effects of motor responses on neural responses to others’ pain
(reported in Page 30-31 Lines 836-839). Consistent with previous studies (Mu et al.,
2008; Zhou & Han, 2021), our neural analysis solely focused on the stimulus
presentation phase; thus, it is unlikely that participants’ motor responses could have
affected our observed neural effect.



# Point 11. In the sentences starting at line 774, the authors state that the 20 pictures were shown
once, which means that the maximum number of trials that could go into any analysis was 20.
Furthermore, in the sentence starting at line 913, it is stated that any channel with more than 30%
epochs removed from either painful or non-painful conditions was excluded. This means that it
was possible for a channel to be included in the analyses if it had 7 painful and 7 non-painful trials.
For electrophysiological analyses, these are surprisingly low numbers of trials. In addition, some of
the analyses in the manuscript are conducted by taking the conditional difference between
matched pairs of painful and non-painful stimuli. If unmatched trials were rejected, these analyses
would be conducted with even lower numbers of matched trials. For each analysis, the author
must report the mean, the standard deviation, the minimum, and the maximum number of trials
(across channels) that were taken into account when computing that particular metric or
conducting that analysis for transparent reporting of the analytical procedures.

Response: We thank Reviewer #3 for raising this question and corresponding
suggestions. Accordingly, we i) provided evidence from the literature justifying the
exceptionally high signal quality of iEEG as a means to illustrate the feasibility of
utilizing limited number of trials (Ball et al., 2009; Parvizi & Kastner, 2018; Mercier et
al., 2022); ii) took reviewer’s suggestion to report detailed information of trial numbers
for each analysis (Table R3, Supplementary Data 1); and iii) encouraged future studies
to examine empathic neural responses with larger trial numbers in the revised
Discussion (Page 28 Lines 759-763).

i) As pointed out the reviewer, the number of trials in our study was relatively limited
compared to fMRI and scalp EEG studies. We made this choice due to i) the clinical
and hospital constraints associated with intracranial EEG recording and ii) the practical
consideration that patients were donating their time and energy during a challenging
period (Parvizi & Kastner, 2018; Mercier et al., 2022). Therefore, we minimized the
experimental duration (Mercier et al., 2022) and reduced the number of trials
accordingly. However, this potential limitation in trial numbers can be compensated for
by the exceptional signal-to-noise ratio (SNR) observed in iEEG data compared to
fMRI or scalp EEG data (Parvizi & Kastner, 2018; Mercier et al., 2022). For example,
when simultaneously recording scalp EEG and iEEG signals, Ball and colleagues
(2009) found that the signal quality of iEEG data was 20 to over 100 times better than
that of scalp EEG. Furthermore, recent iEEG studies have demonstrated that, with the
high SNR of iEEG data, particularly in functionally specialized brain regions,
stimulus-evoked neural responses can be reliably observed using fewer trials (Mercier
et al., 2022; Lachaux, 2023). For example (Fig. R1, to avoid going back the Fig. R1,
we pasted here again, adapted from Mercier et al., 2022, Fig. 11), broadband and
high-frequency neural activity can be reliably observed with just 2 trials while
maintaining consistent patterns across a range of 2 to 59 trials.



Figure R1. Neural responses with different number of averaged trials. The broadband activity (A)
and the magnitude envelope of high-frequency activity (40-150 Hz, B) showed similar patterns
across a range of 2 to 59 trials (adapted from Mercier et al., 2022, Fig. 11).

ii) Moreover, as per the recommendation of Reviewer #3, we have included
comprehensive descriptive statistics of trial numbers for each analysis (including mean,
standard deviation, and range) in a Supplemental file (Table R3, Supplementary Data
1). In summary, each analysis encompassed an average of approximately 90% of trials
in every brain region or region-pair (Table R3).

iii) We admitted that a larger number of trials will be beneficial and recommended
using datasets with larger trial numbers to further examine observed empathy-related
neural features in the revised Discussion (Page 28 Lines 759-763).

#Point 12. The MNI coordinates of all channels included in the final analyses must be reported in a
supplementary table or file. In addition, this file must have, for each channel, the MNI coordinates
of the nearest white-matter neighbor reference channel used in the bipolar montage analyses. In
the Methods section, around the sentence starting at line 899, the authors must clearly state, in
this bipolar montage referencing, whether the same nearest white-matter reference channel was
used for channels that were placed in different regions in the brain. The purpose of the bipolar
analyses is to overcome the potential problem of increasing the estimated correlations between
different brain regions that can stem from having the same reference signal for those brain regions.
Thus, the authors must clearly state that indeed different reference channels are used for
channels in different brain regions in the bipolar montage.

Response: We appreciate the reviewer’s suggestions. Accordingly, in the revised



Method (Page 35 Lines 978-981), we reported that a majority of cross-regional channel
pairs (an average of 84.09% of pairs) utilized different white-matter channels as
references for their respective brain regions, when applying the closest-white-matter
referencing scheme. Additionally, following Reviewer #3’s recommendations, we
included a supplementary table for the MNI coordinates of all channels and their
corresponding nearest white-matter neighbor reference channels for each ROI (Table
R4, Supplementary Data 2).

#Point 13. In the sentence starting at line 1039, the authors state that transfer entropy was
computed at a lag of 10 ms. Considering that the spectral power data was down-sampled to 100
Hz and a 100-ms sliding time window was used for sliding, responses at a 10-ms lag would be
heavily influenced by a wide temporal window that intersects at a substantial amount of earlier
and later time points in the two channels. The transfer entropy analysis must be conducted at
various lags starting from 0 ms to 100 ms to assess the sensitivity of the reported results.

Response:We thank Reviewer #3 for this helpful suggestion. Following the reviewer’s
recommendation, we conducted transfer entropy (TE) analysis at various lags. Since
we used a sliding window of 50 ms instead of 100 ms to compute the transfer entropy,
we conducted the TE analysis with lag values ranging from 10 ms to 50 ms in
increments of 10 ms. This range (i.e., 10% of the analysis window length) aligned with
that used in directionality analyses in previous studies (Oehrn et al., 2018; Ten Oever
et al., 2021). The results obtained from this analysis showed that the observed pattern
in transfer entropy remained stable as the lag increased (Fig. R18 D-F, revised Fig. S16,
reported in Page 41 Lines 1148-1152). In addition, even when computing TE based on
non-normalized data, we still observed similar TE patterns with increasing lags (Fig.
R18 G-I). These results suggested that our transfer entropy results were relatively
robust and not significantly affected by changes in lags.



Figure R18. Transfer entropy (TE) analysis between ACC, AI, and amygdala. (A-C) When
computing TE at a lag of 10 ms (which was reported in the original submission), we found main
effects of pain for ACC-AI (A. reduced TE in both directions during perception of other’s pain
between ACC and AI), interaction effect for AI-amygdala TE (B. processing of others’ pain
specifically suppressed beta information flow from the amygdala to AI) and main effects of pain
for ACC-amygdala TE (C. enhanced TE in both directions during perception of other’s pain
between ACC and amygdala). (D-I) The main effects of pain for ACC-AI and ACC-amygdala TE
and interaction effect for AI-amygdala TE remained when lag values ranging from 10 ms to 50 ms
based on minimally smoothed data (D-F) or non-smoothed data (G-I). Significant main effect of
pain is highlighted with orange circles and significant interaction effect is highlighted with pink
circles. Amy = amygdala. **p < 0.05, ***p < 0.01, NS, not significant.



Table R1. Channel/channel-pair information for each patient

Patient

Number of channels Number of channel pairs

ACC AI Amy IFG ACC
-AI

ACC
-Amy

AI
-Amy

ACC
-IFG

AI
-IFG

Amy
-IFG

sub01 4 3 5 12 20 15

sub02 2

sub03 7

sub04 8

sub05 4 6 2 2 24 8 12 8 12 4

sub06 5 4 4 3 20 20 16 15 12 12

sub07 5 2 8 10 40 16

sub08 4 3 5 12 20 15

sub09 5 3 5 15 25 15

sub10 3

sub11 9 4 13 36 117 52

sub12 1 2 4 15 2 4 8 15 30 60

sub13 2 5 7 10 14 35

sub14 10 4 2 40 20 8

sub15 6 3 18

sub16 8 4 3 32 24 12

sub17 8 11 5 7 88 40 55 56 77 35

sub18 3

sub19 13 6 5 78 65 30

sub20 9 4 36

sub21 4 8 32

sub22 5 2 3 10 15 6

Total 40 98 68 91 234 72 300 219 459 254



Table R2 Descriptive statistics of behavioral performances

Behavioral indices Non-painful condition Painful condition

Response
accuracy (%)

Mean  SE 81.82  3.58 87.73  3.15
Minimum 50 60
Maximum 100 100

Response time (s)
Mean  SE 1.02  0.12 1.00  0.10
Minimum 0.28 0.33
Maximum 2.99 1.69



Table R3 Descriptive statistics of trial number across channels or channel-pairs

Main analysis Trial numbers
Time-frequency analysis

AI
Mean  SE 19.43  0.07
Minimum 17
Maximum 20

ACC
Mean  SE 19.63  0.11
Minimum 17
Maximum 20

Amygdala
Mean  SE 19.51  0.07
Minimum 18
Maximum 20

IFG
Mean  SE 19.64  0.09
Minimum 16
Maximum 20

Power correlation analysis or Transfer entropy analysis

ACC-AI
Mean  SE 19.12  0.06
Minimum 16
Maximum 20

ACC-amygdala
Mean  SE 18.92  0.09
Minimum 17
Maximum 20

AI-amygdala
Mean  SE 19.01  0.04
Minimum 16
Maximum 20

Phase-amplitude coupling analysis

ACC-IFG
Mean  SE 19.31  0.05
Minimum 17
Maximum 20

AI-IFG
Mean  SE 19.37  0.04
Minimum 16
Maximum 20

Amygdala-IFG
Mean  SE 19.12  0.08
Minimum 14
Maximum 20

Correlation analysis with empathy-related ratings

ACC alpha
oscillations

Mean  SE 9.58  0.12
Minimum 7
Maximum 10

ACC beta
oscillations

Mean  SE 9.58  0.12
Minimum 7



Maximum 10
AI

low-frequency
oscillations

Mean  SE 9.43  0.08
Minimum 8
Maximum 10

Amygdala beta
oscillations

Mean  SE 9.39  0.09
Minimum 8
Maximum 10

ACC-amygdala
(low-)beta
coupling

Mean  SE 8.92  0.09
Minimum 7
Maximum 10

ACC-IFG PAC
Mean  SE 9.24  0.06
Minimum 7
Maximum 10

AI(alpha)-IFG
PAC

Mean  SE 9.22  0.05
Minimum 6
Maximum 10

Amygdala-IFG
PAC

Mean  SE 8.94  0.09
Minimum 5
Maximum 10



Table R4 Channel coordinate within the ACC, AI, amygdala and IFG for all
patients in the MNI space

Patient ID
The coordinate of

included channel for ROIs

The coordinate of
the corresponding nearest white-matter

neighbor reference channel
Channels for the ACC

5 -6 21 -22 -11 30 -9
5 -7 23 -19 -11 30 -9
5 -8 26 -16 -11 30 -9
5 -10 28 -13 -11 30 -9
6 -12 38 -9 -38 -2 -26
6 -12 40 -5 -44 -2 3
6 -13 41 -1 -44 -2 3
6 -13 43 3 -44 -2 3
6 -14 45 7 -44 -2 3
7 4 36 14 18 39 27
7 6 37 16 18 39 27
7 9 37 19 18 39 27
7 12 38 22 18 39 27
7 15 38 24 18 39 27
8 2 43 12 17 47 17
8 6 44 13 17 47 17
8 10 45 14 17 47 17
8 13 46 16 17 47 17
12 -4 19 -17 -9 21 -12
17 6 38 5 15 47 15
17 8 40 8 15 47 15
17 10 43 10 15 47 15
17 13 45 12 15 47 15
17 5 26 23 15 34 31
17 8 28 25 15 34 31
17 10 30 27 15 34 31
17 13 32 29 15 34 31
19 -7 20 37 -15 20 35
19 -9 21 40 -15 20 35
19 0 39 1 -16 37 17
19 -3 39 4 -16 37 17
19 -6 39 7 -16 37 17
19 -3 17 31 -15 20 35
19 -5 18 34 -15 20 35
19 -8 38 9 -16 37 17
19 -11 38 12 -16 37 17
19 -14 38 15 -16 37 17



Patient ID
The coordinate of

included channel for ROIs

The coordinate of
the corresponding nearest white-matter

neighbor reference channel
19 -6 22 29 -15 20 35
19 -9 21 31 -15 20 35
19 -12 21 33 -15 20 35

Channels for the AI
1 -33 21 -4 -38 -6 -26
1 -37 20 -3 -38 -6 -26
1 -39 5 4 -38 -6 -26
1 -43 4 5 -50 -7 -25
2 36 -2 16 47 0 19
2 40 -1 17 47 0 19
5 -37 12 -11 -41 0 -25
5 -37 15 -8 -41 0 -25
5 -36 17 -5 -31 32 14
5 -35 20 -2 -31 32 14
5 -34 22 1 -31 32 14
5 -34 25 4 -31 32 14
6 -33 10 1 -44 -2 3
6 -37 11 1 -44 -2 3
6 -37 -5 0 -44 -2 3
6 -40 -3 2 -44 -2 3
7 35 8 3 19 20 36
7 38 8 5 19 20 36
8 36 15 1 25 43 -3
8 39 16 3 25 43 -3
8 43 17 5 25 43 -3
9 38 12 -8 29 26 4
9 36 15 -6 29 26 4
9 34 17 -3 29 26 4
9 33 20 -1 29 26 4
9 31 23 2 29 26 4
11 -38 3 -6 -39 1 -24
11 -38 6 -3 -39 1 -24
11 -38 9 0 -39 1 -24
11 -38 11 4 -39 1 -24
11 -37 12 -4 -39 1 -24
11 -39 11 -1 -39 1 -24
11 -37 0 3 -45 -22 -4
11 -39 -2 5 -45 -22 -4
11 -42 -4 8 -45 -22 -4
12 -32 8 8 -32 6 4
12 -31 10 11 -31 12 14



Patient ID
The coordinate of

included channel for ROIs

The coordinate of
the corresponding nearest white-matter

neighbor reference channel
13 -35 9 -15 -37 0 -24
13 -38 7 -15 -37 0 -24
14 44 13 -9 36 -2 1
14 42 14 -6 36 -2 1
14 41 16 -3 36 -2 1
14 40 17 1 36 -2 1
14 39 19 4 34 25 18
14 38 20 7 34 25 18
14 36 22 11 34 25 18
14 35 23 14 34 25 18
14 39 -1 3 36 -2 1
14 37 -7 11 33 -6 10
15 -35 8 -4 -30 17 16
15 -34 10 -1 -30 17 16
15 -34 11 2 -30 17 16
15 -33 13 6 -30 17 16
15 -32 14 9 -30 17 16
15 -31 16 13 -30 17 16
16 34 12 -13 36 5 -25
16 33 13 -9 33 3 -24
16 32 14 -6 33 3 -24
16 31 16 -3 27 23 14
16 31 17 0 27 23 14
16 30 19 4 27 23 14
16 29 20 7 27 23 14
16 28 22 10 27 23 14
17 35 6 -10 37 1 -25
17 35 7 -6 37 1 -25
17 35 9 -3 34 17 16
17 35 10 1 34 17 16
17 35 12 5 34 17 16
17 35 15 12 34 17 16
17 25 16 -18 22 30 -12
17 27 18 -15 22 30 -12
17 35 10 -5 37 1 -25
17 37 12 -4 34 17 16
17 40 14 -2 34 17 16
19 -32 17 -9 -16 37 17
19 -35 18 -7 -16 37 17
19 -38 19 -5 -16 37 17
19 -41 20 -3 -19 37 20



Patient ID
The coordinate of

included channel for ROIs

The coordinate of
the corresponding nearest white-matter

neighbor reference channel
19 -40 -1 -2 -19 37 20
19 -42 0 0 -19 37 20
20 37 12 -11 42 -1 -24
20 36 14 -8 42 -1 -24
20 35 16 -5 28 28 17
20 34 18 -2 28 28 17
20 33 20 1 28 28 17
20 32 21 4 28 28 17
20 31 23 7 28 28 17
20 30 25 10 28 28 17
20 29 26 14 28 28 17
21 42 -3 -1 47 0 4
21 34 12 -2 26 27 -5
21 36 14 0 26 27 -5
21 39 17 1 26 27 -5
22 -37 7 -8 -47 0 -21
22 -37 10 -6 -47 0 -21
22 -37 13 -3 -47 0 -21
22 -36 17 -1 -47 0 -21
22 -36 20 1 -47 0 -21

Channels for the amygdala
1 -26 -5 -27 -38 -6 -26
1 -30 -6 -26 -38 -6 -26
1 -34 -6 -26 -38 -6 -26
3 -16 -2 -21 -37 -5 -22
3 -20 -3 -22 -37 -5 -22
3 -27 -4 -22 -37 -5 -22
3 -31 -5 -21 -37 -5 -22
3 -34 -5 -22 -37 -5 -22
3 21 -1 -26 36 1 -28
3 29 0 -27 36 1 -28
4 15 -5 -19 34 -3 -21
4 19 -5 -19 34 -3 -21
4 23 -4 -20 34 -3 -21
4 -17 -6 -17 -36 -7 -17
4 -20 -7 -17 -36 -7 -17
4 -24 -7 -17 -36 -7 -17
4 -28 -7 -17 -36 -7 -17
4 -32 -7 -17 -36 -7 -17
5 -27 -3 -26 -34 -1 -26
5 -30 -2 -26 -34 -1 -26



Patient ID
The coordinate of

included channel for ROIs

The coordinate of
the corresponding nearest white-matter

neighbor reference channel
6 -24 -6 -22 -38 -2 -26
6 -27 -5 -23 -38 -2 -26
6 -31 -4 -24 -38 -2 -26
6 -34 -3 -25 -38 -2 -26
9 26 -3 -28 36 -1 -27
9 29 -2 -28 36 -1 -27
9 33 -2 -27 36 -1 -27
10 -24 -6 -23 -34 -3 -24
10 -28 -5 -23 -34 -3 -24
10 -31 -4 -24 -34 -3 -24
11 -22 -6 -22 -35 0 -24
11 -25 -4 -22 -35 0 -24
11 -29 -3 -23 -35 0 -24
11 -32 -1 -23 -35 0 -24
12 -20 -3 -19 -34 -4 -19
12 -23 -3 -19 -34 -4 -19
12 -27 -4 -19 -34 -4 -19
12 -30 -4 -19 -34 -4 -19
13 -19 -11 -17 -34 -11 -18
13 -22 -10 -18 -34 -11 -18
13 -25 -8 -20 -34 -11 -18
13 -28 -6 -21 -34 -2 -23
13 -31 -4 -22 -34 -2 -23
14 22 -1 -26 35 1 -29
14 25 -1 -26 35 1 -29
14 29 0 -27 35 1 -29
14 32 0 -28 35 1 -29
15 -23 -3 -23 -47 -10 -26
15 -27 -2 -24 -47 -10 -26
15 -30 0 -24 -47 -10 -26
16 19 -6 -20 30 1 -23
16 22 -5 -21 30 1 -23
16 24 -3 -22 30 1 -23
16 27 -1 -22 30 1 -23
17 24 -3 -21 37 1 -25
17 27 -2 -22 37 1 -25
17 30 -1 -23 37 1 -25
17 34 0 -24 37 1 -25
17 23 -11 -19 37 -10 -20
18 -27 -3 -25 -44 -18 -18
18 -30 -1 -25 -44 -18 -18



Patient ID
The coordinate of

included channel for ROIs

The coordinate of
the corresponding nearest white-matter

neighbor reference channel
18 -33 1 -25 -44 -18 -18
20 20 -7 -24 33 -3 -24
20 23 -6 -24 33 -3 -24
20 26 -5 -24 33 -3 -24
20 29 -4 -24 33 -3 -24
22 -31 -8 -24 -37 -5 -23
22 -34 -7 -23 -37 -5 -23

Channels for the IFG
1 -41 19 -3 -38 -6 -26
1 -45 17 -3 -50 -7 -25
1 -49 16 -3 -50 -7 -25
1 -53 14 -3 -50 -7 -25
1 -56 13 -3 -50 -7 -25
5 -33 27 7 -31 32 14
5 -32 29 10 -31 32 14
6 -40 12 1 -44 -2 3
6 -44 14 2 -44 -2 3
6 -47 15 2 -44 -2 3
7 41 7 7 22 10 40
7 44 7 9 22 10 40
7 47 7 12 22 10 40
7 50 7 14 22 10 40
7 53 6 17 22 10 40
7 56 6 19 22 10 40
7 59 6 21 22 10 40
7 62 6 24 22 10 40
8 46 18 6 25 43 -3
8 49 19 8 25 43 -3
8 53 19 10 25 43 -3
8 56 20 12 25 43 -3
8 59 21 14 25 45 0
9 32 39 -19 29 26 4
9 35 39 -18 29 26 4
9 39 39 -17 29 26 4
9 43 40 -17 29 26 4
9 46 40 -16 29 26 4
11 -38 14 7 -39 1 -24
11 -38 17 11 -39 1 -24
11 -39 19 14 -39 1 -24
11 -39 22 18 -39 1 -24
11 -42 10 2 -39 1 -24



Patient ID
The coordinate of

included channel for ROIs

The coordinate of
the corresponding nearest white-matter

neighbor reference channel
11 -44 10 4 -39 1 -24
11 -47 9 7 -42 3 -25
11 -49 8 10 -45 -22 -4
11 -52 8 13 -45 -22 -4
11 -54 7 16 -45 -22 -4
11 -57 7 19 -45 -22 -4
11 -59 6 22 -45 -22 -4
11 -62 6 25 -45 -22 -4
12 -29 26 4 -26 26 2
12 -32 27 6 -26 26 2
12 -35 28 8 -26 26 2
12 -37 28 10 -26 26 2
12 -40 29 12 -26 26 2
12 -43 30 14 -31 17 24
12 -46 31 16 -31 17 24
12 -29 38 -14 -20 24 -3
12 -32 38 -13 -26 26 2
12 -36 39 -12 -26 26 2
12 -39 39 -11 -26 26 2
12 -42 39 -10 -26 26 2
12 -46 40 -9 -26 26 2
12 -49 40 -7 -26 26 2
12 -53 41 -6 -26 26 2
13 -27 32 -12 -37 0 -24
13 -30 33 -9 -37 0 -24
13 -33 33 -7 -37 0 -24
13 -36 33 -4 -37 0 -24
13 -38 33 -2 -37 0 -24
13 -41 33 1 -37 0 -24
13 -44 34 4 -37 0 -24
14 59 2 17 33 -6 10
14 62 2 20 33 -6 10
16 40 46 -14 27 23 14
16 43 47 -13 27 23 14
16 46 48 -11 27 23 14
17 41 33 3 31 41 2
17 43 35 6 32 43 5
17 45 38 8 32 43 5
17 47 40 11 32 43 5
17 50 42 13 32 43 5
17 57 25 10 34 17 16



Patient ID
The coordinate of

included channel for ROIs

The coordinate of
the corresponding nearest white-matter

neighbor reference channel
17 59 27 11 34 17 16
19 -44 21 -1 -19 37 20
19 -47 22 1 -19 37 20
19 -50 22 2 -19 37 20
19 -53 23 4 -19 37 20
19 -56 24 6 -19 37 20
21 30 32 6 26 27 -5
21 50 2 6 47 0 4
21 53 3 9 55 4 11
21 61 7 16 58 6 14
21 42 20 3 26 27 -5
21 45 23 5 26 27 -5
21 48 26 6 55 4 11
21 50 29 8 58 6 14
22 -36 24 3 -47 0 -21
22 -36 27 6 -47 0 -21
22 -36 30 8 -47 0 -21
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REVIEWER COMMENTS

Reviewer #1 (Remarks to the Author):

General Comments:

The authors have spent great efforts on addressing the concerns and questions from the last round 

of review. There is no doubt that the manuscript has been improved from the last version. However, 

there are still major concerns, including the limited trial number issues, and some methodological 

problems, that haven’t been fully addressed. This greatly affects the reliability of the reported 

results and interpretation of the findings. Besides, great improvement in writing is still needed for 

the current version of the manuscript, with precise descriptions of the results, methods, and 

understandable interpretation of the current findings. I don’t think the manuscript right now fits the 

high standard of Nature Communication.

Major issues:

Concerns about the low trial number. I appreciate the authors’ efforts in addressing this issue. 

However, I don’t think this issue is fully addressed with the evidence and justifications that the 

authors provided. Authors claim that “potential limitation in trial numbers can be compensated for 

by the exceptional SNR observed in iEEG data compared to fMRI or scalp EEG data”. I agree that 

iEEG has stronger SNR compared to fMRI or scalp EEG data, but it doesn’t prove the point that the 

low trial number is sufficient for providing reliable results. Authors quoted Fig. 11 from Mercier et al, 

2022 (also adapted as Figure. R1) to show that averaged neural responses did not change 

significantly with different trial numbers. Note that, the results in Fig. 11 from Mercier et al, 2022 are 

ERPs recorded in the primary auditory cortex in response to pure tones. It is known that sensory are, 

like the primary auditory cortex, tend to have consistent neural responses to simple sensory inputs, 

which enables signal trial decoding analyses for Brain-Computer Interface application. However, 

such trial-by-trial consistency is much lower in higher cognitive regions during complex cognitive 

tasks. With a limited trial number (10 trials per condition in the current study), the observed 

averaged results can be easily driven by specific 1 or 2 trials. To avoid this potential bias, it is helpful 

for authors to generate similar figures like Fig. R1, using their collected data to show the single trial 

liability for empathy-related power change, power correlation, transfer entropy, and phase-

amplitude coupling.



Problematic methodology of decoding analysis.

First, it is confusing to me that why the authors built two classification models. As mentioned in the 

Methods Section decoding analysis, authors first built a classification model using 70% of the data 

as a feature-identifying dataset and 30% of data as a decoding dataset. Then the authors built 

another classification model using SVM along with a 5-fold cross-validation procedure. What is the 

relationship between these two models?

Second, the use of a 5-fold cross-validation procedure is not valid. K-fold cross–validation is 

beneficial to avoid overfitting problems. It should be used to evaluate the robustness of a model 

during training but for generating testing results. For example, the dataset should be split into a 

training dataset and a testing dataset first. Then the 5-fold cross-validation procedure applies to the 

training dataset only to assess the model performance and finalize the model structure before 

introducing the novel testing data to the model to assess its generalization ability.

Third, the limited trial number in this study for SVM decoding analysis is concerning. I agree with the 

authors that SVM requires fewer trial numbers compared with other multi-layer perceptron neural 

networks. However, 10 trials per condition still seem to be a challenging number. In Figure R2, 

which the authors adapted from Shao and Lunettta 2012, the minimum training sample size is 20 

trials per class, not even including the number of testing trials. The authors use a random 

resampling approach to generate a simulated dataset and test the relationship between decoding 

accuracy and trial numbers. This approach assumes that the newly collected data will follow the 

same distribution of the existing data, which is problematic especially when the existing dataset 

has so limited sample size that might not represent enough observational scenarios. For example, 

when you throw a dice twice and get a number 1 and a number 2 (real observation), if you use these 

two real observations to resample and generate more data, most likely your simulated data will be a 

bunch of 1 and 2. However, the real distribution of throwing a dice should cover numbers 1 to 6, 

which can never be simulated with limited real observations.

Some descriptions or interpretations of the results are not precise.

The term of “spatial integration” occurs several times in the text, e.g., in line 68. What do authors 

refer to?

The description of directionality analysis is not clear. For example, in line 363, what does “beta 

information transfer” mean?



Line 363, “suggesting reduced beta information transfer in both directions”.. Reduced beta 

information transfer relative to what?

Line 365, “the effect of pain was direction sensitive”... what is the meaning of direction sensitive? 

Please just describe the result itself.

Line 372, “enhanced information transmission between ACC and amygdala”... What information is 

transmitted here?

Line 672, what results in the study support the claim of “two DISTINCT inter-regional 

communication mechanisms”?

Line 714, “we observed weaker functional communications between the ACC and Al”, weaker 

compared to what?

Some of the questions are not fully addressed

As pointed out earlier, in the current version of the paper, it is still not clear how to understand the 

results from the directionality analyses. The authors mentioned that “the directionality analysis 

served as a supplementary analysis to power coupling analysis and was not the primary focus of 

the current study.” If this is the case, what is the point to include in the main figure, and how does 

that help better understand the primary power coupling analysis?

As pointed out earlier, the interpretation of the results is not clear. I appreciate that the authors 

made significant changes to the discussion session. However, the current version is extremely long, 

and still very hard for readers to understand the main findings of the paper. Not to mention the 

underlying potential explanation of the results, how that links to previous findings in other studies, 

and what specific questions inspired by the current findings for future studies.

Reviewer #2 (Remarks to the Author):

The authors have taken into appropriate consideration our remarks and changed the ms 

accordingly.



Reviewer #3 (Remarks to the Author):

The revised manuscript "Intracranial EEG signals disentangle multi-areal neural dynamics of 

vicarious pain perception" addressed all my concerns and I don't have any remaining comments or 

questions.

Reviewer #4 (Remarks to the Author):

I co-reviewed this manuscript with one of the reviewers who provided the listed reports as part of 

the Nature Communications initiative to facilitate training in peer review and appropriate 

recognition for co-reviewers.



General response: We are very grateful to you and other reviewers for the effort and 

time you put into reviewing our manuscript. We are delighted to learn that other 

reviewers were fully satisfied with our revised manuscript, and reviewer#1 only has a 

few remaining points that have not been fully addressed in the last round. Accordingly, 

we have provided further clarifications, additional analyses, and supporting results 

below to address these points. Specifically, we conducted a series of trial-wise analyses, 

which consistently demonstrated the reported neural patterns across the majority of 

trials. These analyses suggested that the observed effects were reliable and not driven 

by only a few specific trials (supporting results detailed in Figure R1-R3). We are 

pleased to report that these analyses underscore both the reliability of our findings and 

their consistency across trials. Additionally, we clarified methodological details and 

issues related to our decoding analysis to avoid oversimplification or potential 

confusion. We revised descriptions of our results to ensure clarity and accuracy. In terms 

of the discussion section, we made efforts to simplify our language in order to make it 

more intuitive and easy to understand. We also provided a summary of our revised 

Discussion which clarifies how we discussed the key findings by explaining their 

significance, discussing their connection with existing literature, and proposing future 

research questions. 

 Point-to-point response

#Point 1. “Major issues: Concerns about the low trial number. I appreciate the authors’ efforts in 

addressing this issue. However, I don’t think this issue is fully addressed with the evidence and 

jusfificafions that the authors provided. Authors claim that “potenfial limitafion in trial numbers 

can be compensated for by the excepfional SNR observed in iEEG data compared to fMRI or scalp 

EEG data”. I agree that iEEG has stronger SNR compared to fMRI or scalp EEG data, but it doesn’t 

prove the point that the low trial number is sufficient for providing reliable results. Authors quoted 

Fig. 11 from Mercier et al, 2022 (also adapted as Figure. R1) to show that averaged neural 

responses did not change significantly with different trial numbers. Note that, the results in Fig. 11 

from Mercier et al, 2022 are ERPs recorded in the primary auditory cortex in response to pure tones. 

It is known that sensory are, like the primary auditory cortex, tend to have consistent neural 

responses to simple sensory inputs, which enables signal trial decoding analyses for Brain-

Computer Interface applicafion. However, such trial-by-trial consistency is much lower in higher 

cognifive regions during complex cognifive tasks. With a limited trial number (10 trials per 

condifion in the current study), the observed averaged results can be easily driven by specific 1 or 

2 trials. To avoid this potenfial bias, it is helpful for authors to generate similar figures like Fig. R1, 

using their collected data to show the single trial liability for empathy-related power change, power 

correlafion, transfer entropy, and phase-amplitude coupling.”

Response: To address Reviewer 1’s concerns, we conducted a series of trial-wise 

analyses. We are pleased to report that these analyses provided compelling evidence 

for the reliability of our main findings (detailed below). Specifically, we examined the 

consistency of our neural patterns across different trial numbers and presented empirical 

evidence to support high trial-by-trial consistency in our neural data (Figure R1A-E; 



Figure R2A-D; Figure R3A-D). Furthermore, we checked the neural pattern for each 

single trial and performed sensitivity analyses and demonstrated that our main findings 

were not “driven by specific 1 or 2 trials” (Figure R1F-O, Figure R2E-L, Figure R3E-

L).

 Reliability of our main findings

The reliability of observed effects was recognized as the consistency of measurements

(Lavrakas, 2008; Elliott et al., 2020; Noble et al., 2020). Specifically, in terms of trial-

wise reliability, it refers to the extent to which a measure produces similar patterns 

across trials (Muller et al., 2014; Ter Wal M et al., 2021). The measure is considered 

reliable if it generates similar patterns across different trials. Accordingly, we conducted 

trial-wise analysis for each main finding to assess the reliability and consistency of our 

main neural findings across trials. 

First, we examined neural responses with varying number of averaged trials. A high 

trial-by-trial consistency would manifest as similar patterns when including all or a 

subset of trials. We investigated the conditional differences in neural activity between 

painful and non-painful conditions by including different number of trials in the 

analyses. Notably, even when considering partial trials (e.g., 40%, 60%, or 80% of the 

total trials), we observed that the reported neural findings remained statistically 

significant (Figure R1A-E, replicating the results shown in Figure 2e-h; Figure R2A-

D, replicating the patterns presented in Figure 3a-c; Figure R3A-D, replicating the 

results shown in Figure 4a-c). These findings underscore both the reliability of our 

main findings and their consistency across trials.

Second, in order to mitigate the potential influence of a limited number of specific trials 

on our neural results, we examined neural patterns at the single-trial level. Remarkably, 

we consistently observed the reported neural patterns across the majority of trials 

(Figure R1F-J, Figure R2E-H, and Figure R3E-H). Moreover, to assess the impact 

of extreme values on our results, we performed a sensitivity analysis by excluding trials 

with extreme conditional differences. If our findings were driven solely by 1-2 specific 

trials, removing these extreme trials would result in the absence of the reported neural 

patterns. However, this set of analyses demonstrated that all identified neural findings 

remained unchanged (Figure R1K-O, replicating the results shown in Figure 2e-h;

Figure R2I-L, replicating the findings reported in Figure 3a-c; Figure R3I-L, 

replicating the findings shown in Figure 4a-c).

With these lines of evidence, we were confident in the robustness of our neural findings, 

which demonstrated consistent patterns across trials and could not be attributed to a 

mere subset of specific trials. We included the single-trial neural patterns (Figure R1F-

J, Figure R2E-H, and Figure R3E-H) in the revised supplementary materials (Fig. 

S10-12) to show the consistent patterns across trials.



Figure R1. Consistent spectro-temporal power patterns in the AI, ACC, amygdala, and IFG 

across trials as shown in main Fig. 2. (A-E) The conditional differences of spectro-temporal power 

remained statistically significant even when considering partial trials (40%, 60% or 80%). Orange 

(violet) bars indicate normalized power for painful (non-painful) conditions. (F-J) The reported 

neural patterns were consistently observed across the majority of trials. Each orange (painful) and 

violet (non-painful) dot indicate single-trial normalized power. (K-O) Excluding extreme trials did 

not change the spectro-temporal power results. Orange (violet) split-half violin plots indicate the 

probability density of the averaged normalized power in the painful (non-painful) conditions. 



Figure R2. Consistent power correlations patterns between ACC, AI, and amygdala across trials 

as shown in main Fig. 3. (A-D) The conditional differences of power correlations remained 

statistically significant when including partial trials (40%, 60% or 80%). Orange (violet) bars 

indicate Fisher-z-transformed power correlation values for painful (non-painful) conditions. (E-H) 

The reported neural patterns were consistently observed across the majority of trials. Each orange 

(painful) and violet (non-painful) dot indicate single-trial Fisher-z-transformed power correlation 

values. (I-L) The power correlation results remained unchanged when excluding extreme trials. 

Orange (violet) split-half violin plots indicate the probability density of the averaged Fisher-z-

transformed power correlation values in the painful (non-painful) conditions. 



Figure R3. Consistent phase-amplitude coupling (PAC) patterns ACC/AI/amygdala and IFG 

across trials as shown in main Fig. 4. (A-D) The conditional differences of PAC values remained 

statistically significant when including partial trials (40%, 60% or 80%). Orange (violet) bars 

indicate Fisher-z-transformed PAC values for painful (non-painful) conditions. (E-H) The reported 

neural patterns were consistently observed across the majority of trials. Each orange (painful) and 

violet (non-painful) dot indicate single-trial Fisher-z-transformed PAC values. (I-L) The PAC 

results remained unchanged when excluding extreme trials. Orange (violet) split-half violin plots 

indicate the probability density of the averaged Fisher-z-transformed PAC values in the painful 

(non-painful) condition. 



# Point 2. 

2a. “First, it is confusing to me that why the authors built two classificafion models. As menfioned 

in the Methods Secfion decoding analysis, authors first built a classificafion model using 70% of the 

data as a feature-idenfifying dataset and 30% of data as a decoding dataset. Then the authors built 

another classificafion model using SVM along with a 5-fold cross-validafion procedure. What is the 

relafionship between these two models?” 

2b. “Second, the use of a 5-fold cross-validafion procedure is not valid. K-fold cross–validafion is 

beneficial to avoid overfifting problems. It should be used to evaluate the robustness of a model 

during training but for generafing tesfing results. For example, the dataset should be split into a 

training dataset and a tesfing dataset first. Then the 5-fold cross-validafion procedure applies to 

the training dataset only to assess the model performance and finalize the model structure before 

introducing the novel tesfing data to the model to assess its generalizafion ability.”

Response: To avoid potential pitfalls in decoding analysis, as previously highlighted in 

the literature (e.g., the problems of overfitting and information leakage; Kriegeskorte 

et al., 2009; Pereira et al., 2009; Varoquaux et al., 2017), we employed a relatively 

complex analysis pipeline. We thank you for raising these questions, which prompted 

us to revise the description of decoding methodology to avoid oversimplification and 

potential confusion or misunderstanding. 

In the revised Method (Pages 42-43, the Decoding analysis section), we have rephrased 

the explanation of our decoding approach. Specifically, we have clarified our analysis 

pipeline, and provided clearer details about our 70%-30% data split procedure and 

cross-validation procedure.

 70%-30% data split procedure (Pages 42, Para 2-4)

Please allow us to clarify that we did not construct two models.We employed the 70%-

30% data split procedure to randomly split our data into two independent sub-datasets, 

which were separately used to perform feature selection and model construction. 

Specifically, we randomly split our data into two independent sub-datasets, with 70% 

of the data as the feature-selection dataset, and the remaining 30% of the data as the 

decoding dataset. It should be noted that the feature-selection dataset was only used to 

identify informative features, rather than constructing classification models. The 

decoding dataset was only used to construct the classification model to decode stimulus 

types. The use of a separate sub-dataset, instead of the full dataset, to select relevant 

features has been suggested as a way to avoid potential problems of information leakage 

(Kriegeskorte et al., 2009; Pereira et al., 2009; Varoquaux et al., 2017).  

 Cross-validation procedure (Pages 43, Para 2)

We agree with your perspectives on the description of the K-fold cross-validation 

procedure. Our approach indeed was consistent with what you described, and we 

apologize for any lack of clarity in our previous description of the cross-validation 

procedure that may have caused misunderstanding of our cross-validation procedure. 

In fact, our utilization of the cross-validation procedure aligns with your viewpoints 



and is consistent with previous studies (Gulli et al., 2019; Priox et al., 2020; Wang et 

al., 2023; Benisty et al., 2024). We have now provided a clear elaboration on the 

objective and workflow of our cross-validation procedure in the revise Methods (Pages

43, Para 2).

# Point 2c. “Third, the limited trial number in this study for SVM decoding analysis is concerning. I 

agree with the authors that SVM requires fewer trial numbers compared with other mulfi-layer 

perceptron neural networks. However, 10 trials per condifion sfill seem to be a challenging number. 

In Figure R2, which the authors adapted from Shao and Luneftta 2012, the minimum training 

sample size is 20 trials per class, not even including the number of tesfing trials. The authors use a 

random resampling approach to generate a simulated dataset and test the relafionship between 

decoding accuracy and trial numbers. This approach assumes that the newly collected data will 

follow the same distribufion of the exisfing data, which is problemafic especially when the exisfing 

dataset has so limited sample size that might not represent enough observafional scenarios. For 

example, when you throw a dice twice and get a number 1 and a number 2 (real observafion), if 

you use these two real observafions to resample and generate more data, most likely your 

simulated data will be a bunch of 1 and 2. However, the real distribufion of throwing a dice should 

cover numbers 1 to 6, which can never be simulated with limited real observafions.”

Response: We thank you for raising this concern, which motivates us to take a closer 

examination of the impact of trial number on our decoding results. In preparing the 

revision, we conducted additional analyses and presented empirical evidence that the 

current number of trials had only a minimal impact on the robustness of the results. 

Specifically, we repeated the decoding analysis by including partial trials in the analyses 

to investigate the influence of smaller trial number. We found that our classification 

model consistently maintained its ability to discriminate between painful and non-

painful stimuli above chance across the range of 8 to 20 trials (all ps < 0.001; Figure 

R4). This result demonstrated the robustness of our classification model, as successful 

decoding remained even with smaller trial numbers. 

In addition, we observed a significant increase in decoding accuracy as the trial number 

increased: the decoding accuracy showed a significant improvement for every 

increment of two trials (Figure R4; highlighted by the grey shadow) when the trial 

number was below 16. Critically, when the training sample size researched 16 or above, 

further increases in training samples did not lead to a significant improvement in 

decoding performance (all ps > 0.05; Figure R4; highlighted by the yellow shadow). 

This plateau of decoding accuracy suggested that the model has converged, providing 

evidence supporting the sufficiency of our trial number to achieve stable, significant 

decoding performance. These results strengthened our confidence in the reliability and 

robustness of our decoding results. 



Figure R4. Decoding accuracy with partial trials. The purple solid-dotted line indicates the 

decoding accuracy across a range of 8 to 20 trials with error bars representing standard error. The 

black dash-dotted line indicates the statistical threshold of p < 0.05 for each sample size. Grey 

(orange) shadow highlights the range of sample size in which the improvement of decoding 

accuracy was (in)significant for every increment of two trials. *p < 0.05, **p < 0.01, ***p < 0.001, 

NS, insignificant

Minor Suggesfions #1. “Some descripfions or interpretafions of the results are not precise.

a) The term of “spafial integrafion” occurs several fimes in the text, e.g., in line 68. What do authors 

refer to?

b) The descripfion of direcfionality analysis is not clear. For example, in line 363, what does “beta 

informafion transfer” mean?

c) Line 363, “suggesfing reduced beta informafion transfer in both direcfions”... Reduced beta 

informafion transfer relafive to what?

d) Line 365, “the effect of pain was direcfion sensifive”... what is the meaning of direcfion sensifive? 

Please just describe the result itself.

e) Line 372, “enhanced informafion transmission between ACC and amygdala”... What informafion 

is transmifted here?

f) Line 672, what results in the study support the claim of “two DISTINCT inter-regional 

communicafion mechanisms”?

g) Line 714, “we observed weaker funcfional communicafions between the ACC and Al”, weaker 

compared to what?”

Response: We greatly appreciate the reviewer’s careful reading of our manuscript.  

Accordingly, we have removed confusing terms mentioned in point #a and point #f 

from the revised manuscript. We also have revised all relevant sentences to ensure 

precise descriptions of our results and mitigate any potential confusions (points #b,c,d,e, 

Page 14 Para. 3; point #g, Page 25 Para.4).



# Minor Suggesfion #2. “As pointed out earlier, in the current version of the paper, it is sfill not 

clear how to understand the results from the direcfionality analyses. The authors menfioned that 

“the direcfionality analysis served as a supplementary analysis to power coupling analysis and was 

not the primary focus of the current study.” If this is the case, what is the point to include in the 

main figure, and how does that help befter understand the primary power coupling analysis?”.

Response: We appreciate your suggestion. Following this suggestion, we have now 

presented the results of the directionality analysis in the revised supplementary figure 

(Figure S5) instead of being included in the main figure. In addition, we have removed 

the corresponding discussions on the results of the directionality analysis from the 

Discussion section, this may also contribute to enhancing the comprehensibility of the 

Discussion.

# Minor Suggesfion #3. “As pointed out earlier, the interpretafion of the results is not clear. I 

appreciate that the authors made significant changes to the discussion session. However, the 

current version is extremely long, and sfill very hard for readers to understand the main findings of 

the paper. Not to menfion the underlying potenfial explanafion of the results, how that links to 

previous findings in other studies, and what specific quesfions inspired by the current findings for 

future studies.”

Response: We thank you for raising this issue. Accordingly, we have made efforts to 

simplify our language in order to make it more intuitive and easy to understand. 

Specifically, we have revised the Discussion section to provide a clearer understanding 

of how we discussed the key findings by explaining their significance, discussing their 

connection with existing literature, and proposing future research questions. For your 

convenience, below is a summary of the structure of our revised discussion section 

highlighting how we discussed our main findings in these three aspects.  

Specifically, in the revised Discussion, we first summarized the main findings

(Discussion Para. #1) and proposed a neurodynamic model of human empathy for pain 

(Discussion Para. #2, Fig. 6). We then discussed the key findings (Discussion Para. #3-

9), providing explanations for our key results, discussing how our findings are linked 

to the literature, and/or suggesting questions for future studies to further address. 

Specifically,

Key finding 1 (presented in Fig. 2e-f, i-j; Discussion Para. #3): spectro-temporally 

shared and distinct profiles of the key empathy related regions ACC and AI. These 

findings answered questions that remained unclear in previous fMRI studies of empathy, 

i.e., whether the neural dynamics of the ACC and AI contribute to different aspects of 

empathic experiences. Moreover, we specified alpha oscillatory suppression in the ACC 

and AI as the shared oscillatory feature of first-hand and vicarious experiences of 

physical pain. On the other hand, together with previous human and animal studies, we 

suggested distinct functional roles of beta oscillation in ACC (encoding pain intensity) 



and AI (encoding own unpleasantness).

Key finding 2 (presented in Fig. 2g, k; Discussion Para. #4): Our findings of decreased 

amygdala beta oscillations, and coupling with ACC/IFG during vicarious pain 

perception answered the question whether the amygdala engaged in the processing of 

human empathy and fill the gap between previous animal electrophysiological findings 

and human fMRI studies. We interpreted the late amygdala response and coupling with 

other regions as reflecting late, integrated neural representation of others’ pain resulting 

from interactions with other regions. We also encouraged future research to directly test 

this possibility.

Key finding 3 (presented in Fig. 3, 4; Discussion Para. #5-7): We pointed out that our 

study provided initial electrophysiological understanding of empathy-related inter-

regional communications and the functional organization of the empathy network. 

Specifically, in line with previous animal studies, we observed the engagement of the 

ACC-amygdala and AI-amygdala circuits. We also identified a new mode of inter-

regional communication related to empathy, which provided new directions for future 

research about empathy-related circuits (Discussion Para. #5). Moreover, we 

interpreted our main findings of increased and decreased inter-regional 

communications as increased inter-regional information integration and reduced mutual 

distractions or functional specialization (Discussion Para. #6-7), taking the main 

findings of ACC-AI coupling (Fig. 3) and ACC-IFG coupling (Fig. 4) as specific 

examples. 

In addition, we also discussed how we minimize potential influences to enhance the 

reliability of our findings (Discussion Para. #8). We pointed out potential limitations 

and proposed research questions that could be addressed by future studies (Discussion 

Para. #9-10).

Please allow us to highlight that, although not exhaustive of all reported results, we 

have provided comprehensive discussions on key findings that might be of particular 

interest in the field. We would be happy to expand on any specific points recommended 

by the reviewer for further improvement.
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