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I. Topological Invariant of Freestanding Bismuthene

To examine the topological invariant of freestanding bismuthene, we calculated the Wannier

charge center evolution.1 The result is displayed in Supplementary Figure 1. The function

θ(k) is the phase factor of eigenvalues. Therefore, the evolution of the Wannier center across

the phase space can be regarded as the winding number of the Wannier center. Supplemen-

tary Figure 1 shows the topological Z2 invariant ν = 1 as the trajectory of the Wannier

center is an open curve traversing the whole Brillouin zone. The calculated Wannier center

indicates that freestanding bismuthene is a 2D topological insulator.
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Supplementary Figure 1 : Wannier charge center evolution of freestanding bismuthene.
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II. Formation Mechanism of 2D Weyl Cones

k

E

State A State B State C

Supplementary Figure 2: Schematic of State A (gapless Dirac cones), State B (gapped Dirac
cones), and State C (spin-split gapped Dirac cones). The red and blue colors in State C
indicate opposite spin orientations.

a. Gapless 2D Dirac States v.s. Gapped 2D Dirac States

We now compare the energy of two systems: gapless 2D Dirac states and gapped 2D Dirac

states, as schematically shown by State A and State B in Supplementary Figure 2. The

gapless Dirac cones (State A) can be described by the effective Hamiltonian

HD = v(kxσx + kyσy), (1)

where σi (i = x, y) are the pseudospin matrices. The energy eigenvalues are E± = ±vk,

where k =
√
k2x + k2y.

The Hamiltonian of Dirac cones with a SOC gap (State B) can be obtained by adding a
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SOC term, which is

HSOC = HD + λSOCσzsz = v(kxσx + kyσy) + λSOCσzsz, (2)

where si (i = x, y, z) are spin matrices and λSOC is the effective spin-orbit coupling. The

energy eigenvalues are ESOC
± = ±

√
v2k2 + λ2SOC. The size of band gap is Eg = 2|λSOC|.

The total energy of occupied states can be obtained by integrating E−(k) over the Bril-

louin zone. It turns out that the energy difference between State A and State B is propor-

tional to λ2SOC, i.e.

Eoccu.
SOC − Eoccu.

D ∝ −λ2SOC (3)

So the Dirac cones with SOC gaps are energetically favored, which also means that the 2D

Dirac states are fragile against gap-opening effects such as SOC.

b. Gapped 2D Dirac States v.s. Gapped Dirac States with spin

splitting

Now we introduce a spin-splitting term to the gapped Dirac fermion systems. The spin-

splitting term must break the space inversion symmetry for nonmagnetic systems. One

example is the dipole field from the SnSe(S) substrate. This dipole field creates a potential

difference between the "A" and "B" sublattices of bismuthene. This dipole term can been

effectively described by λDipσz. So the total Hamiltonian with the dipole term is

HSS = HSOC + λDipσz = v(kxσx + kyσy) + λSOCσzsz + λDipσz, (4)

where “SS" means spin-splitting because the substrate dipole term breaks the spin degeneracy

of the Dirac bands as shown by State C in Supplementary Figure 2. The energy eigenvalues
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are

E1
± = ±

√
v2k2 + (λSOC − λDip)2 (5)

E2
± = ±

√
v2k2 + (λSOC + λDip)2. (6)

We have two sets of gapped Dirac cones: one with a reduced gap of 2|λSOC − λDip| and the

other with an enlarged gap of 2|λSOC+λDip| (suppose λSOC and λDip have the same sign). The

spin of the two Dirac cones is polarized in opposite directions as shown in Supplementary

Figure 2. The energy gap between the bands described by E1
± vanishes when λSOC = λDip.

Now let us compare the energy of the gapped Dirac fermion systems without (State B)

and with (State C) the substrate perturbation. A straightforward calculation shows that

Eoccu.
SS − Eoccu.

SOC ∝ −λ2Dip (7)

So the Dirac bands with spin splitting are energetically favored. This is because the energy

reduction by forming the E2
± bands is greater than the energy cost for forming the E1

± bands.

The result suggests that the system tends to relax towards a configuration with larger values

of λDip. The argument also works for other substrate couplings such as λDip as discussed in

the main text.

c. Spontaneous relaxation towards a 2D Weyl semimetal

Consider a bismuthene layer floating on the surface of SnSe(S), the Bi layer relaxes to

narrow down the SOC gap and consequently lower the electronic energy of the system. The

SnSe(S) substrate surface provides a sufficiently strong substrate perturbation to minimize

the band gap of bismuthene, leading to a gapless 2D Weyl semimetal state. This spontaneous

process of gap minimization can also be seen in the first-principles band structure shown

in Supplementary Figure 3. The freestanding bismuthene possesses a band gap of 0.1 eV
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(Supplementary Figure 3a). The band gap is reduced to 20 meV due to the Rashba splitting

in the partially relaxed heterostructure of bismuthene and SnS (Supplementary Figure 3b).

In this heterostructure, only the interlayer spacing between bismuthene and SnS is optimized

while the lattice of bismuthene is fixed to be the freestanding one. The remaining small

band gap is eliminated in a fully relaxed bismuthene lattice on the SnS surface as shown in

Supplementary Figure 3c. The gapless Weyl cones are also found in the band structure of a

fully relaxed Bi/SnSe heterostructure (Supplementary Figure 3d).

Bi on SnSeBi on SnSBi on SnS
(only relax interlayer spacing

between Bi and SnS) (fully relax Bi atoms)free standing Bi monolayer

𝚪𝚪 X1X1𝚪𝚪 X1X1𝚪𝚪 X1X1
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(fully relax Bi atoms)a b c d

Supplementary Figure 3: Calculated band structure along X1−Γ−X1 direction of a freestand-
ing bismuthene, b bismuthene on SnS with only interlayer spacing relaxed, c bismuthene on
SnS with Bi atoms fully relaxed, and d bismuthene on SnSe with Bi atoms fully relaxed.
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III. Effective Model for 2D Weyl Semimetals in Bismuthene

The lattice structure of bismuthene possesses the symmetry of the Pmna space group (No.

53). The generators of the Pmna group include a twofold rotation C2z ≡ {C2z|12
1
2
}, a

glide line Gy ≡ {My|12
1
2
}, and the inversion P symmetries. We also have a vertical mirror

Mx = C2zGy. Since α-bismuthene is nonmagnetic, the time-reversal symmetry T is also

included.

a b

c d

X1

X2 M

X1X1 X2 X2

Γ
x

y y

z

Supplementary Figure 4: a Crystal structure of bismuthene. b Brillouin zone of bismuthene.
c Band structure in the absence of SOC. d Band structure in the presence of SOC.

Dirac points without spin-orbit coupling. — First, we investigate the band structure of

bismuthene in the absence of spin-orbit coupling (SOC), as shown in Supplementary Figure

4c. A pair of Dirac points appears along Γ-X1 path, which is formed by the band inversion

at Γ. To capture the feature of Dirac points, we can construct the effective model of Dirac

points around Γ.

The little co-group at Γ is the D2h point group, which includes the generators: a twofold

rotation C2z, a mirror My, and the inversion P . Note that My is just the rotation part
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Supplementary Table 1: Character table for the single-valued point group D2h

E C2z C2y C2x P Mz My Mx functions
Γ+
1 1 1 1 1 1 1 1 1 -

Γ+
2 1 −1 1 −1 1 −1 1 −1 xz

Γ+
3 1 1 −1 −1 1 1 −1 −1 xy

Γ+
4 1 −1 −1 1 1 −1 −1 1 yz

Γ−
1 1 1 1 1 −1 −1 −1 −1 -

Γ−
2 1 −1 1 −1 −1 1 −1 1 y

Γ−
3 1 1 −1 −1 −1 −1 1 1 z

Γ−
4 1 −1 −1 1 −1 1 1 −1 x

of Gy. We also need to consider T . The crossing bands correpond to the Γ+
4 and Γ−

3

irreducible representations of D2h. Since the low-energy bands are dominated with Bi-pz

orbitals, we may consider the pz orbital on two sublattices A and B, which we denote them

as {|A, pz⟩, |B, pz⟩}. Assuming that C2z, My, and P all map the sublattice A to B, the

combinatorial states {
√
2
2
|A, pz⟩ −

√
2
2
|B, pz⟩,

√
2
2
|A, pz⟩ +

√
2
2
|B, pz⟩} correspond to Γ+

4 and

Γ−
3 , respectively. Hence, we can use the states {|A, pz⟩, |B, pz⟩} as a basis to construct the

effective Hamiltonian around Γ.

Under the basis, the generators and T can be represented as

C2z = σx, My = σx, P = −σx, T = K (8)

Constrained by these symmetries, the effective Hamiltonian around Γ can be obtained as

(up to the second order),

HΓ
0 (k) = ϵ(k)σ0 + c1kyσy + (c2k

2
x + c3k

2
y)σx +∆σx (9)

where ϵ(k) = ϵ0 + ϵ1k
2
x + ϵ2k

2
y, σi are Pauli matrices, and ϵi, ci, ∆ are real parameters. The

band inversion occurs when ∆ < 0 and ky = 0, which gives rise to a pair of Dirac points at

(±
√

−∆/c2, 0) along the kx axis.

Expanding around each Dirac point, we can obtain the low-energy Hamiltonian for Dirac
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points, which reads

HDirac
0 (q) = ω(q)σ0 + τvxqxσx + vyqyσy (10)

where ω(q) = ω0+ τω1qx with ω0 = ϵ0− ϵ1∆/c2, and ω1 = 2ϵ1
√

−∆/c2, which gives rise to a

tilting of the Dirac cone in the qx direction. Here, vx = 2
√
−∆c2, vy = c1, τ = ±1 represents

the chirality of each Dirac point.

Spinful case. — When SOC is included, the generators ofD2h and T at Γ can be expressed

as

C2z = −iσxsz, My = −iσxsy, P = −σx, T = −isyK (11)

which constrain the effective Hamiltonian to

HΓ
SOC(k) = HΓ

0 (k) + c4kxσzsz (12)

Apparently, the Dirac point is violated by the SOC term c4kxσzsz. Expanding around

(±
√

−∆/c2, 0), the low-energy Hamiltonian can be obtained as (omitting the k-dependent

SOC term)

HDirac
SOC (q) = HDirac

0 (q) + τλSOCσzsz (13)

where λSOC = c4
√
−∆/c2. From the effective Hamiltonian, the band gap at (±

√
−∆/c2, 0)

is 2|λSOC|.

Epitaxial bismuthene on SnS(Se). — Next, we place bismuthene on the SnS(Se) sub-

strate. The substrate has two types of effects on the Hamiltonian of α-bismuthene: the

sublattice bias potential due to the in-plane dipolar field of SnS(Se), and the Rashba term

due to the vertical electric field on SnS(Se) surface. The former preserves the horizontal

glide mirror Gz = C2zP but introduces a new term to the Hamiltonian

HDip(k) = λDipσz, (14)
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while the vertical electric field breaks Gz. The Rashba term constrained by symmetry is

given by (up to the first order)

HR(k) = c5σysx + (c6kxsy + c7kysx) + (c8kxσxsy + c9kyσxsx) (15)

Hence, the effective Hamiltonian is given as

HΓ(k) = HΓ
SOC(k) +HDip(k) +HR(k) (16)

= ϵ(k)σ0 + c1kyσy + (c2k
2
x + c3k

2
y)σx +∆σx + c4kxσzsz + λDipσz

+ c5σysx + (c6kxsy + c7kysx) + (c8kxσxsy + c9kyσxsx)

Expanding around (±
√

−∆/c2, 0), the low-energy Hamiltonian can be obtained as (omitting

the k-dependent Rashba term)

HDirac(q) = ω(q)σ0 + (τvxqxσx + vyqyσy) + τλSOCσzsz + λDipσz + λVσysx + τλ′Vσxsy (17)

with λV = c5 and λ′V = c8
√
−∆/c2. The two Rashba couplings λV and λ′V are not equal in

general because they are not related to each other by crystal symmetries.

Now, we examine the eigenvalues at (qx, qy) = (0, 0). Here are several typical cases:

• If the Rashba terms are zero (λV = 0, λ′V = 0), the eigenvalues can be given as

ε1 = ω0 + λSOC + λDip (18)

ε2 = ω0 + λSOC − λDip (19)

ε3 = ω0 − λSOC + λDip (20)

ε4 = ω0 − λSOC − λDip (21)

and apparently, the gap closes when |λSOC| = |λDip|.
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• If one of the Rashba terms is zero, say λ′V = 0, the eigenvalues can be given as

ε1 = ω0 + λSOC +
√
λ2Dip + λ2V (22)

ε2 = ω0 + λSOC −
√
λ2Dip + λ′2V (23)

ε3 = ω0 − λSOC +
√
λ2Dip + λ2V (24)

ε4 = ω0 − λSOC −
√
λ2Dip + λ2V (25)

and the gap closes at (0, 0) when |λSOC| =
√
λ2Dip + λ′2V.

• Generally, the eigenvalues can be given as

ε1 = ω0 + λSOC +
√
λ2Dip + (λV + λ′V)

2 (26)

ε2 = ω0 + λSOC −
√
λ2Dip + (λV + λ′V)

2 (27)

ε3 = ω0 − λSOC +
√
λ2Dip + (λV − λ′V)

2 (28)

ε4 = ω0 − λSOC −
√
λ2Dip + (λV − λ′V)

2 (29)

and the gap closes when |λSOC| = 1
2

(√
λ2Dip + (λV + λ′V)

2 +
√
λ2Dip + (λV − λ′V)

2
)
.

The features induced by the sublattice dipolar term and the Rashba terms can reflected on

the spin texture of the band structure. In the case that the Rashba terms are set to be zero,

the direction of spin is constrained along ẑ direction, since [Gz, σz] = 0. When the Rashba

term is further turned on, the components of spin within the x-y plane become nonzero.

Specifically, for nonzero λV and λ′V, the y component of spin is nonzero along Γ-X1 path,

while the x component of spin is nonzero along ky direction passing through the Weyl point.

IV. Spin Texture of Edge States in Bismuthene/SnSe

The edge state bands including the 1D topological edge band are spin polarized, which is

shown in the calculated spin texture of edge state bands in Supplementary Figure 5. The
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spin components ⟨sy⟩ and ⟨sz⟩ change the sign as the edge state band disperses, because the

spin is not a good quantum number in the presence of SOC.

Bulk Bulk + Edgea b

c

Supplementary Figure 5: a, Projected bulk bands of bismuthene/SeSe. b, Band spectrum
of a semi-infinite bismuthene/SeSe with an open edge along the (010) direction. c, Spin
components ⟨sy⟩ and ⟨sz⟩ of the bulk and edge bands shown in Fig. 5a of the main text.
The ⟨sx⟩ component vanishes because Γ-X1 lies in a mirror plane.
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V. Robustness of the Topological Edge State Band
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Supplementary Figure 6: The edge bands and bulk bands of a semi-infinite bismuthene/SnSe
heterostructure with an open boundary in the (010) direction. The bands are weighted with
the charge density near the edge. An onsite potential energy Eonsite (0, 0.2, 0.5, 0.8, and 1.0
eV) is added to the two outermost Bi sites on the edge.

To see the robustness of the topological edge state band, we simulate the band spectrum

with altered boundary conditions. Specifically, an onsite potential energy Eonsite is added

to the two outermost Bi sites on the edge. The calculated edge band spectrum is shown in

Supplementary Figure 6. Though the dispersion of edge bands is sensitive to the boundary

condition, one edge state band is always connected to the two bulk Weyl nodes. The result

reflects the fact that the connection of the topological edge state band to Weyl nodes is

topologically protected.
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VI. STM Topography, dI/dV Mapping, and QPI Pattern

of Bi/SnSe(S)
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Supplementary Figure 7: a, STM topography of bismuthene grown on SnS taken at room
temperature. b-j, dI/dV mapping (top) over the area shown in a and the dI/dV spectrum
(averaged in the direction parallel to the edge) under bias voltage from -410 meV to 390
meV. A pronounced local density of states (LDOS) is seen near the edge around zero bias
voltage.
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Supplementary Figure 8: a, STM topography of bismuthene grown on SnSe. b-e, dI/dV
mapping and the quasiparticle interference (QPI) pattern (shown in the insets) under differ-
ent bias voltages.

DFT bands of Bi/SnSe Iso-energy contour at 50meV JDOS at 50meV SSP at 50meV
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Supplementary Figure 9: a, Calculated band structure of Bi/SnSe. b, Calculated iso-energy
contour at E = 50 meV. c, Joint density of states (JDOS) at E = 50 meV. d, The spin-
dependent scattering probability (SSP) at E = 50 meV.
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VII. Calculated Spin Texture of Weyl States in Bi/SnSe
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Supplementary Figure 10: Calculated spin texture of iso-energy contours at E = EW - 0.05
eV, EW, and EW + 0.05 eV, where EW is the energy of the Weyl nodal points. The calculated
spectral intensity is plotted with the inclusion of photoemission matrix elements.
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VIII. ARPES Spectrum and Its Second Derivative of Bi/SnSe

and Bi/SnS

Supplementary Figure 11: a, ARPES spectrum of Bi/SnSe along “cut1”. The magenta lines
are calculated bands in the direction of Γ-X1 while the green lines are bands along Γ-X2. b,
ARPES spectrum of Bi/SnSe along “cut2”. The magenta lines are calculated bands along
“cut2” while the green lines are bands in the direction perpendicular to “cut2”. The dotted
lines depict the calculated band structure of 2ML bismuthene on SnSe. c, same as b but for
Bi/SnS. d-f, The second derivative of ARPES spectra shown in a-c.
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Supplementary Figure 12: a, ARPES spectrum of Bi/SnSe along “cut2” taken at T=8K.
b, The second derivative of ARPES spectra shown in a. c, The energy distribution curve
(EDC)-analysis of ARPES spectra shown in a. d-f, Same as a-c, but for Bi/SnS taken at
T=8K. g-i, Same as a-c, but for Bi/SnS taken at T=100K.
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IX. Two Orientations of Bismuthene on the Cleaved Sur-

face of SnSe(S)

Sn

Se

Bi

y

x

Sn

Se

Bi (Rz-180°)

after cleaving

z

y

Supplementary Figure 13: Schematic of the two possible orientations of bismuthene films
grown on the cleaved surface of SnSe(S)

There are two possible surface unit cells of SnSe from the top layer and the second layer

from the top, as marked by the black arrows in Supplementary Figure 13. Given the weak

vdW interlayer coupling of SnSe, the two surface unit cells are likely to appear after cleaving.

The bismuthene monolayer films grown on the two configurations of substrate surface are

related by a 180◦ rotation about the z axis. The rotation changes the sign of spin polarization

⟨sz⟩ of the Weyl states while has no effects on the other two components ⟨sx,y⟩ of spin. This

can be seen in the following equations,

⟨sz⟩R(k) = ⟨ψ(−k)|ŝ′z|ψ(−k)⟩ = ⟨ψ(−k)|ŝz|ψ(−k)⟩ = ⟨sz⟩(−k) = −⟨sz⟩(k), (30)

⟨sx,y⟩R(k) = ⟨ψ(−k)|ŝ′x,y|ψ(−k)⟩ = ⟨ψ(−k)| − ŝx,y|ψ(−k)⟩ = −⟨sx,y⟩(−k) = ⟨sx,y⟩(k), (31)

where ⟨si⟩R, (i = x, y, z) are the spin polarization components of the rotated bismuthene

film and ŝ′i, (i = x, y, z) are spin operators under the rotation operation.
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X. Extra Spin ARPES data

a. Canted spin texture: theory and experiment

Here we present the spin-ARPES data taken from a different Bi/SnSe sample. The spin

result is consistent with that shown in Fig. 3 of the main text. The calculated spin texture

is plotted in Supplementary Figure 14g. The magnitude of the observed spin polarization

⟨sz⟩ is suppressed due to the existence of rotated domains in the MBE samples (see the

previous section). Nonetheless, the observed ⟨sz⟩ exhibits a similar characteristic to the ⟨sy⟩

component, consistent with the first-principles results. The spin-ARPES results demonstrate

the canted spin texture of Weyl fermion states.

b. Spin Polarization above/below the Weyl Node and Experimental

Geometry

c. Error analysis of spin polarization data

The spin polarization results are extracted from electron signals collected by the “+” and

“−” channels of the spin detector at each angle for a fixed period of time. We assumed the

number of the collected electrons follows the Poisson statistics, so the standard deviation

σI =
√
I, where I is the intensity of the electron signals in the spin channels. Using the

definition of spin polarization P and the standard deviation σP , we can get the relative

statistical errors in the spin results:

σP =
1

Seff

√(
σI+−I−

I+ − I−

)2

−
(
σI++I−

I+ + I−

)2

=
1

Seff

1√
|I+ − I−|

(32)

where Seff=0.275 is the effective Sherman function of our spin detector.
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Supplementary Figure 14: Spin texture of 2D Weyl cones in bismuthene on SnSe.a-c
The calculated spin components ⟨sx⟩, ⟨sy⟩, and ⟨sz⟩ of the bismuthene bands along “cut1”
marked in h, respectively. The blue and red colors represent the “spin-down” and “spin-up”
states of the corresponding spin component. d-f Same as a-c, but for the line of “cut2”
marked in h. g Calculated spin orientation of states A1-A4 marked in h. The length of the
arrow indicates the magnitude of spin polarization. h In-plane spin texture of iso-energy
contours at E = −0.2 eV. i-k Spin-resolved momentum distribution curves (MDC) taken at
E = −0.2 eV along the line marked by the black dashed arrow in d. The blue and red curves
are photoemission intensity recorded in the “spin-down” and “spin-up” channels, respectively,
for ⟨sx⟩, ⟨sy⟩, and ⟨sz⟩. l-n The shaded area with error bars indicates net spin polarization
of ⟨sx⟩, ⟨sy⟩, and ⟨sz⟩, respectively, which is calculated based on the spin results in i-k. o,p
Spin-resolved MDC and calculated spin polarization of ⟨sy⟩ at E = −0.2 eV along “cut3”
from the other valley.

22



𝑠𝑠𝑥𝑥

Bi on SnSe

0.0

-0.2

-0.4

-0.6

-0.8

0.2

-0.4 -0.2  0.0    0.2     0.4
ky (Å-1)

En
er

gy
 (e

V)

-0.1 0.0 0.1

10

In
te

ns
ity

 (a
rb

. U
ni

ts
)

20

30

40

20

40

80

100

-20%

20%

0%

-20%

20%

0%

Sp
in

po
la

riz
at

io
n

ky (Å-1) ky (Å-1)

𝑠𝑠𝑥𝑥

cut2

cut4

cut4

cut2

-0.1 0.0 0.1

𝑠𝑠𝑥𝑥

𝑠𝑠𝑥𝑥

Supplementary Figure 15: Left: ARPES spectrum of the Weyl cone in Bi/SnSe (left). Mid-
dle: Spin-resolved momentum distribution curves (MDC) taken along "cut2" below the Weyl
point and "cut4" above the Weyl point. The blue and red curves are photoemission intensity
recorded in the "spin-down" and "spin-up" channels for ⟨sx⟩. Right: The shaded area with
error bars indicate the measured net spin polarization of ⟨sx⟩. The result is consistent with
the calculated spin polarization shown in Fig. 3 of the main text.

d. Experimental geometry of spin-resolved ARPES

LHP-polarized laser light was employed in all the ARPES and spin-ARPES measurements.

We didn’t notice any difference in the band shape with LVP, LCP, and RCP polarization

modes. (LHP, LVP, LCP, and RCP stand for linear horizontal polarization, linear verti-

cal polarization, left-handed circular polarization, and right-handed circular polarization,

respectively.) The spectral intensity distribution is slightly different with different light po-

larization modes. We only showed the LHP-polarized data in this work. The experimental

geometry of spin-resolved ARPES is shown in the following figure.
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Supplementary Figure 16: The experimental geometry of spin-resolved ARPES

XI. Band Topology of Bi/SnSe under Perturbations

The 2D Weyl semimetal is at a critical point in connection to two topologically distinct

insulator phases, which can be discerned in the configuration of the edge state bands (ESB),

see Supplementary Figure 17. The ESBs form degenerate Kramers pairs at Γ as required

by the time-reversal symmetry. In the 2D Weyl semimetal (Supplementary Figure 17b),

there exist four ESBs around Γ. The Fermi string ESBs connect to the Weyl nodes. The

existence of the extra ESBs is related to the Z2 topological invariant when a bulk band

gap is introduced to epitaxial bismuthene. The schematic of ESB dispersion is plotted in

Supplementary Figure 17e. The ESBs hybridize with each other and open a tiny energy gap

at the crossing points highlighted by the magenta dashed circles, because the band crossing

is located at generic momentum and thus not protected by the time-reversal symmetry. If

we increase the substrate perturbation by reducing the distance between bismuthene and the

substrate surface, an energy gap is opened at the Weyl nodes, as shown in Supplementary

Figure 17c. The inset shows that the “Fermi string” ESB stems from the bulk conduction

band. As a result, the Fermi string bands together with other ESBs form two pairs of
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Supplementary Figure 17: a-c, The edge state bands and bulk bands of a semi-infinite
bismuthene film on SnSe with an open boundary in the (010) direction. The bands are
weighted with the charge density near the edge. The distance between bismuthene and the
surface of SnSe is d0+0.17Å, d0, and d0− 0.13Å for a-c, respectively, where the equilibrium
interlayer distance d0 = 3.89Å. d-f, Schematics of connection pattern between the edge
state bands and the bulk bands shown in a-c. The edge state bands are plotted with the
dashed lines. g, The phase diagram of bismuthene films with different energy gaps and band
topology.

edge Dirac cones. The system is equivalent to a topologically trivial insulator with the

Z2 topological invariant ν = 0. On the other hand, an energy gap can also be opened

by reducing the substrate coupling, (e.g., by pulling the substrate slightly away from the

substrate, as shown in Supplementary Figure 17a.) In this case, the “Fermi string” ESB

emanates from the valence band. Consequently, there is only one edge Dirac cone traversing

the bulk band gap, indicating that the system with a weakened substrate coupling is in the 2D

topological insulator phase. This is consistent with the fact that freestanding bismuthene is

a 2D topological insulator. A summary of topological phases related to 2D Weyl semimetals
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is shown in Supplementary Figure 17g.
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XII. Toy Model of Fermi String Edge States
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Supplementary Figure 18: Projected bulk bands and topological edge bands of a 2D Weyl-
semimetal ribbon calculated with the sz-conserved tight-binding model. The bands are
colored according to the spin polarization ⟨sz⟩ of the states.

We calculated the edge spectrum of a 2D Weyl-semimetal ribbon using a tight-binding

model whose low-energy effective Hamiltonian is

HWeyl(k) = τz(vxkxσx +∆kx) + vykyσy + λSOCτzσzsz + λDipσz, (33)

where τi, σi, and si (i = x, y, z) are Pauli matrices for valley, sublattice, and spin degree

of freedom, respectively. HWeyl(k) is a simplified version of Heff in the main text with
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λV = λ′V = 0. In this model, sz is conserved and thus, the spin-up and spin-down sectors

are decoupled. The band gap vanishes when λSOC = λDip. The gapless bulk bands and

topological edge bands on the two opposite edges of the ribbon are plotted in Supplementary

Figure 18. The edge spectrum from the bottom edge is similar to the DFT result shown in

Figs. 4A of the main text. The in-gap edge band connects the Weyl node and the bottom

of the conduction band in each spin sector. The lower parts of the “X”-shaped edge bands

constitute the Fermi string band that connects the two Weyl nodes. On the top edge of

the ribbon, the in-gap edge band connects the Weyl nodes and the top of the valence band

in each spin sector. The connection patterns on the opposite edges follow from particle

conservation.
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XIII. Band Structure of Epitaxial Bismuthene in a Zeeman

Field

For the 2D Weyl fermion states in Bi/SnS and Bi/SnSe, we found the spin is canted with

large ⟨sz⟩ component as shown in Supplementary Figure 14. Based on our calculation, the

large ⟨sz⟩ component remains robust even with a time-reversal-symmetry-breaking Zeeman

field in the vertical direction. The only prominent effect of the Zeeman field is raising one

Weyl cone and lowering the other in energy according to the spin polarization of the valley,

as shown in Supplementary Figure 19. As a result, the magnetic field in the z direction can

be utilized to tune the effective chemical potential of the two valleys in this system.

EZ=0.00 eV EZ=0.04 eV EZ=0.08 eV EZ=0.10 eV

Supplementary Figure 19: Band structure of bismuthene/SnSe heterostructure in the pres-
ence of an on-site Zeeman energy, EZ = 0, 0.04, 0.08, and 0.10 eV..
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XIV. Exotic Properties of 2D Weyl Semimetals

Supplementary Figure 20: Summary of exotic properties of 2D Weyl semimetals.
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