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Supplementary Note 1. Data-driven damage design of DP metamaterial 

To address the enduring challenge of lacking an effective systematic design strategy for 

controlling and resisting fractures in metamaterials, a data-driven DP metamaterial design 

strategy (Supplementary Fig. 1) is introduced to: (1) spatially engineer the crack path, and 

(2) construct toughening units that translate crack-resisting mechanisms from nature to 

mechanical metamaterials.  Based on the fracture property distribution across the design 

space by the crack path engineering and toughening unit designs, a machine-learning-

assisted (ML-assisted) DP cell design engine is developed to engineer the fracture of each 

cell for the metamaterials (Supplementary Fig. 2). Specifically, the design of DP cells is 

proposed according to the given base cell topology, cell size, and face-fiber angles 

(Supplementary Fig. 2a).  The BCC is selected as the topology of the base cell for 

demonstration purposes. We determine the distance between the face-fibers as the 

maximum distance that could form effective deflections of the fracture (0.3 of the cell 

sizes).  The size of the unit cells is preserved as 3 mm throughout this study for comparison 

purposes, where the radius of the structs is designed as 200 µm according to the fabrication 

limit. The DP surfaces are constructed with programmed face-fiber angles and combined 

with the base cells to form the DP cells.  Depending on the fracture initiation surface (FIS), 

the surfaces of each DP cell are decomposed to two primary guiding surfaces (PGSs) and 

four minor guiding surfaces (MGSs) with the face-fiber angle {𝜃g1, 𝜃g2, 𝜃g3, 𝜃g4, 𝜃g5, 𝜃g6}.  

To model the fracture properties of the DP cells, the fracture angle 𝜃𝑓, fracture energy 𝐺𝑓, 

and fracture strength 𝜎𝑓 are calculated: 

 𝜃𝑓 = (𝜃𝐿 + 𝜃𝑅)/2 (S1) 

 𝐺𝑓 = ∫ 𝐹
𝛿𝑓

0
𝑑𝛿𝑓 (S2) 
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 𝜎𝑓 = 𝐹𝑓/𝐴 (S3) 

where 𝐹 is the load applied on the edge of the DP cell during the fracture process, 𝜃𝐿 and 

𝜃𝑅  are the fracture angles of the left and right PGSs, respectively, 𝛿𝑓  is the fracture 

displacement, 𝐹𝑓 is the ultimate load of a DP cell, and 𝐴 represents the area of the fracture 

load. To validate the proposed data-driven damage-programming metamaterial method in 

a clear and concise manner, and to focus on the fundamental science of fracture mechanics, 

this work concentrates on the fracture properties derived from the most commonly studied 

mode I opening fracture configuration. It should also be noted that the proposed method is 

adaptable to arbitrary fracture modes by incorporating additional training data as shown in 

(Supplementary Fig. 22). This flexibility stems from the fact that the output layer structure 

of the fully connected neural networks (FCNNs) concerning fracture properties is 

independent of any specific load direction. This independence allows the FCNNs to be 

successfully trained to represent different and complex modes of fractures with 

appropriately organized training data. Therefore, validating the effectiveness of the 

proposed design framework not only supports the currently studied load scenarios but also 

other complex fracture conditions encountered in practical applications. 

A fast prediction tool is required to develop the DP cells with programmed fracture 

behaviors based on their highly abstracted design parameters to access a large number of 

possibilities of face-fiber angles’ combinations, which is difficult to be accomplished by 

conventional experimental modeling or finite element analysis (FEA) approaches.  The 

maturing ML technique can interpret the underlying patterns of data without conducting 

time-consuming numerical simulations1, and is widely applied to support intelligent 

designs in different types of industries2, 3, 4, 5, 6. Hence, TensorFlow-based7 FCNNs were 
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developed (Supplementary Fig. 2b) to establish the underlying relationships between 

fracture properties and face-fiber angles using a training dataset comprising 900 different 

DP cells generated by a training sample generation algorithm, where the training input 

consists of various compositions of face-fiber angles, and the training output includes 

numerically derived fracture angle (𝜃𝑓0-𝜃𝑓𝑁 ), fracture energy (𝐺𝑓0-𝐺𝑓𝑁 ), and fracture 

strength (𝜎𝑓0-𝜎𝑓𝑁) according to the simulated stress-strain curves and equations (S1-S3) 

(also refer to Supplementary Fig. 23 for the training sample generation algorithm and 

Section 4.3 in “Methods” for FEA). The distribution of the training data composition was 

designed to incorporate the influence of different face-fiber angles, with PGS angles 

generated from -90° to 90° at intervals of 30° and MGS angles randomly scattered for each 

pair of PGS angles, along with 500 additional compositions of purely randomly scattered 

face-fiber angles to supplement the pre-generated PGS angles. The optimized 

hyperparameters of the FCNNs for 𝜃𝑓 , 𝐺𝑓 , and 𝜎𝑓  predictions are summarized in 

Supplementary Table 5, obtained through evaluation of various combinations of learning 

rate, number of neurons per layer, and training epochs, with average test data losses from 

five training processes and detailed comparisons provided in Supplementary Fig. 24 to 

Supplementary Fig. 26. The rectified linear activation unit (ReLU) is selected with 

modifications as the activation functions due to its advantages of handling the vanishing 

gradient issues8, where the Leaky ReLU activation function is applied for the training 

option of the fracture angles due to the potential negative values (see Supplementary Fig. 

27 for comparison of different activation functions), where the mean squared error loss 

function showed a substantial decrease. The detailed accuracy validations for the FCNNs 

are provided in Supplementary Fig. 4. The prediction errors of the model are recorded using 
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test dataset comprising 10% randomly selected training data. As the number of training DP 

cells increased, the prediction errors experienced significant decay and converged to 8.8° 

for 𝜃𝑓, 0.34 mJ for 𝐺𝑓, and 0.25 MPa for 𝜎𝑓. The accuracy of the trained model is further 

validated by experimental fracture results from 10 randomly generated DP cells, fabricated 

according to the test configuration shown in Supplementary Fig. 6d. The results indicate 

that the experimentally measured values fall within the prediction ranges of the model, 

confirming the reliability of the FCNNs for fabricated DP components. 

To design the DP cells with desired functional fracture behaviors, we developed a 

ML-assisted DP cell deep search algorithm9 that provides the composition of face-fiber 

angles {𝜃𝑔1, 𝜃𝑔2, 𝜃𝑔3, 𝜃𝑔4, 𝜃𝑔5, 𝜃𝑔6}  that optimizes the user-specified functional fracture 

properties: 

To Find:{𝜃𝑔1, 𝜃𝑔2, 𝜃𝑔3, 𝜃𝑔4, 𝜃𝑔5, 𝜃𝑔6}
𝑖
 

Maximize: 𝑓(𝜎𝑓,𝑖, 𝐺𝑓,𝑖), 

 s.t.: 𝜃𝑓,𝑖 =  𝜃𝑑𝑒𝑠𝑖𝑔𝑛, 𝑖 ∈ [1, 𝑁] (S4) 

where {𝜃𝑔1, 𝜃𝑔2, 𝜃𝑔3, 𝜃𝑔4, 𝜃𝑔5, 𝜃𝑔6}
𝑖
, 𝜎𝑓,𝑖 , 𝜃𝑓,𝑖 , and 𝐺𝑓,𝑖  is the composition of face-fiber 

angles, ML-predicted fracture strength, ML-predicted fracture angle, and ML-predicted 

fracture energy for the 𝑖 th sample, respectively, 𝑁  is the total amount of generated 

{𝜃𝑔1, 𝜃𝑔2, 𝜃𝑔3, 𝜃𝑔4, 𝜃𝑔5, 𝜃𝑔6}, 𝜃𝑑𝑒𝑠𝑖𝑔𝑛 is the desired fracture angle from design, 𝑓(𝜎𝑓,𝑖, 𝐺𝑓,𝑖) 

is the user-defined combination function of fracture properties to be optimized.  In each 

literation, the algorithm generates 𝑛 DP cells that possess face-fiber angles confined by the 

face-fiber ranges {𝑅1, 𝑅2, 𝑅3, 𝑅4, 𝑅5, 𝑅6} provided in the previous iteration, and select the 

DP cell with the desired best outcome of the ML-predicted fracture properties for user-
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defined functional purposes.  The selected {𝜃𝑔1, 𝜃𝑔2, 𝜃𝑔3, 𝜃𝑔4, 𝜃𝑔5, 𝜃𝑔6}  is extracted to 

update the middle values to redefine {𝑅1, 𝑅2, 𝑅3, 𝑅4, 𝑅5, 𝑅6} with a refinement coefficient 

𝛽.  Once the ranges reach the design resolution of the face-fiber angles, the optimization 

process stops, and the optimal DP cell is generated with customized functional fracture 

properties. 

The computational cost of the data-driven damage-programming metamaterial 

design method encompasses training data gathering, ML fracture predictions, and ML-

assisted DP cell generation. The computational time is recorded using a laptop equipped 

with a 2nd Gen Intel® Core™ i5-12500H processor at 2.50 GHz and 16 GB of random 

access memory. The average duration for simulating a single training data point is 19 

minutes, resulting in a total of 210 hours for the data gathering process required for model 

training. Note that the gathering of training data is a one-time expense that construct the 

fracture data to train the model, and does not recur during subsequent uses of the method. 

The computational costs of ML fracture predictions were recorded as total computational 

time required for the trained FCNNs to compute 𝜃𝑓, 𝐺𝑓, and 𝜎𝑓 across a range of DP cell 

numbers, up to 105. Compared to the conventional finite element analysis (FEA) 

approaches, which require an average computational time for a single DP cell of 19 minutes, 

the trained FCNNs can predict the fracture properties of a DP cell in 34 µs on average 

(Supplementary Fig. 5a). These results underline the capability of FCNNs to deliver rapid 

predictions essential for DP cell generation algorithm and for managing microscopic 

fracture behaviors. The DP cell generation algorithm uses the FCNNs as fast prediction 

tool for vast datasets, with a time complexity of 𝑂(𝑛log
1/𝛽

𝜋/𝜃𝑚𝑖𝑛), where 𝜃𝑚𝑖𝑛  is the 

resolution of the face-fiber angles, and 𝑛 is the number of DP cells generated in each search 
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cycle. In this work, DP cell generation parameters were set at 𝜃𝑚𝑖𝑛 = 2°, 𝛽 = 0.1, and 𝑛 = 

1000 to balance the computational time and design resolution, where Supplementary Fig. 

5b indicates the ML-assisted DP cell generation algorithm using these parameters can 

produce DP metamaterials comprising 105 cells within 12 minutes. This capability supports 

the development of DP metamaterials with enhanced fracture toughening mechanisms10 or 

efficient dissipation of fracture energy11, 12.  
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Supplementary Note 2. The crack path engineering algorithm 

We developed a crack path control algorithm with two steps to spatially control the crack 

propagation (Supplementary Fig. 28): (1) function mapping of design spaces; (2) 

generation of fracture properties of DP cells in each region.  The spaces of the unit cells 

satisfying equation (S5) are selected as the guiding regions, where it is composed of unit 

cells in the design space with overlaps with the crack geometry. 

 𝑆𝑔 = {𝑆𝑐𝑒𝑙𝑙|∃ 𝑝 ∈ 𝑓fracture, 𝑆𝑐𝑒𝑙𝑙 ∈ 𝑆, s. t. 𝑝 ∈ 𝑆𝑐𝑒𝑙𝑙,𝑖} (S5) 

where 𝑆𝑔 represents the space of guiding regions, 𝑆𝑐𝑒𝑙𝑙 stands for the space of a unit cell 

within the total design space 𝑆, and 𝑝 represents the points on the pre-engineered fracture 

geometry 𝑓fracture . The correction region 𝑆𝑐 , adjacent to 𝑆𝑔 , is defined with sizes 

determined by the crack slope variation, ensuring that fracture geometries with higher 

variations in crack path are assigned larger correction zones to enhance fracture guiding 

reliability and reduce failure. 

 𝐿𝑐(𝑝𝑒𝑔) =  𝛾∇2𝑓fracture(𝑝𝑒𝑔)  (S6) 

where 𝛾 is the correction coefficient that determines the magnitude of the correction, 𝑝𝑒𝑔 

is an edge point on the fracture geometry that requires a potential neighboring correction 

zone, and   𝐿𝑐(𝑝𝑒𝑔) is the size of the correction zone for 𝑝𝑒𝑔. Once 𝑆𝑔 and 𝑆𝑐 are defined, 

the unassigned regions are chosen as the background regions 𝑆𝑏.  The fracture angle of 

cells in 𝑆𝑔 is designed to match the crack geometry for effective guiding, while maximizing 

𝐺𝑓,𝑔/𝜎𝑓,𝑔 with 𝜎𝑓,𝑔 <  𝜎𝑓,𝑐 to confine fracture within the desired geometry exhibiting the 

earliest fracture and largest deformation. Additionally, the fracture angle of cells in 𝑆𝑐 is 

designed to guide the crack towards the nearest uncracked cell in 𝑆𝑔 , maintaining 𝜎𝑓,𝑐 

below 𝜎𝑓,𝑏 to prevent unintended crack propagation into 𝑆𝑏. Conversely, cells within 𝑆𝑏 
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are unrestricted in fracture angle and engineered to withstand the highest fracture stress 

𝜎𝑓𝑚𝑎𝑥, thus impeding fracture entry into 𝑆𝑏. 

The crack control requirements for the fracture behaviors of DP cells include: guiding 

cells positioned within the predetermined crack path, correction cells that realign 

misoriented crack tips, and background cells engineered as obstacles. The DP cells 

enabling guiding, correction, and background crack path engineering features are generated 

according to equations (S7-S13) to fill 𝑆𝑔, 𝑆𝑐, and 𝑆𝑏, respectively. 

 𝜃𝑔,3𝐷,𝑥(𝑥, 𝑦) = arctan(𝑑𝑓3𝐷(𝑥, 𝑦)/𝑑𝑥)  (S7) 

 𝜃𝑔,3𝐷,𝑦(𝑥, 𝑦) = arctan(𝑑𝑓3𝐷(𝑥, 𝑦)/𝑑𝑦)  (S8) 

 𝜃𝑐,3𝐷,𝑥(𝑥, 𝑦) = arctan(𝑑𝑧/𝑑𝑥)  (S9) 

 𝜃𝑐,3𝐷,𝑦(𝑥, 𝑦) = arctan(𝑑𝑧/𝑑𝑦)  (S10) 

 maximize 𝐺𝑓,𝑔/𝜎𝑓,𝑔 s. t. 𝜎𝑓,𝑔 <  𝜎𝑓,𝑐 (S11) 

 maximize 𝜎𝑓,𝑐 s. t. 𝜎𝑓,𝑐 <  𝜎𝑓,𝑏,𝜃𝑓 = 𝜃𝑐 (S12) 

 𝜎𝑓,𝑏 = 𝜎𝑓𝑚𝑎𝑥 (S13) 

where 

𝜃𝑔,3𝐷,𝑥(𝑥, 𝑦) and 𝜃𝑔,3𝐷,𝑦(𝑥, 𝑦) are the projections of the fracture angles for guiding cells in 

3D design space on yz plane and xz plane, respectively;  

𝜃𝑐,3𝐷,𝑥(𝑥, 𝑦) and 𝜃𝑐,3𝐷,𝑥(𝑥, 𝑦) are the projections of the fracture angles for correction cells 

in 3D design space on yz plane and xz plane, respectively; 
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𝑑𝑥, 𝑑𝑦, and 𝑑𝑧 are the x, y, and z differences between the interested correction cell and its 

closest unbroken guiding cell, respectively; 

𝐺𝑓,𝑔 is the fracture energy of the guiding cell; 

𝜎𝑓𝑚𝑎𝑥 is the maximum fracture energy that could be achieved by the data-driven damage-

programmable cells, 𝜎𝑓,𝑔, 𝜎𝑓,𝑐, and 𝜎𝑓,𝑏 are the fracture strength of the guiding, correction, 

and background cells, respectively.  
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Supplementary Note 3. Toughening unit designs 

Materials in nature typically exhibit three types of crack-resisting mechanisms: crack tip 

interaction, crack shielding, and reinforcement bridging. Crack tip interactions often 

involve crack bowing units, which are achieved using small second phase particles with 

ultrahigh fracture strength compared to the matrix, and crack deflection units, which 

employ large phases with high fracture strength and deflective properties to induce out-of-

plane fracture deflection. Crack shielding is facilitated by specific material phases that can 

expand the crack opening perpendicular to the crack propagation and blunt the crack tip. 

Reinforcement bridging is characterized by fiber-like bridges with ultrahigh fracture 

strength that effectively resist fracture propagation. Inspired by the features of natural 

toughening units, Type-0 (T0) to Type-3 (T3) DP cells have been developed as building 

blocks to construct toughening units for crack-resisting mechanisms (refer to 

Supplementary Fig. 3 and Supplementary Table 2). 

The CB phases are designed to against the crack with a forced crack by-pass or cut-

through with T1 cells, which are programmed with the maximized fracture strength 𝜎𝑓  

without fracture guiding features.  T2 is the DP cells that has the largest 𝜎𝑓  that could 

maintain the maximum fracture angles 𝜃𝑓 𝑚𝑎𝑥 that are designed at the edges of the CD 

phases to ensure effective out-of-plane deflections, while the T1 cells are aligned at the 

middle of the CD phase to avoid being cut-through. Each shielding unit is engineered with 

either the positive shielding (PS, 𝜃𝑓 = 𝜃𝑠) cells or negative shielding (NS, 𝜃𝑓 = −𝜃𝑠) cells 

with variety of guiding angle 𝜃𝑠 , so that the crack is guided to opposite directions by 

adjacent shielding layers to blunt the crack tip. The PS and NS cells are designed with 

Type-3 (T3) DP cells with a range of engineerable fracture angles and strengths. 
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Compliance layers filled with base cells engineered between the adjacent pair of shielding 

layers to provide a buffer region for the complete flip of the fracture angles. The 

reinforcement bridges are construct with multiple T1 cells with different bridge lengths to 

resist the crack by propagating through the bridges.  
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Supplementary Note 4. Designs of crack geometries 

The two-dimensional and three-dimensional fracture surfaces are defined in equation (S14-

S15): 

 𝑓2𝐷(𝑥) = (𝐻/3) sin[(2𝜋/𝐿)𝑥] + 𝐻/2  (S14) 

 𝑓3𝐷(𝑥, 𝑦) = −(𝑆/4)[ sin((2𝜋/𝑆)𝑥) + cos((2𝜋/𝑆)𝑦)] (S15) 

where 𝑓2𝐷(𝑥, 𝑦) and 𝑓3𝐷(𝑥, 𝑦) are the functions describing the 2D and 3D crack geometries, 

𝐿 and 𝐻 is the length and height of the 2D design space, 𝑆 is the size of the 3D design space. 

These trigonometric functions were selected to test the mechanical metamaterials due to 

their large variations of fracture angles ranging from 0-90°, and were validated in Fig. 2 

and Supplementary Fig. 7.  
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Supplementary Note 5. Detailed design information of compact tension specimen 

The compact tension configuration is selected to evaluate the fracture properties of the 

proposed DP metamaterials throughout this study with a test region of 10 × 3 × 11 cells in 

xyz directions.  The specimen with crack tip interactions is designed with CD phases (𝑑𝐶𝐷 

= 1 cell) to deflect the crack to the trapping regions filled with randomly implanted CB 

phases (𝜌𝐶𝐵  = 50%).  The crack shielding specimen is composed of shield units with 

moderately reducing 𝑔𝑓𝑠  from the crack tip to the sides.  Depending on the energy 

increment required for the variation of the crack orientation and the 𝑔𝑓𝑠 of the shield units, 

the encountered fracture could be shielded by different levels of the shield regions, while 

it should be noted that the proposed method is not limited to the design of the shield regions 

in this work.  The specimen with compound reinforcement bridging is designed with 

reinforcement bridges that have increasing 𝑆𝐵 with maximal corresponding 𝑑𝐵 that could 

trigger multiple reinforcement bridging events (Supplementary Fig. 15 and Supplementary 

Note 4) to improve the fracture energies with the minimized weight addition.  
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Supplementary Note 6. Selection of design parameters for different crack-resisting 

mechanisms. 

In this work, we design the specimens with crack tip interactions, crack shielding, and 

reinforcement bridging based on the study of their fracture-resisting design units.  The 

specimens with crack tip interactions are filled with the crack deflection (CD) phase with 

𝑑𝐶𝐷= 1 cell, and CB phase with 𝜌𝐶𝐵 = 0.5, where these parameters provide the highest 

density-normalized fracture energies based on the experimental results in Fig. 3.  For the 

crack shielding specimen, we design the shielding regions with different levels of 𝑔𝑓𝑠 

according to the discussion in Supplementary Note 1.  For the reinforcement bridging 

specimen, it is desired to form maximized number of reinforcement bridging events 

throughout the test region with minimum addition of reinforcement bridges.  Therefore, a 

gradual increment of the size of reinforcement bridges with maximum bridge distance that 

could trigger those events is designed according to the results in Supplementary Table 3.  
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Supplementary Note 7. Theoretical derivations of the fracture energy barriers for 

crack shielding 

The shielding fracture energy is one of the controllable fracture behaviors of the shield 

units to engineer the shield regions of the crack shielding damage-programmable 

metamaterials.  Based on our studies of the shield units, it is observed that the fracture 

energies vary with different shielding angles (Fig. 3, Supplementary Fig. 15, 

Supplementary Fig. 10, and Supplementary Fig. 12).  Therefore, different energy 

increments are required to propagate through a layer of shield units with distinguish 

shielding angles.  To quantitively model such property, we define the shielding fracture 

energy as the average fracture energy required for a crack tip to propagate through a layer 

of uniform shield units: 

 𝑔𝑓𝑠(𝜃𝑠) =  𝐺𝑓,𝑆(𝜃𝑠)/𝐿 (S16) 

where 𝑔𝑓𝑠  is the shielding energy, 𝜃𝑠  represents the shielding angle, 𝐺𝑓,𝑆  is the total 

fracture energy of a specimen with the shield units designed with uniform 𝜃𝑠, 𝐿 is the total 

number of layers damaged by the crack propagation.  With this definition, we define the 

shield zones of an encountered layer of the crack shielding specimens with different levels 

of 𝑔𝑓𝑠 for a given crack tip by: 

 𝑆𝑠ℎ𝑖𝑒𝑙𝑑 𝑟𝑒𝑔𝑖𝑜𝑛(𝑔𝑓𝑠) = {𝑆𝑠ℎ𝑖𝑙𝑒𝑑 𝑢𝑛𝑖𝑡𝑠(𝜃𝑠)|𝑔𝑓𝑠(𝜃𝑠) ≤ 𝑔𝑓𝑠} (S17) 

where 𝑆𝑠ℎ𝑖𝑒𝑙𝑑 𝑟𝑒𝑔𝑖𝑜𝑛(𝑔𝑓𝑠) is the group of the shield units within the shield region with pre-

defined shielding energy 𝑔𝑓𝑠, 𝑆𝑐𝑒𝑙𝑙(𝜃𝑠) represents the shield units with the shielding angle 

𝜃𝑠.  For the crack shielding specimen evaluated in this study, the shield zones are defined 

as shown in Supplementary Fig. 29. 
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To study the shield units with different 𝜃𝑠 , we simulate the stress field and the 

fracture energy of the shielded crack tip with 𝜃𝑠 = 30º - 70º during the crack propagation 

through the FEA approach (Fig. 3e, Supplementary Fig. 21, and Supplementary Fig. 19c).    

In addition to the contents in main text, we observe two 𝜃𝑠-related phenomena: (1) higher 

shielding energy ∆𝑆𝐺𝑓0 is required for the crack propagates through the shielding layers 

with larger 𝜃𝑠, which is due to a increased fracture energy of T3 cells with larger fracture 

angles and a reduced stress intensity at the crack tip; (2) the shielded deflection event is 

more likely to happen for the shielding layers with 𝜃𝑠 closer to 45º, which is caused by 

their smaller angle compliances (Supplementary Note 6). Therefore, we model the fracture 

energy of the specimens with uniform shield units based on a shielding energy term ∆𝑆𝐺𝑓0 

and a shielded deflection term ∆𝑆𝐷𝐺𝑓0: 

  𝐺𝑓,𝑆 = 𝐺𝑓,𝑀 + 𝛼𝑆(∆𝑆𝐺𝑓0 + 𝑃𝑆𝐷∆𝑆𝐷𝐺𝑓0) (S18) 

where 𝛼𝑆  is the geometrical scaling factor is related to the size of the crack shielding 

specimen, 𝑃𝑆𝐷  is the potential function of the shielded deflection derived by the angle 

compliance analysis.  As expected, the theoretical model confirms the experimental results 

(Fig. 3c).  This theoretical model explains the generally increasing trend of fracture energy 

over 𝜃𝑠, and the additional fracture energy observed for the specimens with 𝜃𝑠 = 50º – 60º.  
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Supplementary Note 8. The angle compliance analysis for crack shielding 

In this note, the detailed derivation and procedure of angle complaince analysis is given. 

Based on the experimental results (Fig. 3 and Supplementary Fig. 15) and simulation 

intepretations (Supplementary Fig. 10 and Supplementary Fig. 12).  The shielded 

deflections events are observed for the shielding angles ranging from 50° to 60°.  For the 

absolute differences of the positive and negative shielding angles with the absolute values 

close to 0° or 180°, the fracture will more likely to directly cut-through the shield units 

without deflections due to a limited resistance of the crack (close to 0°) or the highly 

disagreement of the deflection angles (close to 180°).  In addition, higher fracture energies 

are also observed for the shield units with larger disagreement between the positive and 

negative shielding angles, which will contribute to the shielded deflections.  To explain 

this coupled effect and model the fracture energy of different shield units, we model the 

probability of the shielded deflection by two terms with normalizations (Supplementary 

Fig. 30): (1) an exponentially increasing potential term reflecting the higher fracture 

energies with larger shielding angles, and (2) a gaussian distribution term reflecting the 

complaince of the shielding angles.  The resulted formula is provided below: 

 𝑃𝑆𝐷(𝜃𝑠) = 𝐴exp(−𝜏(𝜋/2 −  𝜃𝑠)) exp(−(𝜃𝑠 − 𝜇𝜃𝑠
)2/(2𝜎2)) (S19) 

where 𝑃𝑆𝐷(𝜃𝑠) is the potential function of the shielded deflection for the shielding angle 

𝜃𝑠, 𝐴 is a normalization factor, 𝜏, 𝜇𝜃𝑠
 and the 𝜎 are the fitting parameters, which is defined 

as 𝜏 = 0.4, 𝜇𝜃𝑠
= 45, and 𝜎 = 5 in this work for the best fit of the experimental results.  
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Supplementary Note 9. Theoretical derivations of the fracture energy barriers for 

crack tip interactions 

We applied FEA to model the average energy increment required for the crack tip to: (1) 

by-pass a CB phase, (2) cut-through a CB phase, and (3) propagate through a unit cell under 

the deflection of the CD phase with different separation distances 𝑑𝐶𝐷  (Fig. 3e, 

Supplementary Fig. 16, Supplementary Fig. 17, and Supplementary Fig. 19a-b). 𝐺𝑓0  is 

used to represent the fracture energy required to propagate through a base cell, ∆𝑎 

represents the fraction of energy increment for an event a compared to the energy of crack 

propagation without event a: 

  ∆𝑎= (𝐺𝑎 − 𝐺𝑓0)/𝐺𝑓0 (S20) 

As the density of the CB phase increase, a larger possibility of the by-passing is 

expected, while the agglomeration of T1 cells is more frequently observed.  An increased 

number of agglomerated crack bowing (CB) phases will lead to a larger potential of a crack 

cut-through events.  In this note, the probabilities of the agglomerations are modelled with 

respect to different densities of the CB phases.  For a propagating crack tip, the surface of 

the crack with potential encounter of agglomerated CB phases is described in 

Supplementary Fig. 31.  Specifically, an agglomeration event would happen when three or 

more adjacent CB phases are observed along the direction vertical to the crack front, where 

one of those CB phases lies directly on the crack tip.  Since the location of the crack tip is 

fixed, the probability for observing 𝑛 agglomerations is: 

 𝑃𝑛 𝐶𝐵2(𝜌𝐶𝐵) = 𝐶𝑁
𝑛𝜌𝐶𝐵

3 (S21) 



20 

 

where 𝑃𝑛 𝐶𝐵2(𝜌𝐶𝐵) is the probability for 𝑛 agglomerated CB phases with a density of 𝜌𝐶𝐵, 

𝐶𝑁
𝑛 is the mathematical combinations of choosing 𝑛 indistinguishable items with a total 

number of items 𝑁.  To model the statistical energy increment of the cut-through of CB 

phases, we scaled the probability by the number of the agglomerations by: 

 𝑃𝐶𝐵2(𝜌𝐶𝐵) = ∑ 𝑛𝑁
𝑛=1 𝐶𝑁

𝑛𝜌𝐶𝐵
3 (S22) 

Therefore, we model the 𝐺𝑓,𝐶𝐵 as 

  𝐺𝑓,𝐶𝐵 = 𝛼𝐶𝐵𝜌𝐶𝐵[∆𝐶𝐵1𝐺𝑓0 + ∆𝐶𝐵2𝑃𝐶𝐵2𝐺𝑓0] (S23) 

where the 𝛼𝐶𝐵  is the geometrical scaling factor related to the size of the crack bowing 

specimen,  𝜌𝐶𝐵 is the density of the CB phase,  𝑃𝐶𝐵2 is the scaled possibility of the cut-

through event derived by the statistical modeling of agglomeration events.  For the crack 

deflected by the CD phases, we observed smaller ∆𝐶𝐷 for loosely-distributed CD phases 

with larger 𝑑𝐶𝐷, indicating that the deflection is less effective per unit cell propagation for 

increasing 𝑑𝐶𝐷.  Based on these analysis, we can hence model the additional energy 𝐺𝑓,𝐶𝐷 

as: 

  𝐺𝑓,𝐶𝐷 = 𝛼𝐶𝐷∆𝐶𝐷𝑙𝑓𝐺𝑓0 (S24) 

where the 𝛼𝐶𝐷 is the geometrical scaling factor related to the size of the crack deflection 

specimen, 𝑙𝑓 is the actual length of the fracture path.  As expected by experimentally fitting 

equations (S23-S24) for 𝛼𝐶𝐵 and 𝛼𝐶𝐷, the proposed theoretical model well-described the 

fracture energy of the experimental results with pure crack bowing and deflection events 

(Fig. 3a-b).  
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Supplementary Note 10. Theoretical derivations of the fracture energy barriers for 

reinforcement bridging 

For the reinforcement bridging, we further model the fracture energy of the metamaterials 

with reinforcement bridges as: 

 𝐺𝑓,𝑅𝐵 = 𝛼𝐵1∆𝐶𝐷𝑂𝐵𝐷𝐺𝑓0 + 𝛼𝐵2∆𝐶𝐵2𝑂𝐵𝐶𝐺𝑓0 + 𝛼𝐵3∆𝐵A𝐵𝑆𝐵𝐺𝑓0 (S25) 

where 𝐺𝑓,𝐵 is the fracture energy of the metamaterials with crack bridging, 𝛼𝐵1, 𝛼𝐵2, and 

𝛼𝐵3  are the geometrical scaling factors for the additional fracture energies caused by 

bridged deflection, bridged cut-through, and bridging, respectively, ∆𝐵  is the energy 

increment per bridging surface produced by pure bridging, 𝑂𝐵𝐷  and 𝑂𝐵𝐶  represents the 

occurrences of the bridged deflection and bridged cut-through, respectively.  Since the 

fracture behaviors of the bridged cut-through and deflection are similar to the phenomena 

of crack tip interactions, we directly used the previously calculated energy increments of 

the crack cut-through and crack deflections, ∆𝐶𝐵2 and ∆𝐶𝐷.  To reveal the energy increment 

of the bridging, we simulated the fracture process at the crack tip with different sizes of the 

bridging fibers (Fig. 3e, Supplementary Fig. 18, and Supplementary Fig. 19d).  The 

simulations indicate that a significant amount of stress at the crack tip is shared by the 

bridging fibers, which produces a 3% - 5% improvements of the fracture energy per area 

of the bridging surfaces compared to the one without crack bridging.  Based on these 

theoretical derivations, we calculated the fracture energy of each specimen and compared 

it with the experimental results (Fig. 3d).  According to the experimentally recorded 

bridging events (Supplementary Fig. 15b), the theoretical model predicts that the fracture 

energies of the bridging specimens with 𝑆𝐵 = 3 exhibit an obvious growth over larger 𝑑𝐵 
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due to an increased 𝐴𝐵, where the energy increments contributed by the bridging dominates.  

For the specimens with larger sizes of bridging fibers, the 𝐴𝐵 does not strictly increases 

over 𝑑𝐵, and the combining effects of the occurrences for the bridging, bridged deflection, 

and bridged cut-through causes a more significant energy improvements for 𝑑𝐵 = 3 cells 

and 𝑑𝐵 = 5 cells.  



23 

 

Supplementary Note 11. Mechanisms of fracture toughening events 

We engineer specimens with four types of micro-scale toughening units: (1) crack front 

bowing specimens, where 10% to 50% conventional base cells of the specimen  is 

random1y selected and converted to CB phases constructed by T1 DP cells that impede the 

crack motion, (2) crack deflection specimens, which are uniformly embedded with 3 × 3 × 

3 secondary CD phases composed of both T1 and T2 DP cells, (3) specimens with shielding 

units, which are engineered with T3 DP cells that enables the crack blunting, and (4) 

specimens with reinforcement bridges, in which arrays of T1 cells are used to construct 

periodic reinforcement fibers with different lengths and bridging distances. It is observed 

that the crack is forced to by-pass and cut-through the CB phases (Supplementary Fig. 13) 

to overcome additional energy barriers ∆𝐶𝐵1𝐺𝑓0  and ∆𝐶𝐵2𝐺𝑓0 , respectively 

(Supplementary Fig. 8).  The deflected crack from CD phase exhibited increased actual 

length of the crack path (Supplementary Fig. 14), where the blunted crack tip and extended 

crack path provide additional fracture energy as ∆𝐶𝐷𝑙𝑓 (Supplementary Fig. 9). Affected 

by the angles of shield units (𝜃𝑠), a shielded crack tip displayed a well-distributed and less-

concentrated stress field and potential and shielded deflections (Supplementary Fig. 10 and 

Supplementary Fig. 15), leads to added fracture energy as ∆𝑆𝐺𝑓0 + 𝑃𝑆𝐷∆𝑆𝐷𝐺𝑓0 . The 

implanted bridge with different bridge distance ( 𝑑𝐵 ) brings different energy events 

including the crack delfection, cut-through, and bridged crack fronts (Supplementary Fig. 

16 and Supplementary Fig. 11), which can be described with ∆𝐶𝐷𝑂𝐵𝐷𝐺𝑓0, ∆𝐶𝐵2𝑂𝐵𝐶𝐺𝑓0, 

and ∆𝐵A𝐵𝑆𝐵𝐺𝑓0. 

CB specimens exhibited both by-pass and cut-through of CB phases, where an 

increasing number of bowing events, extended fracture plateau, and additional fracture 
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energies are experimentally observed (Supplementary Fig. 13) for specimens with a higher 

density of CB phases (𝜌𝐶𝐵).  Simulation results (Supplementary Fig. 8) supported the 

experimental observation that overcoming energy barriers, ∆𝐶𝐵1𝐺𝑓0  and ∆𝐶𝐵2𝐺𝑓0 , was 

necessary for by-passing isolated CB phases or cut-through of agglomerated CB phases, 

respectively. Crack deflection specimens exhibited increased actual length of the crack 

path due to complete deflection of crack tips by CD phases, where more deflection events 

and resulted fracture energies were experimentally observed (Supplementary Fig. 14) for 

specimens with denser CD phase. This is further confirmed by the numerical results 

(Supplementary Fig. 9) that the out-of-plane deflection blunts the crack tip, extends of the 

actual crack path, and provides additional fracture energy as ∆𝐶𝐷𝑙𝑓 . In addition, 

experimental results (Supplementary Fig. 15) suggested that specimens with uniform 

shield units of different shield angles (𝜃𝑠) exhibits the most significant improvement of 

fracture energies for 50º - 60º shielding angles. Numerical simulations (Supplementary Fig. 

10) further revealed that a shielded crack tip displayed a well-distributed stress field with 

reduced stress concentration, effectively blunting the crack and introducing additional 

shielding energy for crack propagation. The angle compliance analysis (Supplementary 

Note 6) established the theoretical correlation between the occurrences of shielded 

deflections and 𝜃𝑠, providing an explanation for the maximum energy absorption observed 

at 50º - 60º shielding angles. The study of reinforcement bridging involved experimental 

measurement of fracture energy in specimens with varying bridging parameters 

(Supplementary Fig. 16), revealing that reducing the bridge distance (𝑑𝐵) enhances crack 

deflection, whereas increasing 𝑑𝐵 promotes cut-through of bridging fibers.  The energy 

increments of experimentally observed bridged cut-through, deflection, and crack-bridging 



25 

 

events were simulated using fracture processes at the crack tip with varying sizes of the 

bridging fibers (Supplementary Fig. 11), thereby completing the theory in the main text.  
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Supplementary figures and tables 

 

Supplementary Fig. 1. The schematics of data-driven damage-programming design, where 

the term DP represents damage-programmable.  
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Supplementary Fig. 2. Data-driven design of damage-programmable (DP) cells. (a) The 

overall design flowchart, where 𝜃𝑔  is the guiding angle, 𝜃𝑓  is the fracture angle, 𝐺𝑓 

represents the fracture energy, 𝜎𝑓  is the fracture strength, FIS, PGS, MGS are the 

abbreviations for fracture initiation surface, primary guiding surface, and minor guiding 

surface, respectively. (b) The structure and hyperparameters of the fully connected neural 

networks (FCNNs), where, 𝑎𝑖
1 to 𝑎𝑖

3 are the output values of the 𝑖𝑡ℎ neuron in layer 1 to 

layer 3, 𝑊𝑖  and 𝑏𝑖  are the weight matrix and bias vector between layer 𝑖  and 𝑖 − 1 , 

respectively, the number of neurons is represented by 𝑛, which is selected as 30, 40, and 

50 to predict 𝜃𝑓, 𝜎𝑓, and and 𝐺𝑓, respectively, ReLU is the rectified linear unit. 
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Supplementary Fig. 3. Achieving the fracture-resisting mechanisms in nature by damage-

programmable (DP) metamaterials. (a) The DP metamaterials with crack tip interactions, 
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where 𝑑𝐶𝐷 is the distance between the adjacent crack deflection (CD) phases, T0 represents 

the base cells, T1 is the type of DP cells with highest fracture strength with zero fracture 

angles, T2 is the type of DP cells that has the largest fracture strength for the maximum 

fracture angles 𝜃𝑓 𝑚𝑎𝑥, 𝜌𝐶𝐵 is the density of crack bowing (CB) phase. Note that 𝜎0 is the 

fracture strength of T0 cells. (b) The DP metamaterials with crack shielding, 𝜃𝑠  is the 

guiding angle of the shield units, T3 is the type of DP cells with engineerable fracture angle 

of 𝜃𝑠 ranging from minimum to maximum achievable DP fracture angles 𝜃𝑓 𝑚𝑖𝑛 to 𝜃𝑓 𝑚𝑎𝑥, 

𝑔𝑓1
- 𝑔𝑓5

 are the fracture energies of different shield units. NS and PS represents the 

negative and positive shielding layers of the shield units, respectively. (c) The DP 

metamaterials with reinforcement bridging, where 𝑆𝐵 is the size of the bridging fiber, 𝑑𝐵 

is the distance between adjacent bridging fibers.  
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Supplementary Fig. 4. Prediction errors and experimental validations of the fully connected 

neural networks (FCNNs). (a-b), (c-d), (e-f) provides the prediction errors and 

experimental validation results of the fracture angle (𝜃𝑓 ), fracture strength (𝜎𝑓 ), and 

fracture energy (𝐺𝑓) for damage-programmable (DP) cells, respectively. The error bars 

indicate the prediction error of the FCNNs. Source data are provided as a Source Data file.  



31 

 

 

Supplementary Fig. 5. Computational cost analysis. (a) Fracture prediction using fully 

connected neural networks (FCNNs). (b) Machine-learning-assisted (ML-assisted) 

damage-programmable (DP) cell generation featuring deep search refinement coefficient 

𝛽 = 0.1, with 1000 DP cells randomly generated per search cycle and angle resolution 𝜃𝑚𝑖𝑛 

= 2-10º. Source data are provided as a Source Data file. 



32 

 

 

Supplementary Fig. 6. Specimen designs. (a-c) Designs of the fracture specimens for the 

evaluation of 2D crack propagation, evaluation of 3D crack propagation, and the 

measurement of fracture energies, respectively, where the feasible design area of the 

sidebars is determined by a simplified bending model. (d) Designs of specimens for the 

single damage-programmable (DP) cell fracture measurement. Source data are provided as 

a Source Data file. 
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Supplementary Fig. 7. Data-driven fracture path engineering using the damage-

programmable (DP) metamaterials for a 2D sine-shaped crack path. (a) The digital design 

of crack path described by 𝑓2𝐷(𝑥) = (𝐻/3)𝑠𝑖𝑛[(2𝜋/𝐿)𝑥] + 𝐻/2 , where 𝑓2𝐷(𝑥)  is the 
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function describing the 2D crack geometry, 𝐿 and 𝐻 is the length and height of the 2D 

design space, respectively. (b) Experimentally measured actual 2D fracture path. (c) The 

digital image correlation (DIC) analysis of the controlled 2D fracture propagation, where 

𝜇𝜀 represents the microstrain. (d) The strains at the guiding and background regions for the 

DP metamaterials based on the digital design of pre-engineered fractures. Source data are 

provided as a Source Data file.  
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Supplementary Fig. 8. Simulated fracture process of the normal propagation, by-pass, and 

cut-through events. ∆𝐶𝐵1 and ∆𝐶𝐵2 represents the energy increment fractions for the by-

pass and cut-through crack bowing events, respectively.  
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Supplementary Fig. 9. Simulated fracture process of the normal propagation and crack 

deflection events with different distance between the crack deflection (CD) phases, 𝑑𝐶𝐷. 

∆𝐶𝐷 represents the energy increment fraction for the crack deflection events.  
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Supplementary Fig. 10. Simulated fracture process of the normal propagation, and the 

crack shielding with shield angle 𝜃𝑠  =  30° – 50°. ∆𝑆  represents the energy increment 

fraction for the shieled crack events. NS and PS are the layers with negative and positive 

shielding.  
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Supplementary Fig. 11. Simulated fracture process of the normal propagation, and the 

reinforcement bridging with sizes of the bridge 𝑆𝐵 ranging from 3 to 7 cells. ∆𝐵 represents 

the energy increment fraction for the bridged crack events. 𝐴𝐵 is the statistical bridging 

area per length of the bridging fibers.  
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Supplementary Fig. 12. The numerically modelled fracture energy increment of different 

fracture events. (a) Crack bowing. (b) Crack deflection. (c) Shield units. (d) Reinforcement 

bridging. ∆𝐶𝐵 , ∆𝐶𝐷 , ∆𝑆 , and ∆𝐵  are energy increment fractions for crack bowing, crack 

deflection, shielded crack, and bridged crack events, respectively. 𝑑𝐶𝐷, 𝜃𝑆, and 𝑆𝐵 are the 

distance between crack deflection phases, shield angle, size of the bridges, respectively. 

Source data are provided as a Source Data file. 
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Supplementary Fig. 13. Fracture responses and experimental captures of crack bowing 

specimens. (a) Fracture load displacement curves and (b) snapshots of the fracture 

processes for the crack bowing specimens with 10% – 50% randomly added CB phase, 

where 𝜌𝐶𝐵 is the density of CB phase. Source data are provided as a Source Data file. 



41 

 

 

Supplementary Fig. 14. Fracture responses and experimental captures of crack deflection 

specimens. (a) Fracture load-displacement curves and (b) snapshots of the fracture 

processes for the crack deflection specimens with uniformly distributed CD phase 

separated by 1 – 5 cells, where 𝑑𝐶𝐷 is the distance between the adjacent CD phases. Source 

data are provided as a Source Data file. 
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Supplementary Fig. 15. Fracture responses and experimental captures of specimens with 

shield units. (a) Fracture load displacement curves and (b) snapshots of the fracture 

processes for the specimens consist of uniform shield units with 𝜃𝑠 =  30° – 50°, where 𝜃𝑠 

is the shielding angle. Source data are provided as a Source Data file. 
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Supplementary Fig. 16. Fracture responses and experimental captures of crack bridging 

specimens. (a-c) Fracture load displacement curves and (b-d) snapshots of the fracture 

processes for the crack bridging specimens with size of the bridge 𝑆𝐵 = 3 cells, 𝑆𝐵 = 5 cells, 

and 𝑆𝐵  = 7 cells, respectively. 𝑑𝐵  is the distance between the bridges. Source data are 

provided as a Source Data file. 
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Supplementary Fig. 17. Normalized experimental fracture load displacement curves for the 

conventional body-centered-cubic (BCC) specimen and damage-programmable (DP) 

metamaterials with crack tip interactions, crack shielding, and reinforcement bridging. 𝑑𝑓 

is the fracture displacement. Source data are provided as a Source Data file. 
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Supplementary Fig. 18. Experimental configuration of the digital image correlation (DIC) 

analysis. 
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Supplementary Fig. 19. The strain data of the damage-programmable (DP) metamaterials 

with combined crack resistances and conventional body-centered-cubic (BCC) specimens. 

(a) Strain data to quantify crack-resisting events. (b) Strain data to quantify protection of 

the critical unit. 𝑑𝑐 is the distance to the crack front, 𝜇𝜀 is the microstrain. Source data are 

provided as a Source Data file. 
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Supplementary Fig. 20. Demonstration of potential applications of damage-programmable 

(DP) metamaterials. (a) A flying vehicle enhanced with lightweight DP implants designed 

to guide cracks away from critical areas for improved safety. (b) Experimental validation 

of representative sections of DP implants.  
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Supplementary Fig. 21. The simulation configurations. (a) Simulation configuration for the 

training data generation. (b) Simulation configuration for the local fracture process for 

different toughening mechanisms.  
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Supplementary Fig. 22. Extension of the predictive scope of fully connected neural 

networks (FCNNs) utilizing training data from arbitrary fracture modes.  
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Supplementary Fig. 23. The construction of training data. (a) The design data abstraction 

of damage-programmable (DP) cells, where PGS and MGS represent the primary and 
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minor guiding surfaces, respectively. (b) The derivation of the training properties for a 

sample training DP cell, where 𝜃𝐿 and 𝜃𝑅 are the fracture angles of the left and right PGS, 

respectively, 𝜃𝑔  is the fracture guiding angle, 𝜃𝑓  is the fracture angle of DP cell, 𝐺𝑓 

represents the fracture energy, 𝜎𝑓 is the fracture strength. (c) The distribution of the training 

angles. Source data are provided as a Source Data file. 
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Supplementary Fig. 24. The average losses of fully connected neural network (FCNN) with 

different compositions of hyperparameters for fracture angle predictions. (a-e) The average 

losses for the FCNNs constructed with 10, 20, 30, 40, and 50 number of neurons in each 

layer, respectively. Source data are provided as a Source Data file. 
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Supplementary Fig. 25. The average losses of fully connected neural network (FCNN) with 

different compositions of hyperparameters for fracture energy predictions. (a-e) The 

average losses for the FCNNs constructed with 10, 20, 30, 40, and 50 number of neurons 

in each layer, respectively. Source data are provided as a Source Data file.  
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Supplementary Fig. 26. The average losses of fully connected neural network (FCNN) with 

different compositions of hyperparameters for fracture strength predictions. (a-e) The 

average losses for the FCNNs constructed with 10, 20, 30, 40, and 50 number of neurons 

in each layer, respectively. Source data are provided as a Source Data file. 
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Supplementary Fig. 27. Loss functions using different activation functions. (a) Losses for 

fracture angle predictions. (b) Losses for fracture energy predictions. (c) Losses for fracture 

strength predictions. Note that ReLU represents rectified linear unit. Source data are 

provided as a Source Data file. 
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Supplementary Fig. 28. Flow chart of the crack path engineering algorithms.
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Supplementary Fig. 29. The shielding regions of the crack shielding specimen. 𝑔𝑓1
- 𝑔𝑓5

 are 

the fracture energies of different shield units. Source data are provided as a Source Data 

file.  
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Supplementary Fig. 30. The possibility function of shielded deflection. 𝜃𝑆  is the shield 

angle. Source data are provided as a Source Data file.  
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Supplementary Fig. 31. The schematics of the agglomerated crack bowing (CB) phases.  
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Supplementary Table 1. Summary of mechanical properties of parent material. 

Specimen 

number 

Modulus (GPa) Ultimate tensile 

stress (MPa) 

Ultimate tensile 

strain (%) 

Test area 

(mm2) 

1 1.3 37.2 36.0 22.0 

2 1.3 36.4 33.2 22.1 

3 1.3 35.3 37.0 22.3 

Average 1.3 36.3 35.4 22.1 
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Supplementary Table 2.  Design data of damage-programmable (DP) cells, where PGS 

and MGS represents the primary guiding surface and minor guiding surface, respectively, 

T0 to T3 represents type-0 to type-3 DP cells. 

Functional 

category 

Type of DP 

cells 

PGS 

angle 1 

PGS 

angle 2 

MGS 

angle 1 

MGS 

angle 2 

MGS 

angle 3 

MGS 

angle 4 

Spatially 

program the 

crack path 

Guiding 

Constrained by equation (S7-S13) Correction 

Background 

Construct 

toughening 

units 

T0 Base cells without microfibers for comparison purposes 

T1 90 90 0 0 90 90 

T2 80 80 0 0 90 90 

T3 Varies according to the pre-designed fracture angles 
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Supplementary Table 3. Summary of experimentally observed bridging events, where 𝑆𝐵 

is the size of the bridging fibers, 𝑑𝐵 is the bridging distances, 𝐴𝐵 represent the statistical 

results of the bridging area per length of the bridging fibers. 

𝑆𝐵 

(Number of cells) 

𝑑𝐵 

(Number of cells) 

𝐴𝐵 

(Number of cell 

surfaces) 

Bridged 

deflection 

(Yes/No) 

Bridged 

cut-through 

(Yes/No) 

3 

1 0.67 Yes No 

3 0.67 Yes Yes 

5 1.00 Yes No 

7 2.00 No Yes 

5 

1 0.20 Yes No 

3 0.30 Yes Yes 

5 0.30 Yes No 

7 0.30 No Yes 

7 

1 0.21 Yes Yes 

3 0.26 Yes Yes 

5 0.17 Yes No 

7 0.13 No Yes 
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Supplementary Table 4. Summary of different specimens to evaluate the fracture of 

metamaterials. 

Specimen type 2D planar fracture  3D fracture  2D compact tension  

Number of cells 9×9×1 10×10×10 11×10×3 

Functionality Reveal the 

propagation of the 

crack on a 2D 

plane 

Evaluates the 

fracture surface on 

a 3D design space 

Obtain the fracture 

load-displacement 

curves and the 

resulted fracture 

energies 
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Supplementary Table 5. Optimized hyperparameters for the fully connected neural 

network designs of different training purposes, where ReLU represents rectified linear 

unit. 

Training 

purposes 

Number of 

hidden 

layers 

Number of 

neurons in 

each hidden 

layer 

Activation 

function 

Learning 

rate 

Number 

of 

training 

cycles 

𝜃𝑓 prediction 3 30 Leaky ReLU 0.01 600 

𝜎𝑓 prediction 3 40 ReLU6 0.1 600 

𝐺𝑓 

prediction 

3 50 ReLU6 0.01 1000 
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