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Section SI – Structures and Bi3Se4 band structure. 

Table S1: The lattice parameters of different crystal structures.   

Crystal 

Structure 

a (Å) c (Å) 

Exp Non-Rel Rel Exp Non-Rel Rel 

B3Se4 4.23 4.31 4.28 40.5 41.11 40.9 

Bi2PbSe4 - 4.37 4.31 - 41.85 41.67 

Bi2PbTe4 4.44 4.55 4.49 41.61 42.41 42.05 

Bi2MnSe4 4.197 4.29 4.22 37.797 38.94 38.52 

Bi2MnTe4 4.334 4.45 4.37 40.91 41.82 41.38 

 

 



Fig. S1: Scalar-relativistic (a) and full-relativistic bandstructure of Bi3Se4 using PBE functional 

along the high symmetry in k-space of a Brillouin zone with space group 𝑅3̅𝑚. (c) Brillioun zone 
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Section SII – Weyl point surface Fermi Arc calculations 

 

Fig. S2:(a) The Weyl nodes of the bulk BZ on the (0001) surface of Bi
2
MnSe

4
. (b) and (c) are 

the calculated Fermi surface containing a pair of crescent Fermi arcs around the Γ points.   
 

 

 



Section SIII – Supplementary Slab Figures 

 

Fig. S3: Bandstructure of Bi atoms on ferromagnetic Bi2MnSe4 using different thickness with 

spin aligned along 𝑧̂ direction. Red colors represent projection onto Bi-centered Wannier 

functions, as in main text. 

 

 

 

 

 

 

 

 

 

 



Fig. S4: Bandstructure of Bi atoms on antiferromagnetic Bi2MnSe4 using different thickness with 

spin aligned along 𝑧̂ direction. Red colors represent projection onto Bi-centered Wannier 

functions, as in main text. 

 

 

 

 



Section SIV – Simple Weyl semimetal model and discussion 

of Weyl physics. 

Following the work of Yang et. al.1, we introduce a simple two-band tight-binding model that 

clarifies several aspects of Weyl semi-metals. Similar to the ferromagnetic phase of BMS, this 

model breaks time-reversal symmetry but maintains inversion: 

 

𝐻𝑘  =  [2 𝑡𝑥  (𝑐𝑜𝑠 𝑘𝑥  −  𝑐𝑜𝑠 𝑘0) +  𝑚 (2 −  𝑐𝑜𝑠 𝑘𝑦  −  𝑐𝑜𝑠 𝑘𝑧)]𝜎𝑥  + 

2 𝑡𝑦 𝑠𝑖𝑛 𝑘𝑦 𝜎𝑦  +  2 𝑡𝑥  𝑠𝑖𝑛 𝑘𝑧 𝜎𝑧  

 

where σ is the spin degree of freedom of the electron, and σx, σy, σz are Pauli matrices. For the 

values of tx=-0.2, ty=0.2, tz=0.2, m=1, k0 = 0.2π, we plot the resulting band structure in the upper 

panels of figure S5 using the pyth-tb code (see physics.rutgers.edu/pythtb/). As can be seen in 

the upper right panel, for these parameters, the model has two Weyl points at k= (+/-k0, 0, 0). 

On any closed two-dimensional plane in k-space that does not intersect the Weyl points, the 

model is gapped. Therefore, it is possible to calculate the Chern number of the occupied band 

on that plane, which can be expressed as an integral over the Berry curvature: 

 

C = 
1

2𝜋
 ∑ 𝐹𝑖𝑗(𝑘)𝑘  

 

where 𝐹𝑖𝑗 is the Berry curvature of the occupied band and where the sum is over 2d planes of k-

space.  We do this for (ky,kz)-planes at fixed values of kx in the lower left panel of figure S5. As 

can be seen, the Chern number is equal to -1 for kx between the Weyl points, and zero 

otherwise. This is because the Weyl points with +/- chirality serve as sources/sinks of Berry 

curvature in k-space, and there is a net Berry flux in planes between the Weyl points. The AHC 

is expressed as an integral of the Berry curvature of the filled band over all k-space: 

 

𝜎𝑖𝑗 = (
𝑒2

ℎ
)(

1

𝛺
) ∑ 𝐹𝑖𝑗(𝑘)𝑘  

 

where 𝛺 is the unit cell volume and the sum is over 3d k-space. Thus, for systems with a gap 

except at isolated points, the AHC is proportional to percentage the BZ with non-zero Chern 

number, which is proportional to the separation between the Weyl points in k-space. The non-

zero values of the Chern number in planes of k-space also suggest a strong connection 



between Weyl semimetals in 3D and Chern insulators in 2d, and this is the reason that thin films 

of Weyl semi-metals with surfaces perpendicular to the line between the Weyl points are 

promising systems to look for Chern insulators. 

 

In the lower right panel, we calculate the surface band structure of the (010) surface of the 

model, in a 30 layer slab geometry. The flat bands near Γ that connect the projected Weyl points 

are the surface Fermi arcs, which carry the anomalous Hall conductivity. We note that if we look 

instead at the (100) surface, the Weyl points will be projected onto the same point of the surface 

band structure. 

 

Weyl points are also possible in systems that instead have unbroken time-reversal symmetry, 

but broken inversion. The Weyl points in those systems are locally the same as in the broken 

time-reversal case. However, unbroken time-reversal symmetry requires that these systems 

have additional pairs of Weyl points beyond the minimum single pair in the magnetic case. 

These additional Weyl pairs must contribute additional AHC that results in a system with zero 

net AHC, as expected for systems with time-reversal symmetry. See for instance see reviews by 

Armitage2 and Burkov3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Figure S5: Upper left: band structure of Weyl two-band model. Upper right: band structure near 

k = (0,0,0). Lower left: Chern number over (ky,kz) plane for fixed kx. Lower left: surface band 

structure of (010) plane. The flat bands near Γ are Fermi arcs. 

 

 
 

Section SV – Magnetic Ising Model and magnetic transition 
temperature. 
 
In order to calculate the magnetic ordering temperature under a simple approximation, we fit the 

energy of various spin configurations to an Ising model, as implemented by Garrity4. 

 



H = 1
1

2
∑ 𝐽𝑖𝑗𝑠𝑖𝑠𝑗𝑖𝑗   

 

where i and j run over Mn sites, si = (1,-1) represents the direction of the spin at site i, and Jij are 

the fitting constants. This model is appropriate for materials with large magnetic anisotropy, 

where the spin is forced to point along a single direction, in this case the z-direction. This 

approximation will tend to overestimate the transition temperature, as the spins will have some 

fluctuation in the x and y directions. 

 

We fit two models, one with only nearest neighbor interactions in-plane and out-of-plane, and 

one with longer range interactions. We perform a least-squares fit of the parameters to 

calculations in 3 x 3 x 3 supercells using various spin configurations. We use recursive feature 

elimination and cross-validation to identify important interaction parameters when fitting the 

longer range model. We show the performance of the models in reproducing the DFT energies 

in left panel of figure S6. 

 

Figure S6: Left: Comparison between DFT energies and Ising model energies for various 

magnetic orderings, relative to the FM phase. Upper right: AFM order parameter as a function of 

temperature. Lower right: AFM susceptibility as a function of temperature. 

 

 
 



We solve the models on a 12 x 12 x 12 grid using classical Monte Carlo sampling of the 

Boltzmann partition function, using the Metropolis single spin flip algorithm. The results for the 

antiferromagnetic order parameter and susceptibility are presented in the right panels of figure 

S6. The transition temperature for both models is at 75 K. While we expect this to be an 

overestimate of the real transition temperature due to quantum effects, the large spins of Mn (5 

μB) are often accurately treated as classical. While exactly predicting the magnetic transition 

temperature of a complicated material from first principles is difficult, we expect that the 

magnetic ordering temperature of single crystal Bi2MnSe4 to be several orders of magnitude 

above the milli-Kelvin temperature range of typical QAH materials based on Bi2Te3 doped with 

disordered magnetic atoms. 

 

Section SVI – Layer-by-layer AHC 

 

In fig S7, we present more details on the layer-resolved contributions to the AHC in the AFM 

phase using a thick slab geometry, using the method describe by Rauch5. We solve the tight-

binding model on a 128 x 128 k-point grid. We present results for a 31 layer slab with C=1 

number (solid blue line) and a 32 layer slab with C=0. In the upper left panel, we show the 

simple layer-by-layer contributions. There is both an overall trend and sharp oscillations 

between spin up and spin down layers. In the upper right panel, we average over pairs of layers, 

which eliminates the oscillatory behavior and shows the contributions to the AHC decaying as 

towards the center of the slab. 

 

In the lower left and lower right panels, we present the cumulative contribution the AHC, 

summing over layers, with the right panel again averaging pairs of layers. We can see that in 

both the C = 1 and C = 0 cases, the bottom surface contributes a total of +0.5( 
𝑒2

ℎ
 ) to the AHC. 

In the odd layer C=1 case, the top surface also contributes +0.5 for a net +1.0 (
𝑒2

ℎ
), but in the 

even layer C=0 case, the top surface contributes -0.5, for a total slab AHC of 0.0 (
𝑒2

ℎ
), as 

expected for a C=0 material. 

 

 

 

 



Figure S7: Upper left: Surface AHC, separated into layers, for 31 layer slab (solid blue) and 32 

layer slab (dashed red). Upper right: Surface AHC separated into layers and averaged over 

pairs of layers. Lower left: Cumulative AHC summing over layers. Lower right: Cumulative AHC 

averaged over pairs of layers. 

 

 
 

 
Section SVII – Wannier charge centers for AFM phase 
 
We calculate the topological invariant of the bulk AFM phase by computing Wannier charge 

center (WCC) positions. We show that the k3=0 Wannier charge centers switch partners going 

from k2 = 0 to k2 = 0.5, characteristic of a non-trivial topological phase and a theta value of π, as 

discussed by Taherinejad6, Soluyanov7 and Mong8. 

 

 

 

 



Figure S8: Evolution of Wannier charge centers along direction 1 while varying parameter k2, 

with k3 fixed to 0.0 (left) and 0.5 (right). The left panel shows non-trivial partner switching. 

 

 

Section SVIII – Hybrid functional calculations 
  
In order to better understand how robust our results are to alternate approximations, we perform 

hybrid functional HSEsol9 calculations, as implemented in VASP10,11, studying the effect of 

different fractions of exact exchange (EXX) on our results. While hybrid functionals produce on 

average better semiconductor band gaps than semi-local functionals, which tend to 

underestimate band gaps, the necessary fraction of exact exchange can vary across materials 

classes.  Metals and small gap materials sometimes give worse results for x=0.25, the default 

value of EXX in HSE. 

 

In particular, the effects of hybrid functionals have been explored in Bi2Se3 and related 

compounds previously12. That work finds that hybrid functionals on average tend to worsen 

agreement with the experimental band structures of these topological insulators. We reproduce 

this finding in the left panel figure S9, which shows that x=0.25 over-corrects the band gap of 

Bi2Se3, reducing the amount of band inversion and therefore reducing the inverted band gap at 

k=Γ. Better agreement with experiment13 is achieved for x~0.07. These results are consistent 

with the large electronic dielectric constant of Bi2Se3, 28.0 in our non-SOC linear response 



calculations, which translates to a EXX fraction of 0.035 using the non-self-consistent method of 

Skone et. al14. 

 

In the right panel of figure S9, we consider the effects of EXX on the bands at k=Γ in the 

ferromagnetic Weyl semimetal phase of Bi2MnSe4. As expected, increasing EXX reduces the 

overlap between Bi and Se states. The Γ5+ and Γ4+ bands, which have Bi character, rise above 

the Se-like Γ5- and Γ4- bands with increasing EXX. For EXX fraction above 0.115, the bands 

cross and the material becomes a trivial insulator. Using the value of EXX preferred by our 

Bi2Se3 results, Bi2MnSe4 remains in the Weyl semimetal phase using hybrid functional 

calculations. 

 

Figure S9: Left panel: Direct band gap at Γ of Bi2Se3 as a function of EXX for HSEsol unctional. 

Right panel: Changes of 4 bands at Γ in FM phase of BMS as a function of EXX. BMS is a Weyl 

semimetal for EXX < 0.115 and trivial for larger EXX. 

 

 
 
 

Section SIX – (100) AFM Surface state 
  

Unlike the (001) surface, which breaks time reversal symmetry, other surfaces of the BMS AFM 

TI phase can show non-trivial surface states8. In figure S10, we present the tight-binding based 

surface bands on the (100) surface, which shows a nontrivial feature. 

 

 
 
 
 



Figure S10: Energy and momentum dependence of local density of states (LDOS) of the (100) 

surface of the AFM phase of BMS. Here, the red region shows the bulk energy bands and the 

blue region shows the energy gap.  
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