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Supplementary Table 

 
Gaussian Approximation Potential (GAP) Training Parameters 

 
Cutoff radius [Å] 4.0 

Smooth cutoff transition [Å] 1.0 

Energy regularization [eV per atom] 0.001 

Force regularization [eV Å-1 per atom] 0.1 

Stress regularization [eV] 0.05 

Kernel exponent 4 

Sparse jitter 10-8 

(nmax, lmax) (6,6) 

Sparse points 1800 

GAP version 1548461341 

 

Table S1. Final set of parameters used to train liquid and amorphous HfO2 GAP model.  

 

 

Supplementary Figures 
  

Error Histogram  

 

 
Figure S1: The error histogram prediction using GAP corresponding to the validation plot, 

Figure 1 from the article. (Left panel) energy, (Right panel) forces, the three different colors refer 

to XYZ components of the force vector.  

 



 

 
Figure S2: Validation plot for the manual sampled liquid dataset [Ntrain = 250, Niter ~ 10 (i.e. 

manual iterations)] (Inset plot) Validation plot for the active learned dataset [Ntrain = 467, Niter ~ 

4]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Active Learned GAP vs Broglia (ref. 30) 



 

 
Figure S3: Comparison of (left panel) DFT force vs GAP force plot (right panel) DFT force vs 

Broglia force plot. Quench test dataset reported in Figure 1 has been used for this test. 

 

 

 

Supplementary Discussion 
 

Manual Configuration Selection 

 

Generating the training and test configuration sets to which Machine Learning (ML) potentials are 

fitted is currently done by manual intuition of the physical systems that is under study. To fit GAP 

potentials, we need to optimize the desired number of training and test configurations that will 

achieve the required accuracy of Mean Absolute Error (MAE) < 5meV/atom to model liquid and 

amorphous hafnia.  

For liquid hafnia the ab initio trajectory has 6000 snapshots, thus we split it into three equal-sized 

parts and choose training data from the 1st third (ids 0-1999), test data from the 3rd third (ids 4000-

5999). By neglecting the middle part of the trajectory, we expect that training and test sets are 

uncorrelated. Training sets have sizes of 100, 200 samples which are either randomly chosen or 



with uniform index (and thus temporal) spacing (i.e. every ‘i’-th snapshot). From uniform spacing 

we expect less similarity between the training structures, so we tend to use these training sets. As 

explained in the text of the methods sections, the number of independent test configurations is 

chosen equal to the number of training configurations for consistency. Therefore, test sets have 

also 100, 200 samples chosen with uniform spacing (but from the above-mentioned test set 

regime). The training data selection is continued until the desired accuracy is reached. To improve 

the potential, we increase the number of training and test configurations to fit it in a much larger 

domain.  The validation plot for the manual tuned model is shown in Figure S2. The corresponding 

plot for the active learned liquid dataset is reproduced in the inset. Note that the active learning 

has more control over the convergence as it stops once the desired Etol is achieved with far less 

iterations. Similarly, for the quench dataset it took 40 manual iterations and more than 1000 data 

points to achieve required MAE (not shown).  Thus, one can see that this laborious process can be 

overcome by our automated way of active learning-based fitting of GAP potentials to attain similar 

or much better accuracy without human intervention quickly.  

 

Active Learning Workflow Example Results 

 

The hyperparameters and results of active learning workflow applied to the   example dataset10 

are discussed here. The user defined hyperparameters ’minimum number of clusters’ and 

’number of samples’ are both set to value of 10.  A total of 10 GAP models are initially 

generated to fit the Gaussian process regression over the error metric. This is followed by 20 

GAP models for the optimization run. Hence, a total of 30 GAP models per data iteration.   

A total of 178 clusters are identified by the HDBSCAN.  Number of data points in the smallest, 

largest cluster are 10, 195 respectively.  

 



 

 

 

 

 

Self-Diffusion Coefficient 

The self-diffusion coefficient (D) of atomic species ‘A’ is obtained from the mean square 

deviation (MSD) of all particles through Einstein relationi: 

lim
𝑡→∞

< ||𝑟𝑖(𝑡) − 𝑟𝑖(0)||2 > 𝑖𝜖𝐴 = 6 𝐷𝐴𝑡           (1) 

 Where ri(t) denotes the position of atomic species at time t. This can be obtained from MD 

results by fitting the MSD in linear regime. 

 

Correlated-Diffusion Coefficient 

To account for correlations, we calculated distinct diffusion constant4,5,11,12 for Hf and O atoms.  

lim
𝑡→∞

< || ∑ 𝑟𝑖(𝑡) − 𝑟𝑖(0)

𝑛

𝑖=1

||2 > = 6 𝐷𝜎𝑛𝑡           (2) 

Here n represents the of atoms of distinct species. 

 

Root Mean Square Deviation of Atomic Positions 

Given two sets of atomic positions, u and v with ‘n’ points each. The RMSD6 is defined as: 

 

𝑅𝑀𝑆𝐷(𝑢, 𝑣) = √∑ [(𝑢𝑖𝑥−𝑣𝑖𝑥)2+(𝑢𝑖𝑦−𝑣𝑖𝑦)
2

+(𝑢𝑖𝑧−𝑣𝑖𝑧)2]𝑛
𝑖=1

𝑛

2

            (3) 

 

A Short Survey on Clustering  

 

 Clustering analysis7 is the process of organizing unlabeled data in to groups. What constitute a 

true cluster is highly context and application dependent. Consequently, there are a variety of 

clustering algorithms each of which approaches differently on how the data is grouped into 



clusters. In particular, many of the clustering algorithm exploit the notion of distance similarity 

to group data in to clusters. DBSCAN is a popular algorithm which separate clusters into region 

of high density from low density based on a distance similarity. It does not require apriori setting 

the number of clusters.  The DBSCAN algorithm8 takes in two hyperparameters namely, ε, a 

distance scale and k, a density threshold expressed in terms of a minimum number of points. The 

only drawback of this algorithm is the  difficulty in tuning these hyperparameters. The 

HDBSCAN algorithm9 improves up on the DBSCAN algorithm by converting in to a single 

linkage clustering algorithm by defining a new mutual distance reachability distance metric.  

Thus, avoiding exhaustive search for ε and k.  For a given fixed k, the mutual reachability metric 

can be derived from the distance metric d as follows: 

 

𝑑𝑚𝑟𝑒𝑎𝑐ℎ(𝑋𝑖,𝑋𝑗)= {
max{κ(𝑋𝑖),κ(𝑋𝑗), d(𝑋𝑖,𝑋𝑗)}                             if  𝑋𝑖 ≠ 𝑋𝑗

0                                                                     if  𝑋𝑖=𝑋𝑗 

 

           (4) 

 

For any given point Xi, κ(𝑋𝑖) is the distance to its κth nearest neighbor.  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

Bayesian Optimization  

 

The Bayesian optimization objective is to find the optimal hyper paramters (xopt) so as to 

minimize the error metric (yopt) for the ML model. The pseudo code for the Bayesian 

Optimization algorithm is provided below2: 

 

Sample an initial ‘p0’ random points from the spaces of hyper parameter (xi’s) and compute the 

corresponding error metrics (yi’s) 

Fit a Gaussian process prior on {(xi,yi )}i=1:p0 

for t in p0+1 to p0+P do  

 Estimate the next sample for hyper parameter, xt to be the maximizer of the 

acquisition function   over x, where the acquisition function is computed using 

the GP. 

 Compute the new yt from the xt  

 Update GP with the augmented {(xi,yi )}i=1:t 

 Increment t 

end for   

Return the best estimate of the solution: {xopt,yopt} 

 

In our workflow, Gaussian process regression is used as the surrogate model  

 

y =  f(x) ~ GP(μ(x), K(x, x′))                         (5) 

 

where (x) is the mean and (x,x) is the  squared exponential covariance. 

For the acquisition function we have used the Expected Improvement (EI)3. This would mean in 

our pseudocode the next xt which be chosen such that: 



 

 𝒙t =  𝑎𝑟𝑔𝑚𝑎𝑥 x 𝐸𝐼(𝒙)                                        (6) 

 

where 

 

𝐸𝐼(𝑥) ∶=     𝔼[𝑚𝑎𝑥( 𝑓(𝑥+) −  𝑓(𝑥), 0)]                         (7)         
 

where f(x+) is the value of the lowest error metric observed so far and x+ is the location of 

hyperparameter corresponding to that. For the Gaussian Process Regression, EI can be estimated 

analytically as follows: 

 

EI(x)= {
(f(x+) -  μ(x))Φ(Z)+ σ(x)ϕ(Z)             if  σ(x) > 0

0                                                                     if  σ(x)=0 

 

           (8) 

 

where  

 

Z  = {

( f(x+) - μ(x) )

σ(x)
                                         if  σ(x) > 0

0                                                                  if  σ(x)=0 

 

                      (9) 

 

 

μ(x) and σ(x) represents the mean and the standard deviation respectively predicted from the 

Gaussian process regression at a given x. Φ and ϕ represents the probability density function 

(PDF) and cumulative density function (CDF) of the standard normal distribution, respectively. 

The two summation terms on equation 8, can be interpreted as the tradeoff between exploration 

and exploitations in selection of the next sample xt.  
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